1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2013-2017 Wind River Systems, Inc. 3 */ 4 5 #include <stdint.h> 6 #include <string.h> 7 #include <stdio.h> 8 #include <errno.h> 9 #include <unistd.h> 10 11 #include <rte_ethdev_driver.h> 12 #include <rte_ethdev_pci.h> 13 #include <rte_memcpy.h> 14 #include <rte_string_fns.h> 15 #include <rte_malloc.h> 16 #include <rte_atomic.h> 17 #include <rte_branch_prediction.h> 18 #include <rte_pci.h> 19 #include <rte_bus_pci.h> 20 #include <rte_ether.h> 21 #include <rte_common.h> 22 #include <rte_cycles.h> 23 #include <rte_spinlock.h> 24 #include <rte_byteorder.h> 25 #include <rte_dev.h> 26 #include <rte_memory.h> 27 #include <rte_eal.h> 28 #include <rte_io.h> 29 30 #include "rte_avp_common.h" 31 #include "rte_avp_fifo.h" 32 33 #include "avp_logs.h" 34 35 static int avp_dev_create(struct rte_pci_device *pci_dev, 36 struct rte_eth_dev *eth_dev); 37 38 static int avp_dev_configure(struct rte_eth_dev *dev); 39 static int avp_dev_start(struct rte_eth_dev *dev); 40 static void avp_dev_stop(struct rte_eth_dev *dev); 41 static int avp_dev_close(struct rte_eth_dev *dev); 42 static int avp_dev_info_get(struct rte_eth_dev *dev, 43 struct rte_eth_dev_info *dev_info); 44 static int avp_vlan_offload_set(struct rte_eth_dev *dev, int mask); 45 static int avp_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete); 46 static int avp_dev_promiscuous_enable(struct rte_eth_dev *dev); 47 static int avp_dev_promiscuous_disable(struct rte_eth_dev *dev); 48 49 static int avp_dev_rx_queue_setup(struct rte_eth_dev *dev, 50 uint16_t rx_queue_id, 51 uint16_t nb_rx_desc, 52 unsigned int socket_id, 53 const struct rte_eth_rxconf *rx_conf, 54 struct rte_mempool *pool); 55 56 static int avp_dev_tx_queue_setup(struct rte_eth_dev *dev, 57 uint16_t tx_queue_id, 58 uint16_t nb_tx_desc, 59 unsigned int socket_id, 60 const struct rte_eth_txconf *tx_conf); 61 62 static uint16_t avp_recv_scattered_pkts(void *rx_queue, 63 struct rte_mbuf **rx_pkts, 64 uint16_t nb_pkts); 65 66 static uint16_t avp_recv_pkts(void *rx_queue, 67 struct rte_mbuf **rx_pkts, 68 uint16_t nb_pkts); 69 70 static uint16_t avp_xmit_scattered_pkts(void *tx_queue, 71 struct rte_mbuf **tx_pkts, 72 uint16_t nb_pkts); 73 74 static uint16_t avp_xmit_pkts(void *tx_queue, 75 struct rte_mbuf **tx_pkts, 76 uint16_t nb_pkts); 77 78 static void avp_dev_rx_queue_release(void *rxq); 79 static void avp_dev_tx_queue_release(void *txq); 80 81 static int avp_dev_stats_get(struct rte_eth_dev *dev, 82 struct rte_eth_stats *stats); 83 static int avp_dev_stats_reset(struct rte_eth_dev *dev); 84 85 86 #define AVP_MAX_RX_BURST 64 87 #define AVP_MAX_TX_BURST 64 88 #define AVP_MAX_MAC_ADDRS 1 89 #define AVP_MIN_RX_BUFSIZE RTE_ETHER_MIN_LEN 90 91 92 /* 93 * Defines the number of microseconds to wait before checking the response 94 * queue for completion. 95 */ 96 #define AVP_REQUEST_DELAY_USECS (5000) 97 98 /* 99 * Defines the number times to check the response queue for completion before 100 * declaring a timeout. 101 */ 102 #define AVP_MAX_REQUEST_RETRY (100) 103 104 /* Defines the current PCI driver version number */ 105 #define AVP_DPDK_DRIVER_VERSION RTE_AVP_CURRENT_GUEST_VERSION 106 107 /* 108 * The set of PCI devices this driver supports 109 */ 110 static const struct rte_pci_id pci_id_avp_map[] = { 111 { .vendor_id = RTE_AVP_PCI_VENDOR_ID, 112 .device_id = RTE_AVP_PCI_DEVICE_ID, 113 .subsystem_vendor_id = RTE_AVP_PCI_SUB_VENDOR_ID, 114 .subsystem_device_id = RTE_AVP_PCI_SUB_DEVICE_ID, 115 .class_id = RTE_CLASS_ANY_ID, 116 }, 117 118 { .vendor_id = 0, /* sentinel */ 119 }, 120 }; 121 122 /* 123 * dev_ops for avp, bare necessities for basic operation 124 */ 125 static const struct eth_dev_ops avp_eth_dev_ops = { 126 .dev_configure = avp_dev_configure, 127 .dev_start = avp_dev_start, 128 .dev_stop = avp_dev_stop, 129 .dev_close = avp_dev_close, 130 .dev_infos_get = avp_dev_info_get, 131 .vlan_offload_set = avp_vlan_offload_set, 132 .stats_get = avp_dev_stats_get, 133 .stats_reset = avp_dev_stats_reset, 134 .link_update = avp_dev_link_update, 135 .promiscuous_enable = avp_dev_promiscuous_enable, 136 .promiscuous_disable = avp_dev_promiscuous_disable, 137 .rx_queue_setup = avp_dev_rx_queue_setup, 138 .rx_queue_release = avp_dev_rx_queue_release, 139 .tx_queue_setup = avp_dev_tx_queue_setup, 140 .tx_queue_release = avp_dev_tx_queue_release, 141 }; 142 143 /**@{ AVP device flags */ 144 #define AVP_F_PROMISC (1 << 1) 145 #define AVP_F_CONFIGURED (1 << 2) 146 #define AVP_F_LINKUP (1 << 3) 147 #define AVP_F_DETACHED (1 << 4) 148 /**@} */ 149 150 /* Ethernet device validation marker */ 151 #define AVP_ETHDEV_MAGIC 0x92972862 152 153 /* 154 * Defines the AVP device attributes which are attached to an RTE ethernet 155 * device 156 */ 157 struct avp_dev { 158 uint32_t magic; /**< Memory validation marker */ 159 uint64_t device_id; /**< Unique system identifier */ 160 struct rte_ether_addr ethaddr; /**< Host specified MAC address */ 161 struct rte_eth_dev_data *dev_data; 162 /**< Back pointer to ethernet device data */ 163 volatile uint32_t flags; /**< Device operational flags */ 164 uint16_t port_id; /**< Ethernet port identifier */ 165 struct rte_mempool *pool; /**< pkt mbuf mempool */ 166 unsigned int guest_mbuf_size; /**< local pool mbuf size */ 167 unsigned int host_mbuf_size; /**< host mbuf size */ 168 unsigned int max_rx_pkt_len; /**< maximum receive unit */ 169 uint32_t host_features; /**< Supported feature bitmap */ 170 uint32_t features; /**< Enabled feature bitmap */ 171 unsigned int num_tx_queues; /**< Negotiated number of transmit queues */ 172 unsigned int max_tx_queues; /**< Maximum number of transmit queues */ 173 unsigned int num_rx_queues; /**< Negotiated number of receive queues */ 174 unsigned int max_rx_queues; /**< Maximum number of receive queues */ 175 176 struct rte_avp_fifo *tx_q[RTE_AVP_MAX_QUEUES]; /**< TX queue */ 177 struct rte_avp_fifo *rx_q[RTE_AVP_MAX_QUEUES]; /**< RX queue */ 178 struct rte_avp_fifo *alloc_q[RTE_AVP_MAX_QUEUES]; 179 /**< Allocated mbufs queue */ 180 struct rte_avp_fifo *free_q[RTE_AVP_MAX_QUEUES]; 181 /**< To be freed mbufs queue */ 182 183 /* mutual exclusion over the 'flag' and 'resp_q/req_q' fields */ 184 rte_spinlock_t lock; 185 186 /* For request & response */ 187 struct rte_avp_fifo *req_q; /**< Request queue */ 188 struct rte_avp_fifo *resp_q; /**< Response queue */ 189 void *host_sync_addr; /**< (host) Req/Resp Mem address */ 190 void *sync_addr; /**< Req/Resp Mem address */ 191 void *host_mbuf_addr; /**< (host) MBUF pool start address */ 192 void *mbuf_addr; /**< MBUF pool start address */ 193 } __rte_cache_aligned; 194 195 /* RTE ethernet private data */ 196 struct avp_adapter { 197 struct avp_dev avp; 198 } __rte_cache_aligned; 199 200 201 /* 32-bit MMIO register write */ 202 #define AVP_WRITE32(_value, _addr) rte_write32_relaxed((_value), (_addr)) 203 204 /* 32-bit MMIO register read */ 205 #define AVP_READ32(_addr) rte_read32_relaxed((_addr)) 206 207 /* Macro to cast the ethernet device private data to a AVP object */ 208 #define AVP_DEV_PRIVATE_TO_HW(adapter) \ 209 (&((struct avp_adapter *)adapter)->avp) 210 211 /* 212 * Defines the structure of a AVP device queue for the purpose of handling the 213 * receive and transmit burst callback functions 214 */ 215 struct avp_queue { 216 struct rte_eth_dev_data *dev_data; 217 /**< Backpointer to ethernet device data */ 218 struct avp_dev *avp; /**< Backpointer to AVP device */ 219 uint16_t queue_id; 220 /**< Queue identifier used for indexing current queue */ 221 uint16_t queue_base; 222 /**< Base queue identifier for queue servicing */ 223 uint16_t queue_limit; 224 /**< Maximum queue identifier for queue servicing */ 225 226 uint64_t packets; 227 uint64_t bytes; 228 uint64_t errors; 229 }; 230 231 /* send a request and wait for a response 232 * 233 * @warning must be called while holding the avp->lock spinlock. 234 */ 235 static int 236 avp_dev_process_request(struct avp_dev *avp, struct rte_avp_request *request) 237 { 238 unsigned int retry = AVP_MAX_REQUEST_RETRY; 239 void *resp_addr = NULL; 240 unsigned int count; 241 int ret; 242 243 PMD_DRV_LOG(DEBUG, "Sending request %u to host\n", request->req_id); 244 245 request->result = -ENOTSUP; 246 247 /* Discard any stale responses before starting a new request */ 248 while (avp_fifo_get(avp->resp_q, (void **)&resp_addr, 1)) 249 PMD_DRV_LOG(DEBUG, "Discarding stale response\n"); 250 251 rte_memcpy(avp->sync_addr, request, sizeof(*request)); 252 count = avp_fifo_put(avp->req_q, &avp->host_sync_addr, 1); 253 if (count < 1) { 254 PMD_DRV_LOG(ERR, "Cannot send request %u to host\n", 255 request->req_id); 256 ret = -EBUSY; 257 goto done; 258 } 259 260 while (retry--) { 261 /* wait for a response */ 262 usleep(AVP_REQUEST_DELAY_USECS); 263 264 count = avp_fifo_count(avp->resp_q); 265 if (count >= 1) { 266 /* response received */ 267 break; 268 } 269 270 if ((count < 1) && (retry == 0)) { 271 PMD_DRV_LOG(ERR, "Timeout while waiting for a response for %u\n", 272 request->req_id); 273 ret = -ETIME; 274 goto done; 275 } 276 } 277 278 /* retrieve the response */ 279 count = avp_fifo_get(avp->resp_q, (void **)&resp_addr, 1); 280 if ((count != 1) || (resp_addr != avp->host_sync_addr)) { 281 PMD_DRV_LOG(ERR, "Invalid response from host, count=%u resp=%p host_sync_addr=%p\n", 282 count, resp_addr, avp->host_sync_addr); 283 ret = -ENODATA; 284 goto done; 285 } 286 287 /* copy to user buffer */ 288 rte_memcpy(request, avp->sync_addr, sizeof(*request)); 289 ret = 0; 290 291 PMD_DRV_LOG(DEBUG, "Result %d received for request %u\n", 292 request->result, request->req_id); 293 294 done: 295 return ret; 296 } 297 298 static int 299 avp_dev_ctrl_set_link_state(struct rte_eth_dev *eth_dev, unsigned int state) 300 { 301 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 302 struct rte_avp_request request; 303 int ret; 304 305 /* setup a link state change request */ 306 memset(&request, 0, sizeof(request)); 307 request.req_id = RTE_AVP_REQ_CFG_NETWORK_IF; 308 request.if_up = state; 309 310 ret = avp_dev_process_request(avp, &request); 311 312 return ret == 0 ? request.result : ret; 313 } 314 315 static int 316 avp_dev_ctrl_set_config(struct rte_eth_dev *eth_dev, 317 struct rte_avp_device_config *config) 318 { 319 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 320 struct rte_avp_request request; 321 int ret; 322 323 /* setup a configure request */ 324 memset(&request, 0, sizeof(request)); 325 request.req_id = RTE_AVP_REQ_CFG_DEVICE; 326 memcpy(&request.config, config, sizeof(request.config)); 327 328 ret = avp_dev_process_request(avp, &request); 329 330 return ret == 0 ? request.result : ret; 331 } 332 333 static int 334 avp_dev_ctrl_shutdown(struct rte_eth_dev *eth_dev) 335 { 336 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 337 struct rte_avp_request request; 338 int ret; 339 340 /* setup a shutdown request */ 341 memset(&request, 0, sizeof(request)); 342 request.req_id = RTE_AVP_REQ_SHUTDOWN_DEVICE; 343 344 ret = avp_dev_process_request(avp, &request); 345 346 return ret == 0 ? request.result : ret; 347 } 348 349 /* translate from host mbuf virtual address to guest virtual address */ 350 static inline void * 351 avp_dev_translate_buffer(struct avp_dev *avp, void *host_mbuf_address) 352 { 353 return RTE_PTR_ADD(RTE_PTR_SUB(host_mbuf_address, 354 (uintptr_t)avp->host_mbuf_addr), 355 (uintptr_t)avp->mbuf_addr); 356 } 357 358 /* translate from host physical address to guest virtual address */ 359 static void * 360 avp_dev_translate_address(struct rte_eth_dev *eth_dev, 361 rte_iova_t host_phys_addr) 362 { 363 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 364 struct rte_mem_resource *resource; 365 struct rte_avp_memmap_info *info; 366 struct rte_avp_memmap *map; 367 off_t offset; 368 void *addr; 369 unsigned int i; 370 371 addr = pci_dev->mem_resource[RTE_AVP_PCI_MEMORY_BAR].addr; 372 resource = &pci_dev->mem_resource[RTE_AVP_PCI_MEMMAP_BAR]; 373 info = (struct rte_avp_memmap_info *)resource->addr; 374 375 offset = 0; 376 for (i = 0; i < info->nb_maps; i++) { 377 /* search all segments looking for a matching address */ 378 map = &info->maps[i]; 379 380 if ((host_phys_addr >= map->phys_addr) && 381 (host_phys_addr < (map->phys_addr + map->length))) { 382 /* address is within this segment */ 383 offset += (host_phys_addr - map->phys_addr); 384 addr = RTE_PTR_ADD(addr, (uintptr_t)offset); 385 386 PMD_DRV_LOG(DEBUG, "Translating host physical 0x%" PRIx64 " to guest virtual 0x%p\n", 387 host_phys_addr, addr); 388 389 return addr; 390 } 391 offset += map->length; 392 } 393 394 return NULL; 395 } 396 397 /* verify that the incoming device version is compatible with our version */ 398 static int 399 avp_dev_version_check(uint32_t version) 400 { 401 uint32_t driver = RTE_AVP_STRIP_MINOR_VERSION(AVP_DPDK_DRIVER_VERSION); 402 uint32_t device = RTE_AVP_STRIP_MINOR_VERSION(version); 403 404 if (device <= driver) { 405 /* the host driver version is less than or equal to ours */ 406 return 0; 407 } 408 409 return 1; 410 } 411 412 /* verify that memory regions have expected version and validation markers */ 413 static int 414 avp_dev_check_regions(struct rte_eth_dev *eth_dev) 415 { 416 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 417 struct rte_avp_memmap_info *memmap; 418 struct rte_avp_device_info *info; 419 struct rte_mem_resource *resource; 420 unsigned int i; 421 422 /* Dump resource info for debug */ 423 for (i = 0; i < PCI_MAX_RESOURCE; i++) { 424 resource = &pci_dev->mem_resource[i]; 425 if ((resource->phys_addr == 0) || (resource->len == 0)) 426 continue; 427 428 PMD_DRV_LOG(DEBUG, "resource[%u]: phys=0x%" PRIx64 " len=%" PRIu64 " addr=%p\n", 429 i, resource->phys_addr, 430 resource->len, resource->addr); 431 432 switch (i) { 433 case RTE_AVP_PCI_MEMMAP_BAR: 434 memmap = (struct rte_avp_memmap_info *)resource->addr; 435 if ((memmap->magic != RTE_AVP_MEMMAP_MAGIC) || 436 (memmap->version != RTE_AVP_MEMMAP_VERSION)) { 437 PMD_DRV_LOG(ERR, "Invalid memmap magic 0x%08x and version %u\n", 438 memmap->magic, memmap->version); 439 return -EINVAL; 440 } 441 break; 442 443 case RTE_AVP_PCI_DEVICE_BAR: 444 info = (struct rte_avp_device_info *)resource->addr; 445 if ((info->magic != RTE_AVP_DEVICE_MAGIC) || 446 avp_dev_version_check(info->version)) { 447 PMD_DRV_LOG(ERR, "Invalid device info magic 0x%08x or version 0x%08x > 0x%08x\n", 448 info->magic, info->version, 449 AVP_DPDK_DRIVER_VERSION); 450 return -EINVAL; 451 } 452 break; 453 454 case RTE_AVP_PCI_MEMORY_BAR: 455 case RTE_AVP_PCI_MMIO_BAR: 456 if (resource->addr == NULL) { 457 PMD_DRV_LOG(ERR, "Missing address space for BAR%u\n", 458 i); 459 return -EINVAL; 460 } 461 break; 462 463 case RTE_AVP_PCI_MSIX_BAR: 464 default: 465 /* no validation required */ 466 break; 467 } 468 } 469 470 return 0; 471 } 472 473 static int 474 avp_dev_detach(struct rte_eth_dev *eth_dev) 475 { 476 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 477 int ret; 478 479 PMD_DRV_LOG(NOTICE, "Detaching port %u from AVP device 0x%" PRIx64 "\n", 480 eth_dev->data->port_id, avp->device_id); 481 482 rte_spinlock_lock(&avp->lock); 483 484 if (avp->flags & AVP_F_DETACHED) { 485 PMD_DRV_LOG(NOTICE, "port %u already detached\n", 486 eth_dev->data->port_id); 487 ret = 0; 488 goto unlock; 489 } 490 491 /* shutdown the device first so the host stops sending us packets. */ 492 ret = avp_dev_ctrl_shutdown(eth_dev); 493 if (ret < 0) { 494 PMD_DRV_LOG(ERR, "Failed to send/recv shutdown to host, ret=%d\n", 495 ret); 496 avp->flags &= ~AVP_F_DETACHED; 497 goto unlock; 498 } 499 500 avp->flags |= AVP_F_DETACHED; 501 rte_wmb(); 502 503 /* wait for queues to acknowledge the presence of the detach flag */ 504 rte_delay_ms(1); 505 506 ret = 0; 507 508 unlock: 509 rte_spinlock_unlock(&avp->lock); 510 return ret; 511 } 512 513 static void 514 _avp_set_rx_queue_mappings(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id) 515 { 516 struct avp_dev *avp = 517 AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 518 struct avp_queue *rxq; 519 uint16_t queue_count; 520 uint16_t remainder; 521 522 rxq = (struct avp_queue *)eth_dev->data->rx_queues[rx_queue_id]; 523 524 /* 525 * Must map all AVP fifos as evenly as possible between the configured 526 * device queues. Each device queue will service a subset of the AVP 527 * fifos. If there is an odd number of device queues the first set of 528 * device queues will get the extra AVP fifos. 529 */ 530 queue_count = avp->num_rx_queues / eth_dev->data->nb_rx_queues; 531 remainder = avp->num_rx_queues % eth_dev->data->nb_rx_queues; 532 if (rx_queue_id < remainder) { 533 /* these queues must service one extra FIFO */ 534 rxq->queue_base = rx_queue_id * (queue_count + 1); 535 rxq->queue_limit = rxq->queue_base + (queue_count + 1) - 1; 536 } else { 537 /* these queues service the regular number of FIFO */ 538 rxq->queue_base = ((remainder * (queue_count + 1)) + 539 ((rx_queue_id - remainder) * queue_count)); 540 rxq->queue_limit = rxq->queue_base + queue_count - 1; 541 } 542 543 PMD_DRV_LOG(DEBUG, "rxq %u at %p base %u limit %u\n", 544 rx_queue_id, rxq, rxq->queue_base, rxq->queue_limit); 545 546 rxq->queue_id = rxq->queue_base; 547 } 548 549 static void 550 _avp_set_queue_counts(struct rte_eth_dev *eth_dev) 551 { 552 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 553 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 554 struct rte_avp_device_info *host_info; 555 void *addr; 556 557 addr = pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR].addr; 558 host_info = (struct rte_avp_device_info *)addr; 559 560 /* 561 * the transmit direction is not negotiated beyond respecting the max 562 * number of queues because the host can handle arbitrary guest tx 563 * queues (host rx queues). 564 */ 565 avp->num_tx_queues = eth_dev->data->nb_tx_queues; 566 567 /* 568 * the receive direction is more restrictive. The host requires a 569 * minimum number of guest rx queues (host tx queues) therefore 570 * negotiate a value that is at least as large as the host minimum 571 * requirement. If the host and guest values are not identical then a 572 * mapping will be established in the receive_queue_setup function. 573 */ 574 avp->num_rx_queues = RTE_MAX(host_info->min_rx_queues, 575 eth_dev->data->nb_rx_queues); 576 577 PMD_DRV_LOG(DEBUG, "Requesting %u Tx and %u Rx queues from host\n", 578 avp->num_tx_queues, avp->num_rx_queues); 579 } 580 581 static int 582 avp_dev_attach(struct rte_eth_dev *eth_dev) 583 { 584 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 585 struct rte_avp_device_config config; 586 unsigned int i; 587 int ret; 588 589 PMD_DRV_LOG(NOTICE, "Attaching port %u to AVP device 0x%" PRIx64 "\n", 590 eth_dev->data->port_id, avp->device_id); 591 592 rte_spinlock_lock(&avp->lock); 593 594 if (!(avp->flags & AVP_F_DETACHED)) { 595 PMD_DRV_LOG(NOTICE, "port %u already attached\n", 596 eth_dev->data->port_id); 597 ret = 0; 598 goto unlock; 599 } 600 601 /* 602 * make sure that the detached flag is set prior to reconfiguring the 603 * queues. 604 */ 605 avp->flags |= AVP_F_DETACHED; 606 rte_wmb(); 607 608 /* 609 * re-run the device create utility which will parse the new host info 610 * and setup the AVP device queue pointers. 611 */ 612 ret = avp_dev_create(RTE_ETH_DEV_TO_PCI(eth_dev), eth_dev); 613 if (ret < 0) { 614 PMD_DRV_LOG(ERR, "Failed to re-create AVP device, ret=%d\n", 615 ret); 616 goto unlock; 617 } 618 619 if (avp->flags & AVP_F_CONFIGURED) { 620 /* 621 * Update the receive queue mapping to handle cases where the 622 * source and destination hosts have different queue 623 * requirements. As long as the DETACHED flag is asserted the 624 * queue table should not be referenced so it should be safe to 625 * update it. 626 */ 627 _avp_set_queue_counts(eth_dev); 628 for (i = 0; i < eth_dev->data->nb_rx_queues; i++) 629 _avp_set_rx_queue_mappings(eth_dev, i); 630 631 /* 632 * Update the host with our config details so that it knows the 633 * device is active. 634 */ 635 memset(&config, 0, sizeof(config)); 636 config.device_id = avp->device_id; 637 config.driver_type = RTE_AVP_DRIVER_TYPE_DPDK; 638 config.driver_version = AVP_DPDK_DRIVER_VERSION; 639 config.features = avp->features; 640 config.num_tx_queues = avp->num_tx_queues; 641 config.num_rx_queues = avp->num_rx_queues; 642 config.if_up = !!(avp->flags & AVP_F_LINKUP); 643 644 ret = avp_dev_ctrl_set_config(eth_dev, &config); 645 if (ret < 0) { 646 PMD_DRV_LOG(ERR, "Config request failed by host, ret=%d\n", 647 ret); 648 goto unlock; 649 } 650 } 651 652 rte_wmb(); 653 avp->flags &= ~AVP_F_DETACHED; 654 655 ret = 0; 656 657 unlock: 658 rte_spinlock_unlock(&avp->lock); 659 return ret; 660 } 661 662 static void 663 avp_dev_interrupt_handler(void *data) 664 { 665 struct rte_eth_dev *eth_dev = data; 666 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 667 void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr; 668 uint32_t status, value; 669 int ret; 670 671 if (registers == NULL) 672 rte_panic("no mapped MMIO register space\n"); 673 674 /* read the interrupt status register 675 * note: this register clears on read so all raised interrupts must be 676 * handled or remembered for later processing 677 */ 678 status = AVP_READ32( 679 RTE_PTR_ADD(registers, 680 RTE_AVP_INTERRUPT_STATUS_OFFSET)); 681 682 if (status & RTE_AVP_MIGRATION_INTERRUPT_MASK) { 683 /* handle interrupt based on current status */ 684 value = AVP_READ32( 685 RTE_PTR_ADD(registers, 686 RTE_AVP_MIGRATION_STATUS_OFFSET)); 687 switch (value) { 688 case RTE_AVP_MIGRATION_DETACHED: 689 ret = avp_dev_detach(eth_dev); 690 break; 691 case RTE_AVP_MIGRATION_ATTACHED: 692 ret = avp_dev_attach(eth_dev); 693 break; 694 default: 695 PMD_DRV_LOG(ERR, "unexpected migration status, status=%u\n", 696 value); 697 ret = -EINVAL; 698 } 699 700 /* acknowledge the request by writing out our current status */ 701 value = (ret == 0 ? value : RTE_AVP_MIGRATION_ERROR); 702 AVP_WRITE32(value, 703 RTE_PTR_ADD(registers, 704 RTE_AVP_MIGRATION_ACK_OFFSET)); 705 706 PMD_DRV_LOG(NOTICE, "AVP migration interrupt handled\n"); 707 } 708 709 if (status & ~RTE_AVP_MIGRATION_INTERRUPT_MASK) 710 PMD_DRV_LOG(WARNING, "AVP unexpected interrupt, status=0x%08x\n", 711 status); 712 713 /* re-enable UIO interrupt handling */ 714 ret = rte_intr_ack(&pci_dev->intr_handle); 715 if (ret < 0) { 716 PMD_DRV_LOG(ERR, "Failed to re-enable UIO interrupts, ret=%d\n", 717 ret); 718 /* continue */ 719 } 720 } 721 722 static int 723 avp_dev_enable_interrupts(struct rte_eth_dev *eth_dev) 724 { 725 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 726 void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr; 727 int ret; 728 729 if (registers == NULL) 730 return -EINVAL; 731 732 /* enable UIO interrupt handling */ 733 ret = rte_intr_enable(&pci_dev->intr_handle); 734 if (ret < 0) { 735 PMD_DRV_LOG(ERR, "Failed to enable UIO interrupts, ret=%d\n", 736 ret); 737 return ret; 738 } 739 740 /* inform the device that all interrupts are enabled */ 741 AVP_WRITE32(RTE_AVP_APP_INTERRUPTS_MASK, 742 RTE_PTR_ADD(registers, RTE_AVP_INTERRUPT_MASK_OFFSET)); 743 744 return 0; 745 } 746 747 static int 748 avp_dev_disable_interrupts(struct rte_eth_dev *eth_dev) 749 { 750 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 751 void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr; 752 int ret; 753 754 if (registers == NULL) 755 return 0; 756 757 /* inform the device that all interrupts are disabled */ 758 AVP_WRITE32(RTE_AVP_NO_INTERRUPTS_MASK, 759 RTE_PTR_ADD(registers, RTE_AVP_INTERRUPT_MASK_OFFSET)); 760 761 /* enable UIO interrupt handling */ 762 ret = rte_intr_disable(&pci_dev->intr_handle); 763 if (ret < 0) { 764 PMD_DRV_LOG(ERR, "Failed to disable UIO interrupts, ret=%d\n", 765 ret); 766 return ret; 767 } 768 769 return 0; 770 } 771 772 static int 773 avp_dev_setup_interrupts(struct rte_eth_dev *eth_dev) 774 { 775 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 776 int ret; 777 778 /* register a callback handler with UIO for interrupt notifications */ 779 ret = rte_intr_callback_register(&pci_dev->intr_handle, 780 avp_dev_interrupt_handler, 781 (void *)eth_dev); 782 if (ret < 0) { 783 PMD_DRV_LOG(ERR, "Failed to register UIO interrupt callback, ret=%d\n", 784 ret); 785 return ret; 786 } 787 788 /* enable interrupt processing */ 789 return avp_dev_enable_interrupts(eth_dev); 790 } 791 792 static int 793 avp_dev_migration_pending(struct rte_eth_dev *eth_dev) 794 { 795 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 796 void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr; 797 uint32_t value; 798 799 if (registers == NULL) 800 return 0; 801 802 value = AVP_READ32(RTE_PTR_ADD(registers, 803 RTE_AVP_MIGRATION_STATUS_OFFSET)); 804 if (value == RTE_AVP_MIGRATION_DETACHED) { 805 /* migration is in progress; ack it if we have not already */ 806 AVP_WRITE32(value, 807 RTE_PTR_ADD(registers, 808 RTE_AVP_MIGRATION_ACK_OFFSET)); 809 return 1; 810 } 811 return 0; 812 } 813 814 /* 815 * create a AVP device using the supplied device info by first translating it 816 * to guest address space(s). 817 */ 818 static int 819 avp_dev_create(struct rte_pci_device *pci_dev, 820 struct rte_eth_dev *eth_dev) 821 { 822 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 823 struct rte_avp_device_info *host_info; 824 struct rte_mem_resource *resource; 825 unsigned int i; 826 827 resource = &pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR]; 828 if (resource->addr == NULL) { 829 PMD_DRV_LOG(ERR, "BAR%u is not mapped\n", 830 RTE_AVP_PCI_DEVICE_BAR); 831 return -EFAULT; 832 } 833 host_info = (struct rte_avp_device_info *)resource->addr; 834 835 if ((host_info->magic != RTE_AVP_DEVICE_MAGIC) || 836 avp_dev_version_check(host_info->version)) { 837 PMD_DRV_LOG(ERR, "Invalid AVP PCI device, magic 0x%08x version 0x%08x > 0x%08x\n", 838 host_info->magic, host_info->version, 839 AVP_DPDK_DRIVER_VERSION); 840 return -EINVAL; 841 } 842 843 PMD_DRV_LOG(DEBUG, "AVP host device is v%u.%u.%u\n", 844 RTE_AVP_GET_RELEASE_VERSION(host_info->version), 845 RTE_AVP_GET_MAJOR_VERSION(host_info->version), 846 RTE_AVP_GET_MINOR_VERSION(host_info->version)); 847 848 PMD_DRV_LOG(DEBUG, "AVP host supports %u to %u TX queue(s)\n", 849 host_info->min_tx_queues, host_info->max_tx_queues); 850 PMD_DRV_LOG(DEBUG, "AVP host supports %u to %u RX queue(s)\n", 851 host_info->min_rx_queues, host_info->max_rx_queues); 852 PMD_DRV_LOG(DEBUG, "AVP host supports features 0x%08x\n", 853 host_info->features); 854 855 if (avp->magic != AVP_ETHDEV_MAGIC) { 856 /* 857 * First time initialization (i.e., not during a VM 858 * migration) 859 */ 860 memset(avp, 0, sizeof(*avp)); 861 avp->magic = AVP_ETHDEV_MAGIC; 862 avp->dev_data = eth_dev->data; 863 avp->port_id = eth_dev->data->port_id; 864 avp->host_mbuf_size = host_info->mbuf_size; 865 avp->host_features = host_info->features; 866 rte_spinlock_init(&avp->lock); 867 memcpy(&avp->ethaddr.addr_bytes[0], 868 host_info->ethaddr, RTE_ETHER_ADDR_LEN); 869 /* adjust max values to not exceed our max */ 870 avp->max_tx_queues = 871 RTE_MIN(host_info->max_tx_queues, RTE_AVP_MAX_QUEUES); 872 avp->max_rx_queues = 873 RTE_MIN(host_info->max_rx_queues, RTE_AVP_MAX_QUEUES); 874 } else { 875 /* Re-attaching during migration */ 876 877 /* TODO... requires validation of host values */ 878 if ((host_info->features & avp->features) != avp->features) { 879 PMD_DRV_LOG(ERR, "AVP host features mismatched; 0x%08x, host=0x%08x\n", 880 avp->features, host_info->features); 881 /* this should not be possible; continue for now */ 882 } 883 } 884 885 /* the device id is allowed to change over migrations */ 886 avp->device_id = host_info->device_id; 887 888 /* translate incoming host addresses to guest address space */ 889 PMD_DRV_LOG(DEBUG, "AVP first host tx queue at 0x%" PRIx64 "\n", 890 host_info->tx_phys); 891 PMD_DRV_LOG(DEBUG, "AVP first host alloc queue at 0x%" PRIx64 "\n", 892 host_info->alloc_phys); 893 for (i = 0; i < avp->max_tx_queues; i++) { 894 avp->tx_q[i] = avp_dev_translate_address(eth_dev, 895 host_info->tx_phys + (i * host_info->tx_size)); 896 897 avp->alloc_q[i] = avp_dev_translate_address(eth_dev, 898 host_info->alloc_phys + (i * host_info->alloc_size)); 899 } 900 901 PMD_DRV_LOG(DEBUG, "AVP first host rx queue at 0x%" PRIx64 "\n", 902 host_info->rx_phys); 903 PMD_DRV_LOG(DEBUG, "AVP first host free queue at 0x%" PRIx64 "\n", 904 host_info->free_phys); 905 for (i = 0; i < avp->max_rx_queues; i++) { 906 avp->rx_q[i] = avp_dev_translate_address(eth_dev, 907 host_info->rx_phys + (i * host_info->rx_size)); 908 avp->free_q[i] = avp_dev_translate_address(eth_dev, 909 host_info->free_phys + (i * host_info->free_size)); 910 } 911 912 PMD_DRV_LOG(DEBUG, "AVP host request queue at 0x%" PRIx64 "\n", 913 host_info->req_phys); 914 PMD_DRV_LOG(DEBUG, "AVP host response queue at 0x%" PRIx64 "\n", 915 host_info->resp_phys); 916 PMD_DRV_LOG(DEBUG, "AVP host sync address at 0x%" PRIx64 "\n", 917 host_info->sync_phys); 918 PMD_DRV_LOG(DEBUG, "AVP host mbuf address at 0x%" PRIx64 "\n", 919 host_info->mbuf_phys); 920 avp->req_q = avp_dev_translate_address(eth_dev, host_info->req_phys); 921 avp->resp_q = avp_dev_translate_address(eth_dev, host_info->resp_phys); 922 avp->sync_addr = 923 avp_dev_translate_address(eth_dev, host_info->sync_phys); 924 avp->mbuf_addr = 925 avp_dev_translate_address(eth_dev, host_info->mbuf_phys); 926 927 /* 928 * store the host mbuf virtual address so that we can calculate 929 * relative offsets for each mbuf as they are processed 930 */ 931 avp->host_mbuf_addr = host_info->mbuf_va; 932 avp->host_sync_addr = host_info->sync_va; 933 934 /* 935 * store the maximum packet length that is supported by the host. 936 */ 937 avp->max_rx_pkt_len = host_info->max_rx_pkt_len; 938 PMD_DRV_LOG(DEBUG, "AVP host max receive packet length is %u\n", 939 host_info->max_rx_pkt_len); 940 941 return 0; 942 } 943 944 /* 945 * This function is based on probe() function in avp_pci.c 946 * It returns 0 on success. 947 */ 948 static int 949 eth_avp_dev_init(struct rte_eth_dev *eth_dev) 950 { 951 struct avp_dev *avp = 952 AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 953 struct rte_pci_device *pci_dev; 954 int ret; 955 956 pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 957 eth_dev->dev_ops = &avp_eth_dev_ops; 958 eth_dev->rx_pkt_burst = &avp_recv_pkts; 959 eth_dev->tx_pkt_burst = &avp_xmit_pkts; 960 961 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 962 /* 963 * no setup required on secondary processes. All data is saved 964 * in dev_private by the primary process. All resource should 965 * be mapped to the same virtual address so all pointers should 966 * be valid. 967 */ 968 if (eth_dev->data->scattered_rx) { 969 PMD_DRV_LOG(NOTICE, "AVP device configured for chained mbufs\n"); 970 eth_dev->rx_pkt_burst = avp_recv_scattered_pkts; 971 eth_dev->tx_pkt_burst = avp_xmit_scattered_pkts; 972 } 973 return 0; 974 } 975 976 rte_eth_copy_pci_info(eth_dev, pci_dev); 977 978 /* Check current migration status */ 979 if (avp_dev_migration_pending(eth_dev)) { 980 PMD_DRV_LOG(ERR, "VM live migration operation in progress\n"); 981 return -EBUSY; 982 } 983 984 /* Check BAR resources */ 985 ret = avp_dev_check_regions(eth_dev); 986 if (ret < 0) { 987 PMD_DRV_LOG(ERR, "Failed to validate BAR resources, ret=%d\n", 988 ret); 989 return ret; 990 } 991 992 /* Enable interrupts */ 993 ret = avp_dev_setup_interrupts(eth_dev); 994 if (ret < 0) { 995 PMD_DRV_LOG(ERR, "Failed to enable interrupts, ret=%d\n", ret); 996 return ret; 997 } 998 999 /* Handle each subtype */ 1000 ret = avp_dev_create(pci_dev, eth_dev); 1001 if (ret < 0) { 1002 PMD_DRV_LOG(ERR, "Failed to create device, ret=%d\n", ret); 1003 return ret; 1004 } 1005 1006 /* Allocate memory for storing MAC addresses */ 1007 eth_dev->data->mac_addrs = rte_zmalloc("avp_ethdev", 1008 RTE_ETHER_ADDR_LEN, 0); 1009 if (eth_dev->data->mac_addrs == NULL) { 1010 PMD_DRV_LOG(ERR, "Failed to allocate %d bytes needed to store MAC addresses\n", 1011 RTE_ETHER_ADDR_LEN); 1012 return -ENOMEM; 1013 } 1014 1015 /* Get a mac from device config */ 1016 rte_ether_addr_copy(&avp->ethaddr, ð_dev->data->mac_addrs[0]); 1017 1018 return 0; 1019 } 1020 1021 static int 1022 eth_avp_dev_uninit(struct rte_eth_dev *eth_dev) 1023 { 1024 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 1025 return -EPERM; 1026 1027 if (eth_dev->data == NULL) 1028 return 0; 1029 1030 avp_dev_close(eth_dev); 1031 1032 return 0; 1033 } 1034 1035 static int 1036 eth_avp_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 1037 struct rte_pci_device *pci_dev) 1038 { 1039 return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct avp_adapter), 1040 eth_avp_dev_init); 1041 } 1042 1043 static int 1044 eth_avp_pci_remove(struct rte_pci_device *pci_dev) 1045 { 1046 return rte_eth_dev_pci_generic_remove(pci_dev, 1047 eth_avp_dev_uninit); 1048 } 1049 1050 static struct rte_pci_driver rte_avp_pmd = { 1051 .id_table = pci_id_avp_map, 1052 .drv_flags = RTE_PCI_DRV_NEED_MAPPING, 1053 .probe = eth_avp_pci_probe, 1054 .remove = eth_avp_pci_remove, 1055 }; 1056 1057 static int 1058 avp_dev_enable_scattered(struct rte_eth_dev *eth_dev, 1059 struct avp_dev *avp) 1060 { 1061 unsigned int max_rx_pkt_len; 1062 1063 max_rx_pkt_len = eth_dev->data->dev_conf.rxmode.max_rx_pkt_len; 1064 1065 if ((max_rx_pkt_len > avp->guest_mbuf_size) || 1066 (max_rx_pkt_len > avp->host_mbuf_size)) { 1067 /* 1068 * If the guest MTU is greater than either the host or guest 1069 * buffers then chained mbufs have to be enabled in the TX 1070 * direction. It is assumed that the application will not need 1071 * to send packets larger than their max_rx_pkt_len (MRU). 1072 */ 1073 return 1; 1074 } 1075 1076 if ((avp->max_rx_pkt_len > avp->guest_mbuf_size) || 1077 (avp->max_rx_pkt_len > avp->host_mbuf_size)) { 1078 /* 1079 * If the host MRU is greater than its own mbuf size or the 1080 * guest mbuf size then chained mbufs have to be enabled in the 1081 * RX direction. 1082 */ 1083 return 1; 1084 } 1085 1086 return 0; 1087 } 1088 1089 static int 1090 avp_dev_rx_queue_setup(struct rte_eth_dev *eth_dev, 1091 uint16_t rx_queue_id, 1092 uint16_t nb_rx_desc, 1093 unsigned int socket_id, 1094 const struct rte_eth_rxconf *rx_conf, 1095 struct rte_mempool *pool) 1096 { 1097 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 1098 struct rte_pktmbuf_pool_private *mbp_priv; 1099 struct avp_queue *rxq; 1100 1101 if (rx_queue_id >= eth_dev->data->nb_rx_queues) { 1102 PMD_DRV_LOG(ERR, "RX queue id is out of range: rx_queue_id=%u, nb_rx_queues=%u\n", 1103 rx_queue_id, eth_dev->data->nb_rx_queues); 1104 return -EINVAL; 1105 } 1106 1107 /* Save mbuf pool pointer */ 1108 avp->pool = pool; 1109 1110 /* Save the local mbuf size */ 1111 mbp_priv = rte_mempool_get_priv(pool); 1112 avp->guest_mbuf_size = (uint16_t)(mbp_priv->mbuf_data_room_size); 1113 avp->guest_mbuf_size -= RTE_PKTMBUF_HEADROOM; 1114 1115 if (avp_dev_enable_scattered(eth_dev, avp)) { 1116 if (!eth_dev->data->scattered_rx) { 1117 PMD_DRV_LOG(NOTICE, "AVP device configured for chained mbufs\n"); 1118 eth_dev->data->scattered_rx = 1; 1119 eth_dev->rx_pkt_burst = avp_recv_scattered_pkts; 1120 eth_dev->tx_pkt_burst = avp_xmit_scattered_pkts; 1121 } 1122 } 1123 1124 PMD_DRV_LOG(DEBUG, "AVP max_rx_pkt_len=(%u,%u) mbuf_size=(%u,%u)\n", 1125 avp->max_rx_pkt_len, 1126 eth_dev->data->dev_conf.rxmode.max_rx_pkt_len, 1127 avp->host_mbuf_size, 1128 avp->guest_mbuf_size); 1129 1130 /* allocate a queue object */ 1131 rxq = rte_zmalloc_socket("ethdev RX queue", sizeof(struct avp_queue), 1132 RTE_CACHE_LINE_SIZE, socket_id); 1133 if (rxq == NULL) { 1134 PMD_DRV_LOG(ERR, "Failed to allocate new Rx queue object\n"); 1135 return -ENOMEM; 1136 } 1137 1138 /* save back pointers to AVP and Ethernet devices */ 1139 rxq->avp = avp; 1140 rxq->dev_data = eth_dev->data; 1141 eth_dev->data->rx_queues[rx_queue_id] = (void *)rxq; 1142 1143 /* setup the queue receive mapping for the current queue. */ 1144 _avp_set_rx_queue_mappings(eth_dev, rx_queue_id); 1145 1146 PMD_DRV_LOG(DEBUG, "Rx queue %u setup at %p\n", rx_queue_id, rxq); 1147 1148 (void)nb_rx_desc; 1149 (void)rx_conf; 1150 return 0; 1151 } 1152 1153 static int 1154 avp_dev_tx_queue_setup(struct rte_eth_dev *eth_dev, 1155 uint16_t tx_queue_id, 1156 uint16_t nb_tx_desc, 1157 unsigned int socket_id, 1158 const struct rte_eth_txconf *tx_conf) 1159 { 1160 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 1161 struct avp_queue *txq; 1162 1163 if (tx_queue_id >= eth_dev->data->nb_tx_queues) { 1164 PMD_DRV_LOG(ERR, "TX queue id is out of range: tx_queue_id=%u, nb_tx_queues=%u\n", 1165 tx_queue_id, eth_dev->data->nb_tx_queues); 1166 return -EINVAL; 1167 } 1168 1169 /* allocate a queue object */ 1170 txq = rte_zmalloc_socket("ethdev TX queue", sizeof(struct avp_queue), 1171 RTE_CACHE_LINE_SIZE, socket_id); 1172 if (txq == NULL) { 1173 PMD_DRV_LOG(ERR, "Failed to allocate new Tx queue object\n"); 1174 return -ENOMEM; 1175 } 1176 1177 /* only the configured set of transmit queues are used */ 1178 txq->queue_id = tx_queue_id; 1179 txq->queue_base = tx_queue_id; 1180 txq->queue_limit = tx_queue_id; 1181 1182 /* save back pointers to AVP and Ethernet devices */ 1183 txq->avp = avp; 1184 txq->dev_data = eth_dev->data; 1185 eth_dev->data->tx_queues[tx_queue_id] = (void *)txq; 1186 1187 PMD_DRV_LOG(DEBUG, "Tx queue %u setup at %p\n", tx_queue_id, txq); 1188 1189 (void)nb_tx_desc; 1190 (void)tx_conf; 1191 return 0; 1192 } 1193 1194 static inline int 1195 _avp_cmp_ether_addr(struct rte_ether_addr *a, struct rte_ether_addr *b) 1196 { 1197 uint16_t *_a = (uint16_t *)&a->addr_bytes[0]; 1198 uint16_t *_b = (uint16_t *)&b->addr_bytes[0]; 1199 return (_a[0] ^ _b[0]) | (_a[1] ^ _b[1]) | (_a[2] ^ _b[2]); 1200 } 1201 1202 static inline int 1203 _avp_mac_filter(struct avp_dev *avp, struct rte_mbuf *m) 1204 { 1205 struct rte_ether_hdr *eth = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); 1206 1207 if (likely(_avp_cmp_ether_addr(&avp->ethaddr, ð->d_addr) == 0)) { 1208 /* allow all packets destined to our address */ 1209 return 0; 1210 } 1211 1212 if (likely(rte_is_broadcast_ether_addr(ð->d_addr))) { 1213 /* allow all broadcast packets */ 1214 return 0; 1215 } 1216 1217 if (likely(rte_is_multicast_ether_addr(ð->d_addr))) { 1218 /* allow all multicast packets */ 1219 return 0; 1220 } 1221 1222 if (avp->flags & AVP_F_PROMISC) { 1223 /* allow all packets when in promiscuous mode */ 1224 return 0; 1225 } 1226 1227 return -1; 1228 } 1229 1230 #ifdef RTE_LIBRTE_AVP_DEBUG_BUFFERS 1231 static inline void 1232 __avp_dev_buffer_sanity_check(struct avp_dev *avp, struct rte_avp_desc *buf) 1233 { 1234 struct rte_avp_desc *first_buf; 1235 struct rte_avp_desc *pkt_buf; 1236 unsigned int pkt_len; 1237 unsigned int nb_segs; 1238 void *pkt_data; 1239 unsigned int i; 1240 1241 first_buf = avp_dev_translate_buffer(avp, buf); 1242 1243 i = 0; 1244 pkt_len = 0; 1245 nb_segs = first_buf->nb_segs; 1246 do { 1247 /* Adjust pointers for guest addressing */ 1248 pkt_buf = avp_dev_translate_buffer(avp, buf); 1249 if (pkt_buf == NULL) 1250 rte_panic("bad buffer: segment %u has an invalid address %p\n", 1251 i, buf); 1252 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data); 1253 if (pkt_data == NULL) 1254 rte_panic("bad buffer: segment %u has a NULL data pointer\n", 1255 i); 1256 if (pkt_buf->data_len == 0) 1257 rte_panic("bad buffer: segment %u has 0 data length\n", 1258 i); 1259 pkt_len += pkt_buf->data_len; 1260 nb_segs--; 1261 i++; 1262 1263 } while (nb_segs && (buf = pkt_buf->next) != NULL); 1264 1265 if (nb_segs != 0) 1266 rte_panic("bad buffer: expected %u segments found %u\n", 1267 first_buf->nb_segs, (first_buf->nb_segs - nb_segs)); 1268 if (pkt_len != first_buf->pkt_len) 1269 rte_panic("bad buffer: expected length %u found %u\n", 1270 first_buf->pkt_len, pkt_len); 1271 } 1272 1273 #define avp_dev_buffer_sanity_check(a, b) \ 1274 __avp_dev_buffer_sanity_check((a), (b)) 1275 1276 #else /* RTE_LIBRTE_AVP_DEBUG_BUFFERS */ 1277 1278 #define avp_dev_buffer_sanity_check(a, b) do {} while (0) 1279 1280 #endif 1281 1282 /* 1283 * Copy a host buffer chain to a set of mbufs. This function assumes that 1284 * there exactly the required number of mbufs to copy all source bytes. 1285 */ 1286 static inline struct rte_mbuf * 1287 avp_dev_copy_from_buffers(struct avp_dev *avp, 1288 struct rte_avp_desc *buf, 1289 struct rte_mbuf **mbufs, 1290 unsigned int count) 1291 { 1292 struct rte_mbuf *m_previous = NULL; 1293 struct rte_avp_desc *pkt_buf; 1294 unsigned int total_length = 0; 1295 unsigned int copy_length; 1296 unsigned int src_offset; 1297 struct rte_mbuf *m; 1298 uint16_t ol_flags; 1299 uint16_t vlan_tci; 1300 void *pkt_data; 1301 unsigned int i; 1302 1303 avp_dev_buffer_sanity_check(avp, buf); 1304 1305 /* setup the first source buffer */ 1306 pkt_buf = avp_dev_translate_buffer(avp, buf); 1307 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data); 1308 total_length = pkt_buf->pkt_len; 1309 src_offset = 0; 1310 1311 if (pkt_buf->ol_flags & RTE_AVP_RX_VLAN_PKT) { 1312 ol_flags = PKT_RX_VLAN; 1313 vlan_tci = pkt_buf->vlan_tci; 1314 } else { 1315 ol_flags = 0; 1316 vlan_tci = 0; 1317 } 1318 1319 for (i = 0; (i < count) && (buf != NULL); i++) { 1320 /* fill each destination buffer */ 1321 m = mbufs[i]; 1322 1323 if (m_previous != NULL) 1324 m_previous->next = m; 1325 1326 m_previous = m; 1327 1328 do { 1329 /* 1330 * Copy as many source buffers as will fit in the 1331 * destination buffer. 1332 */ 1333 copy_length = RTE_MIN((avp->guest_mbuf_size - 1334 rte_pktmbuf_data_len(m)), 1335 (pkt_buf->data_len - 1336 src_offset)); 1337 rte_memcpy(RTE_PTR_ADD(rte_pktmbuf_mtod(m, void *), 1338 rte_pktmbuf_data_len(m)), 1339 RTE_PTR_ADD(pkt_data, src_offset), 1340 copy_length); 1341 rte_pktmbuf_data_len(m) += copy_length; 1342 src_offset += copy_length; 1343 1344 if (likely(src_offset == pkt_buf->data_len)) { 1345 /* need a new source buffer */ 1346 buf = pkt_buf->next; 1347 if (buf != NULL) { 1348 pkt_buf = avp_dev_translate_buffer( 1349 avp, buf); 1350 pkt_data = avp_dev_translate_buffer( 1351 avp, pkt_buf->data); 1352 src_offset = 0; 1353 } 1354 } 1355 1356 if (unlikely(rte_pktmbuf_data_len(m) == 1357 avp->guest_mbuf_size)) { 1358 /* need a new destination mbuf */ 1359 break; 1360 } 1361 1362 } while (buf != NULL); 1363 } 1364 1365 m = mbufs[0]; 1366 m->ol_flags = ol_flags; 1367 m->nb_segs = count; 1368 rte_pktmbuf_pkt_len(m) = total_length; 1369 m->vlan_tci = vlan_tci; 1370 1371 __rte_mbuf_sanity_check(m, 1); 1372 1373 return m; 1374 } 1375 1376 static uint16_t 1377 avp_recv_scattered_pkts(void *rx_queue, 1378 struct rte_mbuf **rx_pkts, 1379 uint16_t nb_pkts) 1380 { 1381 struct avp_queue *rxq = (struct avp_queue *)rx_queue; 1382 struct rte_avp_desc *avp_bufs[AVP_MAX_RX_BURST]; 1383 struct rte_mbuf *mbufs[RTE_AVP_MAX_MBUF_SEGMENTS]; 1384 struct avp_dev *avp = rxq->avp; 1385 struct rte_avp_desc *pkt_buf; 1386 struct rte_avp_fifo *free_q; 1387 struct rte_avp_fifo *rx_q; 1388 struct rte_avp_desc *buf; 1389 unsigned int count, avail, n; 1390 unsigned int guest_mbuf_size; 1391 struct rte_mbuf *m; 1392 unsigned int required; 1393 unsigned int buf_len; 1394 unsigned int port_id; 1395 unsigned int i; 1396 1397 if (unlikely(avp->flags & AVP_F_DETACHED)) { 1398 /* VM live migration in progress */ 1399 return 0; 1400 } 1401 1402 guest_mbuf_size = avp->guest_mbuf_size; 1403 port_id = avp->port_id; 1404 rx_q = avp->rx_q[rxq->queue_id]; 1405 free_q = avp->free_q[rxq->queue_id]; 1406 1407 /* setup next queue to service */ 1408 rxq->queue_id = (rxq->queue_id < rxq->queue_limit) ? 1409 (rxq->queue_id + 1) : rxq->queue_base; 1410 1411 /* determine how many slots are available in the free queue */ 1412 count = avp_fifo_free_count(free_q); 1413 1414 /* determine how many packets are available in the rx queue */ 1415 avail = avp_fifo_count(rx_q); 1416 1417 /* determine how many packets can be received */ 1418 count = RTE_MIN(count, avail); 1419 count = RTE_MIN(count, nb_pkts); 1420 count = RTE_MIN(count, (unsigned int)AVP_MAX_RX_BURST); 1421 1422 if (unlikely(count == 0)) { 1423 /* no free buffers, or no buffers on the rx queue */ 1424 return 0; 1425 } 1426 1427 /* retrieve pending packets */ 1428 n = avp_fifo_get(rx_q, (void **)&avp_bufs, count); 1429 PMD_RX_LOG(DEBUG, "Receiving %u packets from Rx queue at %p\n", 1430 count, rx_q); 1431 1432 count = 0; 1433 for (i = 0; i < n; i++) { 1434 /* prefetch next entry while processing current one */ 1435 if (i + 1 < n) { 1436 pkt_buf = avp_dev_translate_buffer(avp, 1437 avp_bufs[i + 1]); 1438 rte_prefetch0(pkt_buf); 1439 } 1440 buf = avp_bufs[i]; 1441 1442 /* Peek into the first buffer to determine the total length */ 1443 pkt_buf = avp_dev_translate_buffer(avp, buf); 1444 buf_len = pkt_buf->pkt_len; 1445 1446 /* Allocate enough mbufs to receive the entire packet */ 1447 required = (buf_len + guest_mbuf_size - 1) / guest_mbuf_size; 1448 if (rte_pktmbuf_alloc_bulk(avp->pool, mbufs, required)) { 1449 rxq->dev_data->rx_mbuf_alloc_failed++; 1450 continue; 1451 } 1452 1453 /* Copy the data from the buffers to our mbufs */ 1454 m = avp_dev_copy_from_buffers(avp, buf, mbufs, required); 1455 1456 /* finalize mbuf */ 1457 m->port = port_id; 1458 1459 if (_avp_mac_filter(avp, m) != 0) { 1460 /* silently discard packets not destined to our MAC */ 1461 rte_pktmbuf_free(m); 1462 continue; 1463 } 1464 1465 /* return new mbuf to caller */ 1466 rx_pkts[count++] = m; 1467 rxq->bytes += buf_len; 1468 } 1469 1470 rxq->packets += count; 1471 1472 /* return the buffers to the free queue */ 1473 avp_fifo_put(free_q, (void **)&avp_bufs[0], n); 1474 1475 return count; 1476 } 1477 1478 1479 static uint16_t 1480 avp_recv_pkts(void *rx_queue, 1481 struct rte_mbuf **rx_pkts, 1482 uint16_t nb_pkts) 1483 { 1484 struct avp_queue *rxq = (struct avp_queue *)rx_queue; 1485 struct rte_avp_desc *avp_bufs[AVP_MAX_RX_BURST]; 1486 struct avp_dev *avp = rxq->avp; 1487 struct rte_avp_desc *pkt_buf; 1488 struct rte_avp_fifo *free_q; 1489 struct rte_avp_fifo *rx_q; 1490 unsigned int count, avail, n; 1491 unsigned int pkt_len; 1492 struct rte_mbuf *m; 1493 char *pkt_data; 1494 unsigned int i; 1495 1496 if (unlikely(avp->flags & AVP_F_DETACHED)) { 1497 /* VM live migration in progress */ 1498 return 0; 1499 } 1500 1501 rx_q = avp->rx_q[rxq->queue_id]; 1502 free_q = avp->free_q[rxq->queue_id]; 1503 1504 /* setup next queue to service */ 1505 rxq->queue_id = (rxq->queue_id < rxq->queue_limit) ? 1506 (rxq->queue_id + 1) : rxq->queue_base; 1507 1508 /* determine how many slots are available in the free queue */ 1509 count = avp_fifo_free_count(free_q); 1510 1511 /* determine how many packets are available in the rx queue */ 1512 avail = avp_fifo_count(rx_q); 1513 1514 /* determine how many packets can be received */ 1515 count = RTE_MIN(count, avail); 1516 count = RTE_MIN(count, nb_pkts); 1517 count = RTE_MIN(count, (unsigned int)AVP_MAX_RX_BURST); 1518 1519 if (unlikely(count == 0)) { 1520 /* no free buffers, or no buffers on the rx queue */ 1521 return 0; 1522 } 1523 1524 /* retrieve pending packets */ 1525 n = avp_fifo_get(rx_q, (void **)&avp_bufs, count); 1526 PMD_RX_LOG(DEBUG, "Receiving %u packets from Rx queue at %p\n", 1527 count, rx_q); 1528 1529 count = 0; 1530 for (i = 0; i < n; i++) { 1531 /* prefetch next entry while processing current one */ 1532 if (i < n - 1) { 1533 pkt_buf = avp_dev_translate_buffer(avp, 1534 avp_bufs[i + 1]); 1535 rte_prefetch0(pkt_buf); 1536 } 1537 1538 /* Adjust host pointers for guest addressing */ 1539 pkt_buf = avp_dev_translate_buffer(avp, avp_bufs[i]); 1540 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data); 1541 pkt_len = pkt_buf->pkt_len; 1542 1543 if (unlikely((pkt_len > avp->guest_mbuf_size) || 1544 (pkt_buf->nb_segs > 1))) { 1545 /* 1546 * application should be using the scattered receive 1547 * function 1548 */ 1549 rxq->errors++; 1550 continue; 1551 } 1552 1553 /* process each packet to be transmitted */ 1554 m = rte_pktmbuf_alloc(avp->pool); 1555 if (unlikely(m == NULL)) { 1556 rxq->dev_data->rx_mbuf_alloc_failed++; 1557 continue; 1558 } 1559 1560 /* copy data out of the host buffer to our buffer */ 1561 m->data_off = RTE_PKTMBUF_HEADROOM; 1562 rte_memcpy(rte_pktmbuf_mtod(m, void *), pkt_data, pkt_len); 1563 1564 /* initialize the local mbuf */ 1565 rte_pktmbuf_data_len(m) = pkt_len; 1566 rte_pktmbuf_pkt_len(m) = pkt_len; 1567 m->port = avp->port_id; 1568 1569 if (pkt_buf->ol_flags & RTE_AVP_RX_VLAN_PKT) { 1570 m->ol_flags = PKT_RX_VLAN; 1571 m->vlan_tci = pkt_buf->vlan_tci; 1572 } 1573 1574 if (_avp_mac_filter(avp, m) != 0) { 1575 /* silently discard packets not destined to our MAC */ 1576 rte_pktmbuf_free(m); 1577 continue; 1578 } 1579 1580 /* return new mbuf to caller */ 1581 rx_pkts[count++] = m; 1582 rxq->bytes += pkt_len; 1583 } 1584 1585 rxq->packets += count; 1586 1587 /* return the buffers to the free queue */ 1588 avp_fifo_put(free_q, (void **)&avp_bufs[0], n); 1589 1590 return count; 1591 } 1592 1593 /* 1594 * Copy a chained mbuf to a set of host buffers. This function assumes that 1595 * there are sufficient destination buffers to contain the entire source 1596 * packet. 1597 */ 1598 static inline uint16_t 1599 avp_dev_copy_to_buffers(struct avp_dev *avp, 1600 struct rte_mbuf *mbuf, 1601 struct rte_avp_desc **buffers, 1602 unsigned int count) 1603 { 1604 struct rte_avp_desc *previous_buf = NULL; 1605 struct rte_avp_desc *first_buf = NULL; 1606 struct rte_avp_desc *pkt_buf; 1607 struct rte_avp_desc *buf; 1608 size_t total_length; 1609 struct rte_mbuf *m; 1610 size_t copy_length; 1611 size_t src_offset; 1612 char *pkt_data; 1613 unsigned int i; 1614 1615 __rte_mbuf_sanity_check(mbuf, 1); 1616 1617 m = mbuf; 1618 src_offset = 0; 1619 total_length = rte_pktmbuf_pkt_len(m); 1620 for (i = 0; (i < count) && (m != NULL); i++) { 1621 /* fill each destination buffer */ 1622 buf = buffers[i]; 1623 1624 if (i < count - 1) { 1625 /* prefetch next entry while processing this one */ 1626 pkt_buf = avp_dev_translate_buffer(avp, buffers[i + 1]); 1627 rte_prefetch0(pkt_buf); 1628 } 1629 1630 /* Adjust pointers for guest addressing */ 1631 pkt_buf = avp_dev_translate_buffer(avp, buf); 1632 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data); 1633 1634 /* setup the buffer chain */ 1635 if (previous_buf != NULL) 1636 previous_buf->next = buf; 1637 else 1638 first_buf = pkt_buf; 1639 1640 previous_buf = pkt_buf; 1641 1642 do { 1643 /* 1644 * copy as many source mbuf segments as will fit in the 1645 * destination buffer. 1646 */ 1647 copy_length = RTE_MIN((avp->host_mbuf_size - 1648 pkt_buf->data_len), 1649 (rte_pktmbuf_data_len(m) - 1650 src_offset)); 1651 rte_memcpy(RTE_PTR_ADD(pkt_data, pkt_buf->data_len), 1652 RTE_PTR_ADD(rte_pktmbuf_mtod(m, void *), 1653 src_offset), 1654 copy_length); 1655 pkt_buf->data_len += copy_length; 1656 src_offset += copy_length; 1657 1658 if (likely(src_offset == rte_pktmbuf_data_len(m))) { 1659 /* need a new source buffer */ 1660 m = m->next; 1661 src_offset = 0; 1662 } 1663 1664 if (unlikely(pkt_buf->data_len == 1665 avp->host_mbuf_size)) { 1666 /* need a new destination buffer */ 1667 break; 1668 } 1669 1670 } while (m != NULL); 1671 } 1672 1673 first_buf->nb_segs = count; 1674 first_buf->pkt_len = total_length; 1675 1676 if (mbuf->ol_flags & PKT_TX_VLAN_PKT) { 1677 first_buf->ol_flags |= RTE_AVP_TX_VLAN_PKT; 1678 first_buf->vlan_tci = mbuf->vlan_tci; 1679 } 1680 1681 avp_dev_buffer_sanity_check(avp, buffers[0]); 1682 1683 return total_length; 1684 } 1685 1686 1687 static uint16_t 1688 avp_xmit_scattered_pkts(void *tx_queue, 1689 struct rte_mbuf **tx_pkts, 1690 uint16_t nb_pkts) 1691 { 1692 struct rte_avp_desc *avp_bufs[(AVP_MAX_TX_BURST * 1693 RTE_AVP_MAX_MBUF_SEGMENTS)] = {}; 1694 struct avp_queue *txq = (struct avp_queue *)tx_queue; 1695 struct rte_avp_desc *tx_bufs[AVP_MAX_TX_BURST]; 1696 struct avp_dev *avp = txq->avp; 1697 struct rte_avp_fifo *alloc_q; 1698 struct rte_avp_fifo *tx_q; 1699 unsigned int count, avail, n; 1700 unsigned int orig_nb_pkts; 1701 struct rte_mbuf *m; 1702 unsigned int required; 1703 unsigned int segments; 1704 unsigned int tx_bytes; 1705 unsigned int i; 1706 1707 orig_nb_pkts = nb_pkts; 1708 if (unlikely(avp->flags & AVP_F_DETACHED)) { 1709 /* VM live migration in progress */ 1710 /* TODO ... buffer for X packets then drop? */ 1711 txq->errors += nb_pkts; 1712 return 0; 1713 } 1714 1715 tx_q = avp->tx_q[txq->queue_id]; 1716 alloc_q = avp->alloc_q[txq->queue_id]; 1717 1718 /* limit the number of transmitted packets to the max burst size */ 1719 if (unlikely(nb_pkts > AVP_MAX_TX_BURST)) 1720 nb_pkts = AVP_MAX_TX_BURST; 1721 1722 /* determine how many buffers are available to copy into */ 1723 avail = avp_fifo_count(alloc_q); 1724 if (unlikely(avail > (AVP_MAX_TX_BURST * 1725 RTE_AVP_MAX_MBUF_SEGMENTS))) 1726 avail = AVP_MAX_TX_BURST * RTE_AVP_MAX_MBUF_SEGMENTS; 1727 1728 /* determine how many slots are available in the transmit queue */ 1729 count = avp_fifo_free_count(tx_q); 1730 1731 /* determine how many packets can be sent */ 1732 nb_pkts = RTE_MIN(count, nb_pkts); 1733 1734 /* determine how many packets will fit in the available buffers */ 1735 count = 0; 1736 segments = 0; 1737 for (i = 0; i < nb_pkts; i++) { 1738 m = tx_pkts[i]; 1739 if (likely(i < (unsigned int)nb_pkts - 1)) { 1740 /* prefetch next entry while processing this one */ 1741 rte_prefetch0(tx_pkts[i + 1]); 1742 } 1743 required = (rte_pktmbuf_pkt_len(m) + avp->host_mbuf_size - 1) / 1744 avp->host_mbuf_size; 1745 1746 if (unlikely((required == 0) || 1747 (required > RTE_AVP_MAX_MBUF_SEGMENTS))) 1748 break; 1749 else if (unlikely(required + segments > avail)) 1750 break; 1751 segments += required; 1752 count++; 1753 } 1754 nb_pkts = count; 1755 1756 if (unlikely(nb_pkts == 0)) { 1757 /* no available buffers, or no space on the tx queue */ 1758 txq->errors += orig_nb_pkts; 1759 return 0; 1760 } 1761 1762 PMD_TX_LOG(DEBUG, "Sending %u packets on Tx queue at %p\n", 1763 nb_pkts, tx_q); 1764 1765 /* retrieve sufficient send buffers */ 1766 n = avp_fifo_get(alloc_q, (void **)&avp_bufs, segments); 1767 if (unlikely(n != segments)) { 1768 PMD_TX_LOG(DEBUG, "Failed to allocate buffers " 1769 "n=%u, segments=%u, orig=%u\n", 1770 n, segments, orig_nb_pkts); 1771 txq->errors += orig_nb_pkts; 1772 return 0; 1773 } 1774 1775 tx_bytes = 0; 1776 count = 0; 1777 for (i = 0; i < nb_pkts; i++) { 1778 /* process each packet to be transmitted */ 1779 m = tx_pkts[i]; 1780 1781 /* determine how many buffers are required for this packet */ 1782 required = (rte_pktmbuf_pkt_len(m) + avp->host_mbuf_size - 1) / 1783 avp->host_mbuf_size; 1784 1785 tx_bytes += avp_dev_copy_to_buffers(avp, m, 1786 &avp_bufs[count], required); 1787 tx_bufs[i] = avp_bufs[count]; 1788 count += required; 1789 1790 /* free the original mbuf */ 1791 rte_pktmbuf_free(m); 1792 } 1793 1794 txq->packets += nb_pkts; 1795 txq->bytes += tx_bytes; 1796 1797 #ifdef RTE_LIBRTE_AVP_DEBUG_BUFFERS 1798 for (i = 0; i < nb_pkts; i++) 1799 avp_dev_buffer_sanity_check(avp, tx_bufs[i]); 1800 #endif 1801 1802 /* send the packets */ 1803 n = avp_fifo_put(tx_q, (void **)&tx_bufs[0], nb_pkts); 1804 if (unlikely(n != orig_nb_pkts)) 1805 txq->errors += (orig_nb_pkts - n); 1806 1807 return n; 1808 } 1809 1810 1811 static uint16_t 1812 avp_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) 1813 { 1814 struct avp_queue *txq = (struct avp_queue *)tx_queue; 1815 struct rte_avp_desc *avp_bufs[AVP_MAX_TX_BURST]; 1816 struct avp_dev *avp = txq->avp; 1817 struct rte_avp_desc *pkt_buf; 1818 struct rte_avp_fifo *alloc_q; 1819 struct rte_avp_fifo *tx_q; 1820 unsigned int count, avail, n; 1821 struct rte_mbuf *m; 1822 unsigned int pkt_len; 1823 unsigned int tx_bytes; 1824 char *pkt_data; 1825 unsigned int i; 1826 1827 if (unlikely(avp->flags & AVP_F_DETACHED)) { 1828 /* VM live migration in progress */ 1829 /* TODO ... buffer for X packets then drop?! */ 1830 txq->errors++; 1831 return 0; 1832 } 1833 1834 tx_q = avp->tx_q[txq->queue_id]; 1835 alloc_q = avp->alloc_q[txq->queue_id]; 1836 1837 /* limit the number of transmitted packets to the max burst size */ 1838 if (unlikely(nb_pkts > AVP_MAX_TX_BURST)) 1839 nb_pkts = AVP_MAX_TX_BURST; 1840 1841 /* determine how many buffers are available to copy into */ 1842 avail = avp_fifo_count(alloc_q); 1843 1844 /* determine how many slots are available in the transmit queue */ 1845 count = avp_fifo_free_count(tx_q); 1846 1847 /* determine how many packets can be sent */ 1848 count = RTE_MIN(count, avail); 1849 count = RTE_MIN(count, nb_pkts); 1850 1851 if (unlikely(count == 0)) { 1852 /* no available buffers, or no space on the tx queue */ 1853 txq->errors += nb_pkts; 1854 return 0; 1855 } 1856 1857 PMD_TX_LOG(DEBUG, "Sending %u packets on Tx queue at %p\n", 1858 count, tx_q); 1859 1860 /* retrieve sufficient send buffers */ 1861 n = avp_fifo_get(alloc_q, (void **)&avp_bufs, count); 1862 if (unlikely(n != count)) { 1863 txq->errors++; 1864 return 0; 1865 } 1866 1867 tx_bytes = 0; 1868 for (i = 0; i < count; i++) { 1869 /* prefetch next entry while processing the current one */ 1870 if (i < count - 1) { 1871 pkt_buf = avp_dev_translate_buffer(avp, 1872 avp_bufs[i + 1]); 1873 rte_prefetch0(pkt_buf); 1874 } 1875 1876 /* process each packet to be transmitted */ 1877 m = tx_pkts[i]; 1878 1879 /* Adjust pointers for guest addressing */ 1880 pkt_buf = avp_dev_translate_buffer(avp, avp_bufs[i]); 1881 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data); 1882 pkt_len = rte_pktmbuf_pkt_len(m); 1883 1884 if (unlikely((pkt_len > avp->guest_mbuf_size) || 1885 (pkt_len > avp->host_mbuf_size))) { 1886 /* 1887 * application should be using the scattered transmit 1888 * function; send it truncated to avoid the performance 1889 * hit of having to manage returning the already 1890 * allocated buffer to the free list. This should not 1891 * happen since the application should have set the 1892 * max_rx_pkt_len based on its MTU and it should be 1893 * policing its own packet sizes. 1894 */ 1895 txq->errors++; 1896 pkt_len = RTE_MIN(avp->guest_mbuf_size, 1897 avp->host_mbuf_size); 1898 } 1899 1900 /* copy data out of our mbuf and into the AVP buffer */ 1901 rte_memcpy(pkt_data, rte_pktmbuf_mtod(m, void *), pkt_len); 1902 pkt_buf->pkt_len = pkt_len; 1903 pkt_buf->data_len = pkt_len; 1904 pkt_buf->nb_segs = 1; 1905 pkt_buf->next = NULL; 1906 1907 if (m->ol_flags & PKT_TX_VLAN_PKT) { 1908 pkt_buf->ol_flags |= RTE_AVP_TX_VLAN_PKT; 1909 pkt_buf->vlan_tci = m->vlan_tci; 1910 } 1911 1912 tx_bytes += pkt_len; 1913 1914 /* free the original mbuf */ 1915 rte_pktmbuf_free(m); 1916 } 1917 1918 txq->packets += count; 1919 txq->bytes += tx_bytes; 1920 1921 /* send the packets */ 1922 n = avp_fifo_put(tx_q, (void **)&avp_bufs[0], count); 1923 1924 return n; 1925 } 1926 1927 static void 1928 avp_dev_rx_queue_release(void *rx_queue) 1929 { 1930 struct avp_queue *rxq = (struct avp_queue *)rx_queue; 1931 struct avp_dev *avp = rxq->avp; 1932 struct rte_eth_dev_data *data = avp->dev_data; 1933 unsigned int i; 1934 1935 for (i = 0; i < avp->num_rx_queues; i++) { 1936 if (data->rx_queues[i] == rxq) { 1937 rte_free(data->rx_queues[i]); 1938 data->rx_queues[i] = NULL; 1939 } 1940 } 1941 } 1942 1943 static void 1944 avp_dev_rx_queue_release_all(struct rte_eth_dev *eth_dev) 1945 { 1946 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 1947 struct rte_eth_dev_data *data = avp->dev_data; 1948 unsigned int i; 1949 1950 for (i = 0; i < avp->num_rx_queues; i++) { 1951 if (data->rx_queues[i]) { 1952 rte_free(data->rx_queues[i]); 1953 data->rx_queues[i] = NULL; 1954 } 1955 } 1956 } 1957 1958 static void 1959 avp_dev_tx_queue_release(void *tx_queue) 1960 { 1961 struct avp_queue *txq = (struct avp_queue *)tx_queue; 1962 struct avp_dev *avp = txq->avp; 1963 struct rte_eth_dev_data *data = avp->dev_data; 1964 unsigned int i; 1965 1966 for (i = 0; i < avp->num_tx_queues; i++) { 1967 if (data->tx_queues[i] == txq) { 1968 rte_free(data->tx_queues[i]); 1969 data->tx_queues[i] = NULL; 1970 } 1971 } 1972 } 1973 1974 static void 1975 avp_dev_tx_queue_release_all(struct rte_eth_dev *eth_dev) 1976 { 1977 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 1978 struct rte_eth_dev_data *data = avp->dev_data; 1979 unsigned int i; 1980 1981 for (i = 0; i < avp->num_tx_queues; i++) { 1982 if (data->tx_queues[i]) { 1983 rte_free(data->tx_queues[i]); 1984 data->tx_queues[i] = NULL; 1985 } 1986 } 1987 } 1988 1989 static int 1990 avp_dev_configure(struct rte_eth_dev *eth_dev) 1991 { 1992 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 1993 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 1994 struct rte_avp_device_info *host_info; 1995 struct rte_avp_device_config config; 1996 int mask = 0; 1997 void *addr; 1998 int ret; 1999 2000 rte_spinlock_lock(&avp->lock); 2001 if (avp->flags & AVP_F_DETACHED) { 2002 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n"); 2003 ret = -ENOTSUP; 2004 goto unlock; 2005 } 2006 2007 addr = pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR].addr; 2008 host_info = (struct rte_avp_device_info *)addr; 2009 2010 /* Setup required number of queues */ 2011 _avp_set_queue_counts(eth_dev); 2012 2013 mask = (ETH_VLAN_STRIP_MASK | 2014 ETH_VLAN_FILTER_MASK | 2015 ETH_VLAN_EXTEND_MASK); 2016 ret = avp_vlan_offload_set(eth_dev, mask); 2017 if (ret < 0) { 2018 PMD_DRV_LOG(ERR, "VLAN offload set failed by host, ret=%d\n", 2019 ret); 2020 goto unlock; 2021 } 2022 2023 /* update device config */ 2024 memset(&config, 0, sizeof(config)); 2025 config.device_id = host_info->device_id; 2026 config.driver_type = RTE_AVP_DRIVER_TYPE_DPDK; 2027 config.driver_version = AVP_DPDK_DRIVER_VERSION; 2028 config.features = avp->features; 2029 config.num_tx_queues = avp->num_tx_queues; 2030 config.num_rx_queues = avp->num_rx_queues; 2031 2032 ret = avp_dev_ctrl_set_config(eth_dev, &config); 2033 if (ret < 0) { 2034 PMD_DRV_LOG(ERR, "Config request failed by host, ret=%d\n", 2035 ret); 2036 goto unlock; 2037 } 2038 2039 avp->flags |= AVP_F_CONFIGURED; 2040 ret = 0; 2041 2042 unlock: 2043 rte_spinlock_unlock(&avp->lock); 2044 return ret; 2045 } 2046 2047 static int 2048 avp_dev_start(struct rte_eth_dev *eth_dev) 2049 { 2050 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2051 int ret; 2052 2053 rte_spinlock_lock(&avp->lock); 2054 if (avp->flags & AVP_F_DETACHED) { 2055 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n"); 2056 ret = -ENOTSUP; 2057 goto unlock; 2058 } 2059 2060 /* update link state */ 2061 ret = avp_dev_ctrl_set_link_state(eth_dev, 1); 2062 if (ret < 0) { 2063 PMD_DRV_LOG(ERR, "Link state change failed by host, ret=%d\n", 2064 ret); 2065 goto unlock; 2066 } 2067 2068 /* remember current link state */ 2069 avp->flags |= AVP_F_LINKUP; 2070 2071 ret = 0; 2072 2073 unlock: 2074 rte_spinlock_unlock(&avp->lock); 2075 return ret; 2076 } 2077 2078 static void 2079 avp_dev_stop(struct rte_eth_dev *eth_dev) 2080 { 2081 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2082 int ret; 2083 2084 rte_spinlock_lock(&avp->lock); 2085 if (avp->flags & AVP_F_DETACHED) { 2086 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n"); 2087 goto unlock; 2088 } 2089 2090 /* remember current link state */ 2091 avp->flags &= ~AVP_F_LINKUP; 2092 2093 /* update link state */ 2094 ret = avp_dev_ctrl_set_link_state(eth_dev, 0); 2095 if (ret < 0) { 2096 PMD_DRV_LOG(ERR, "Link state change failed by host, ret=%d\n", 2097 ret); 2098 } 2099 2100 unlock: 2101 rte_spinlock_unlock(&avp->lock); 2102 } 2103 2104 static int 2105 avp_dev_close(struct rte_eth_dev *eth_dev) 2106 { 2107 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2108 int ret; 2109 2110 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 2111 return 0; 2112 2113 rte_spinlock_lock(&avp->lock); 2114 if (avp->flags & AVP_F_DETACHED) { 2115 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n"); 2116 goto unlock; 2117 } 2118 2119 /* remember current link state */ 2120 avp->flags &= ~AVP_F_LINKUP; 2121 avp->flags &= ~AVP_F_CONFIGURED; 2122 2123 ret = avp_dev_disable_interrupts(eth_dev); 2124 if (ret < 0) { 2125 PMD_DRV_LOG(ERR, "Failed to disable interrupts\n"); 2126 /* continue */ 2127 } 2128 2129 /* update device state */ 2130 ret = avp_dev_ctrl_shutdown(eth_dev); 2131 if (ret < 0) { 2132 PMD_DRV_LOG(ERR, "Device shutdown failed by host, ret=%d\n", 2133 ret); 2134 /* continue */ 2135 } 2136 2137 /* release dynamic storage for rx/tx queues */ 2138 avp_dev_rx_queue_release_all(eth_dev); 2139 avp_dev_tx_queue_release_all(eth_dev); 2140 2141 unlock: 2142 rte_spinlock_unlock(&avp->lock); 2143 return 0; 2144 } 2145 2146 static int 2147 avp_dev_link_update(struct rte_eth_dev *eth_dev, 2148 __rte_unused int wait_to_complete) 2149 { 2150 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2151 struct rte_eth_link *link = ð_dev->data->dev_link; 2152 2153 link->link_speed = ETH_SPEED_NUM_10G; 2154 link->link_duplex = ETH_LINK_FULL_DUPLEX; 2155 link->link_status = !!(avp->flags & AVP_F_LINKUP); 2156 2157 return -1; 2158 } 2159 2160 static int 2161 avp_dev_promiscuous_enable(struct rte_eth_dev *eth_dev) 2162 { 2163 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2164 2165 rte_spinlock_lock(&avp->lock); 2166 if ((avp->flags & AVP_F_PROMISC) == 0) { 2167 avp->flags |= AVP_F_PROMISC; 2168 PMD_DRV_LOG(DEBUG, "Promiscuous mode enabled on %u\n", 2169 eth_dev->data->port_id); 2170 } 2171 rte_spinlock_unlock(&avp->lock); 2172 2173 return 0; 2174 } 2175 2176 static int 2177 avp_dev_promiscuous_disable(struct rte_eth_dev *eth_dev) 2178 { 2179 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2180 2181 rte_spinlock_lock(&avp->lock); 2182 if ((avp->flags & AVP_F_PROMISC) != 0) { 2183 avp->flags &= ~AVP_F_PROMISC; 2184 PMD_DRV_LOG(DEBUG, "Promiscuous mode disabled on %u\n", 2185 eth_dev->data->port_id); 2186 } 2187 rte_spinlock_unlock(&avp->lock); 2188 2189 return 0; 2190 } 2191 2192 static int 2193 avp_dev_info_get(struct rte_eth_dev *eth_dev, 2194 struct rte_eth_dev_info *dev_info) 2195 { 2196 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2197 2198 dev_info->max_rx_queues = avp->max_rx_queues; 2199 dev_info->max_tx_queues = avp->max_tx_queues; 2200 dev_info->min_rx_bufsize = AVP_MIN_RX_BUFSIZE; 2201 dev_info->max_rx_pktlen = avp->max_rx_pkt_len; 2202 dev_info->max_mac_addrs = AVP_MAX_MAC_ADDRS; 2203 if (avp->host_features & RTE_AVP_FEATURE_VLAN_OFFLOAD) { 2204 dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP; 2205 dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT; 2206 } 2207 2208 return 0; 2209 } 2210 2211 static int 2212 avp_vlan_offload_set(struct rte_eth_dev *eth_dev, int mask) 2213 { 2214 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2215 struct rte_eth_conf *dev_conf = ð_dev->data->dev_conf; 2216 uint64_t offloads = dev_conf->rxmode.offloads; 2217 2218 if (mask & ETH_VLAN_STRIP_MASK) { 2219 if (avp->host_features & RTE_AVP_FEATURE_VLAN_OFFLOAD) { 2220 if (offloads & DEV_RX_OFFLOAD_VLAN_STRIP) 2221 avp->features |= RTE_AVP_FEATURE_VLAN_OFFLOAD; 2222 else 2223 avp->features &= ~RTE_AVP_FEATURE_VLAN_OFFLOAD; 2224 } else { 2225 PMD_DRV_LOG(ERR, "VLAN strip offload not supported\n"); 2226 } 2227 } 2228 2229 if (mask & ETH_VLAN_FILTER_MASK) { 2230 if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) 2231 PMD_DRV_LOG(ERR, "VLAN filter offload not supported\n"); 2232 } 2233 2234 if (mask & ETH_VLAN_EXTEND_MASK) { 2235 if (offloads & DEV_RX_OFFLOAD_VLAN_EXTEND) 2236 PMD_DRV_LOG(ERR, "VLAN extend offload not supported\n"); 2237 } 2238 2239 return 0; 2240 } 2241 2242 static int 2243 avp_dev_stats_get(struct rte_eth_dev *eth_dev, struct rte_eth_stats *stats) 2244 { 2245 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2246 unsigned int i; 2247 2248 for (i = 0; i < avp->num_rx_queues; i++) { 2249 struct avp_queue *rxq = avp->dev_data->rx_queues[i]; 2250 2251 if (rxq) { 2252 stats->ipackets += rxq->packets; 2253 stats->ibytes += rxq->bytes; 2254 stats->ierrors += rxq->errors; 2255 2256 stats->q_ipackets[i] += rxq->packets; 2257 stats->q_ibytes[i] += rxq->bytes; 2258 stats->q_errors[i] += rxq->errors; 2259 } 2260 } 2261 2262 for (i = 0; i < avp->num_tx_queues; i++) { 2263 struct avp_queue *txq = avp->dev_data->tx_queues[i]; 2264 2265 if (txq) { 2266 stats->opackets += txq->packets; 2267 stats->obytes += txq->bytes; 2268 stats->oerrors += txq->errors; 2269 2270 stats->q_opackets[i] += txq->packets; 2271 stats->q_obytes[i] += txq->bytes; 2272 } 2273 } 2274 2275 return 0; 2276 } 2277 2278 static int 2279 avp_dev_stats_reset(struct rte_eth_dev *eth_dev) 2280 { 2281 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2282 unsigned int i; 2283 2284 for (i = 0; i < avp->num_rx_queues; i++) { 2285 struct avp_queue *rxq = avp->dev_data->rx_queues[i]; 2286 2287 if (rxq) { 2288 rxq->bytes = 0; 2289 rxq->packets = 0; 2290 rxq->errors = 0; 2291 } 2292 } 2293 2294 for (i = 0; i < avp->num_tx_queues; i++) { 2295 struct avp_queue *txq = avp->dev_data->tx_queues[i]; 2296 2297 if (txq) { 2298 txq->bytes = 0; 2299 txq->packets = 0; 2300 txq->errors = 0; 2301 } 2302 } 2303 2304 return 0; 2305 } 2306 2307 RTE_PMD_REGISTER_PCI(net_avp, rte_avp_pmd); 2308 RTE_PMD_REGISTER_PCI_TABLE(net_avp, pci_id_avp_map); 2309 RTE_LOG_REGISTER(avp_logtype_driver, pmd.net.avp.driver, NOTICE); 2310