1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2013-2017 Wind River Systems, Inc. 3 */ 4 5 #include <stdint.h> 6 #include <string.h> 7 #include <stdio.h> 8 #include <errno.h> 9 #include <unistd.h> 10 11 #include <ethdev_driver.h> 12 #include <ethdev_pci.h> 13 #include <rte_memcpy.h> 14 #include <rte_string_fns.h> 15 #include <rte_malloc.h> 16 #include <rte_atomic.h> 17 #include <rte_branch_prediction.h> 18 #include <rte_pci.h> 19 #include <bus_pci_driver.h> 20 #include <rte_ether.h> 21 #include <rte_common.h> 22 #include <rte_cycles.h> 23 #include <rte_spinlock.h> 24 #include <rte_byteorder.h> 25 #include <dev_driver.h> 26 #include <rte_memory.h> 27 #include <rte_eal.h> 28 #include <rte_io.h> 29 30 #include "rte_avp_common.h" 31 #include "rte_avp_fifo.h" 32 33 #include "avp_logs.h" 34 35 static int avp_dev_create(struct rte_pci_device *pci_dev, 36 struct rte_eth_dev *eth_dev); 37 38 static int avp_dev_configure(struct rte_eth_dev *dev); 39 static int avp_dev_start(struct rte_eth_dev *dev); 40 static int avp_dev_stop(struct rte_eth_dev *dev); 41 static int avp_dev_close(struct rte_eth_dev *dev); 42 static int avp_dev_info_get(struct rte_eth_dev *dev, 43 struct rte_eth_dev_info *dev_info); 44 static int avp_vlan_offload_set(struct rte_eth_dev *dev, int mask); 45 static int avp_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete); 46 static int avp_dev_promiscuous_enable(struct rte_eth_dev *dev); 47 static int avp_dev_promiscuous_disable(struct rte_eth_dev *dev); 48 49 static int avp_dev_rx_queue_setup(struct rte_eth_dev *dev, 50 uint16_t rx_queue_id, 51 uint16_t nb_rx_desc, 52 unsigned int socket_id, 53 const struct rte_eth_rxconf *rx_conf, 54 struct rte_mempool *pool); 55 56 static int avp_dev_tx_queue_setup(struct rte_eth_dev *dev, 57 uint16_t tx_queue_id, 58 uint16_t nb_tx_desc, 59 unsigned int socket_id, 60 const struct rte_eth_txconf *tx_conf); 61 62 static uint16_t avp_recv_scattered_pkts(void *rx_queue, 63 struct rte_mbuf **rx_pkts, 64 uint16_t nb_pkts); 65 66 static uint16_t avp_recv_pkts(void *rx_queue, 67 struct rte_mbuf **rx_pkts, 68 uint16_t nb_pkts); 69 70 static uint16_t avp_xmit_scattered_pkts(void *tx_queue, 71 struct rte_mbuf **tx_pkts, 72 uint16_t nb_pkts); 73 74 static uint16_t avp_xmit_pkts(void *tx_queue, 75 struct rte_mbuf **tx_pkts, 76 uint16_t nb_pkts); 77 78 static void avp_dev_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid); 79 static void avp_dev_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid); 80 81 static int avp_dev_stats_get(struct rte_eth_dev *dev, 82 struct rte_eth_stats *stats); 83 static int avp_dev_stats_reset(struct rte_eth_dev *dev); 84 85 86 #define AVP_MAX_RX_BURST 64 87 #define AVP_MAX_TX_BURST 64 88 #define AVP_MAX_MAC_ADDRS 1 89 #define AVP_MIN_RX_BUFSIZE RTE_ETHER_MIN_LEN 90 91 92 /* 93 * Defines the number of microseconds to wait before checking the response 94 * queue for completion. 95 */ 96 #define AVP_REQUEST_DELAY_USECS (5000) 97 98 /* 99 * Defines the number times to check the response queue for completion before 100 * declaring a timeout. 101 */ 102 #define AVP_MAX_REQUEST_RETRY (100) 103 104 /* Defines the current PCI driver version number */ 105 #define AVP_DPDK_DRIVER_VERSION RTE_AVP_CURRENT_GUEST_VERSION 106 107 /* 108 * The set of PCI devices this driver supports 109 */ 110 static const struct rte_pci_id pci_id_avp_map[] = { 111 { .vendor_id = RTE_AVP_PCI_VENDOR_ID, 112 .device_id = RTE_AVP_PCI_DEVICE_ID, 113 .subsystem_vendor_id = RTE_AVP_PCI_SUB_VENDOR_ID, 114 .subsystem_device_id = RTE_AVP_PCI_SUB_DEVICE_ID, 115 .class_id = RTE_CLASS_ANY_ID, 116 }, 117 118 { .vendor_id = 0, /* sentinel */ 119 }, 120 }; 121 122 /* 123 * dev_ops for avp, bare necessities for basic operation 124 */ 125 static const struct eth_dev_ops avp_eth_dev_ops = { 126 .dev_configure = avp_dev_configure, 127 .dev_start = avp_dev_start, 128 .dev_stop = avp_dev_stop, 129 .dev_close = avp_dev_close, 130 .dev_infos_get = avp_dev_info_get, 131 .vlan_offload_set = avp_vlan_offload_set, 132 .stats_get = avp_dev_stats_get, 133 .stats_reset = avp_dev_stats_reset, 134 .link_update = avp_dev_link_update, 135 .promiscuous_enable = avp_dev_promiscuous_enable, 136 .promiscuous_disable = avp_dev_promiscuous_disable, 137 .rx_queue_setup = avp_dev_rx_queue_setup, 138 .rx_queue_release = avp_dev_rx_queue_release, 139 .tx_queue_setup = avp_dev_tx_queue_setup, 140 .tx_queue_release = avp_dev_tx_queue_release, 141 }; 142 143 /**@{ AVP device flags */ 144 #define AVP_F_PROMISC (1 << 1) 145 #define AVP_F_CONFIGURED (1 << 2) 146 #define AVP_F_LINKUP (1 << 3) 147 #define AVP_F_DETACHED (1 << 4) 148 /**@} */ 149 150 /* Ethernet device validation marker */ 151 #define AVP_ETHDEV_MAGIC 0x92972862 152 153 /* 154 * Defines the AVP device attributes which are attached to an RTE ethernet 155 * device 156 */ 157 struct __rte_cache_aligned avp_dev { 158 uint32_t magic; /**< Memory validation marker */ 159 uint64_t device_id; /**< Unique system identifier */ 160 struct rte_ether_addr ethaddr; /**< Host specified MAC address */ 161 struct rte_eth_dev_data *dev_data; 162 /**< Back pointer to ethernet device data */ 163 volatile uint32_t flags; /**< Device operational flags */ 164 uint16_t port_id; /**< Ethernet port identifier */ 165 struct rte_mempool *pool; /**< pkt mbuf mempool */ 166 unsigned int guest_mbuf_size; /**< local pool mbuf size */ 167 unsigned int host_mbuf_size; /**< host mbuf size */ 168 unsigned int max_rx_pkt_len; /**< maximum receive unit */ 169 uint32_t host_features; /**< Supported feature bitmap */ 170 uint32_t features; /**< Enabled feature bitmap */ 171 unsigned int num_tx_queues; /**< Negotiated number of transmit queues */ 172 unsigned int max_tx_queues; /**< Maximum number of transmit queues */ 173 unsigned int num_rx_queues; /**< Negotiated number of receive queues */ 174 unsigned int max_rx_queues; /**< Maximum number of receive queues */ 175 176 struct rte_avp_fifo *tx_q[RTE_AVP_MAX_QUEUES]; /**< TX queue */ 177 struct rte_avp_fifo *rx_q[RTE_AVP_MAX_QUEUES]; /**< RX queue */ 178 struct rte_avp_fifo *alloc_q[RTE_AVP_MAX_QUEUES]; 179 /**< Allocated mbufs queue */ 180 struct rte_avp_fifo *free_q[RTE_AVP_MAX_QUEUES]; 181 /**< To be freed mbufs queue */ 182 183 /* mutual exclusion over the 'flag' and 'resp_q/req_q' fields */ 184 rte_spinlock_t lock; 185 186 /* For request & response */ 187 struct rte_avp_fifo *req_q; /**< Request queue */ 188 struct rte_avp_fifo *resp_q; /**< Response queue */ 189 void *host_sync_addr; /**< (host) Req/Resp Mem address */ 190 void *sync_addr; /**< Req/Resp Mem address */ 191 void *host_mbuf_addr; /**< (host) MBUF pool start address */ 192 void *mbuf_addr; /**< MBUF pool start address */ 193 }; 194 195 /* RTE ethernet private data */ 196 struct __rte_cache_aligned avp_adapter { 197 struct avp_dev avp; 198 }; 199 200 201 /* 32-bit MMIO register write */ 202 #define AVP_WRITE32(_value, _addr) rte_write32_relaxed((_value), (_addr)) 203 204 /* 32-bit MMIO register read */ 205 #define AVP_READ32(_addr) rte_read32_relaxed((_addr)) 206 207 /* Macro to cast the ethernet device private data to a AVP object */ 208 #define AVP_DEV_PRIVATE_TO_HW(adapter) \ 209 (&((struct avp_adapter *)adapter)->avp) 210 211 /* 212 * Defines the structure of a AVP device queue for the purpose of handling the 213 * receive and transmit burst callback functions 214 */ 215 struct avp_queue { 216 struct rte_eth_dev_data *dev_data; 217 /**< Backpointer to ethernet device data */ 218 struct avp_dev *avp; /**< Backpointer to AVP device */ 219 uint16_t queue_id; 220 /**< Queue identifier used for indexing current queue */ 221 uint16_t queue_base; 222 /**< Base queue identifier for queue servicing */ 223 uint16_t queue_limit; 224 /**< Maximum queue identifier for queue servicing */ 225 226 uint64_t packets; 227 uint64_t bytes; 228 uint64_t errors; 229 }; 230 231 /* send a request and wait for a response 232 * 233 * @warning must be called while holding the avp->lock spinlock. 234 */ 235 static int 236 avp_dev_process_request(struct avp_dev *avp, struct rte_avp_request *request) 237 { 238 unsigned int retry = AVP_MAX_REQUEST_RETRY; 239 void *resp_addr = NULL; 240 unsigned int count; 241 int ret; 242 243 PMD_DRV_LOG_LINE(DEBUG, "Sending request %u to host", request->req_id); 244 245 request->result = -ENOTSUP; 246 247 /* Discard any stale responses before starting a new request */ 248 while (avp_fifo_get(avp->resp_q, (void **)&resp_addr, 1)) 249 PMD_DRV_LOG_LINE(DEBUG, "Discarding stale response"); 250 251 rte_memcpy(avp->sync_addr, request, sizeof(*request)); 252 count = avp_fifo_put(avp->req_q, &avp->host_sync_addr, 1); 253 if (count < 1) { 254 PMD_DRV_LOG_LINE(ERR, "Cannot send request %u to host", 255 request->req_id); 256 ret = -EBUSY; 257 goto done; 258 } 259 260 while (retry--) { 261 /* wait for a response */ 262 usleep(AVP_REQUEST_DELAY_USECS); 263 264 count = avp_fifo_count(avp->resp_q); 265 if (count >= 1) { 266 /* response received */ 267 break; 268 } 269 270 if (retry == 0) { 271 PMD_DRV_LOG_LINE(ERR, "Timeout while waiting for a response for %u", 272 request->req_id); 273 ret = -ETIME; 274 goto done; 275 } 276 } 277 278 /* retrieve the response */ 279 count = avp_fifo_get(avp->resp_q, (void **)&resp_addr, 1); 280 if ((count != 1) || (resp_addr != avp->host_sync_addr)) { 281 PMD_DRV_LOG_LINE(ERR, "Invalid response from host, count=%u resp=%p host_sync_addr=%p", 282 count, resp_addr, avp->host_sync_addr); 283 ret = -ENODATA; 284 goto done; 285 } 286 287 /* copy to user buffer */ 288 rte_memcpy(request, avp->sync_addr, sizeof(*request)); 289 ret = 0; 290 291 PMD_DRV_LOG_LINE(DEBUG, "Result %d received for request %u", 292 request->result, request->req_id); 293 294 done: 295 return ret; 296 } 297 298 static int 299 avp_dev_ctrl_set_link_state(struct rte_eth_dev *eth_dev, unsigned int state) 300 { 301 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 302 struct rte_avp_request request; 303 int ret; 304 305 /* setup a link state change request */ 306 memset(&request, 0, sizeof(request)); 307 request.req_id = RTE_AVP_REQ_CFG_NETWORK_IF; 308 request.if_up = state; 309 310 ret = avp_dev_process_request(avp, &request); 311 312 return ret == 0 ? request.result : ret; 313 } 314 315 static int 316 avp_dev_ctrl_set_config(struct rte_eth_dev *eth_dev, 317 struct rte_avp_device_config *config) 318 { 319 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 320 struct rte_avp_request request; 321 int ret; 322 323 /* setup a configure request */ 324 memset(&request, 0, sizeof(request)); 325 request.req_id = RTE_AVP_REQ_CFG_DEVICE; 326 memcpy(&request.config, config, sizeof(request.config)); 327 328 ret = avp_dev_process_request(avp, &request); 329 330 return ret == 0 ? request.result : ret; 331 } 332 333 static int 334 avp_dev_ctrl_shutdown(struct rte_eth_dev *eth_dev) 335 { 336 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 337 struct rte_avp_request request; 338 int ret; 339 340 /* setup a shutdown request */ 341 memset(&request, 0, sizeof(request)); 342 request.req_id = RTE_AVP_REQ_SHUTDOWN_DEVICE; 343 344 ret = avp_dev_process_request(avp, &request); 345 346 return ret == 0 ? request.result : ret; 347 } 348 349 /* translate from host mbuf virtual address to guest virtual address */ 350 static inline void * 351 avp_dev_translate_buffer(struct avp_dev *avp, void *host_mbuf_address) 352 { 353 return RTE_PTR_ADD(RTE_PTR_SUB(host_mbuf_address, 354 (uintptr_t)avp->host_mbuf_addr), 355 (uintptr_t)avp->mbuf_addr); 356 } 357 358 /* translate from host physical address to guest virtual address */ 359 static void * 360 avp_dev_translate_address(struct rte_eth_dev *eth_dev, 361 rte_iova_t host_phys_addr) 362 { 363 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 364 struct rte_mem_resource *resource; 365 struct rte_avp_memmap_info *info; 366 struct rte_avp_memmap *map; 367 off_t offset; 368 void *addr; 369 unsigned int i; 370 371 addr = pci_dev->mem_resource[RTE_AVP_PCI_MEMORY_BAR].addr; 372 resource = &pci_dev->mem_resource[RTE_AVP_PCI_MEMMAP_BAR]; 373 info = (struct rte_avp_memmap_info *)resource->addr; 374 375 offset = 0; 376 for (i = 0; i < info->nb_maps; i++) { 377 /* search all segments looking for a matching address */ 378 map = &info->maps[i]; 379 380 if ((host_phys_addr >= map->phys_addr) && 381 (host_phys_addr < (map->phys_addr + map->length))) { 382 /* address is within this segment */ 383 offset += (host_phys_addr - map->phys_addr); 384 addr = RTE_PTR_ADD(addr, (uintptr_t)offset); 385 386 PMD_DRV_LOG_LINE(DEBUG, "Translating host physical 0x%" PRIx64 " to guest virtual 0x%p", 387 host_phys_addr, addr); 388 389 return addr; 390 } 391 offset += map->length; 392 } 393 394 return NULL; 395 } 396 397 /* verify that the incoming device version is compatible with our version */ 398 static int 399 avp_dev_version_check(uint32_t version) 400 { 401 uint32_t driver = RTE_AVP_STRIP_MINOR_VERSION(AVP_DPDK_DRIVER_VERSION); 402 uint32_t device = RTE_AVP_STRIP_MINOR_VERSION(version); 403 404 if (device <= driver) { 405 /* the host driver version is less than or equal to ours */ 406 return 0; 407 } 408 409 return 1; 410 } 411 412 /* verify that memory regions have expected version and validation markers */ 413 static int 414 avp_dev_check_regions(struct rte_eth_dev *eth_dev) 415 { 416 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 417 struct rte_avp_memmap_info *memmap; 418 struct rte_avp_device_info *info; 419 struct rte_mem_resource *resource; 420 unsigned int i; 421 422 /* Dump resource info for debug */ 423 for (i = 0; i < PCI_MAX_RESOURCE; i++) { 424 resource = &pci_dev->mem_resource[i]; 425 if ((resource->phys_addr == 0) || (resource->len == 0)) 426 continue; 427 428 PMD_DRV_LOG_LINE(DEBUG, "resource[%u]: phys=0x%" PRIx64 " len=%" PRIu64 " addr=%p", 429 i, resource->phys_addr, 430 resource->len, resource->addr); 431 432 switch (i) { 433 case RTE_AVP_PCI_MEMMAP_BAR: 434 memmap = (struct rte_avp_memmap_info *)resource->addr; 435 if ((memmap->magic != RTE_AVP_MEMMAP_MAGIC) || 436 (memmap->version != RTE_AVP_MEMMAP_VERSION)) { 437 PMD_DRV_LOG_LINE(ERR, "Invalid memmap magic 0x%08x and version %u", 438 memmap->magic, memmap->version); 439 return -EINVAL; 440 } 441 break; 442 443 case RTE_AVP_PCI_DEVICE_BAR: 444 info = (struct rte_avp_device_info *)resource->addr; 445 if ((info->magic != RTE_AVP_DEVICE_MAGIC) || 446 avp_dev_version_check(info->version)) { 447 PMD_DRV_LOG_LINE(ERR, "Invalid device info magic 0x%08x or version 0x%08x > 0x%08x", 448 info->magic, info->version, 449 AVP_DPDK_DRIVER_VERSION); 450 return -EINVAL; 451 } 452 break; 453 454 case RTE_AVP_PCI_MEMORY_BAR: 455 case RTE_AVP_PCI_MMIO_BAR: 456 if (resource->addr == NULL) { 457 PMD_DRV_LOG_LINE(ERR, "Missing address space for BAR%u", 458 i); 459 return -EINVAL; 460 } 461 break; 462 463 case RTE_AVP_PCI_MSIX_BAR: 464 default: 465 /* no validation required */ 466 break; 467 } 468 } 469 470 return 0; 471 } 472 473 static int 474 avp_dev_detach(struct rte_eth_dev *eth_dev) 475 { 476 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 477 int ret; 478 479 PMD_DRV_LOG_LINE(NOTICE, "Detaching port %u from AVP device 0x%" PRIx64 "", 480 eth_dev->data->port_id, avp->device_id); 481 482 rte_spinlock_lock(&avp->lock); 483 484 if (avp->flags & AVP_F_DETACHED) { 485 PMD_DRV_LOG_LINE(NOTICE, "port %u already detached", 486 eth_dev->data->port_id); 487 ret = 0; 488 goto unlock; 489 } 490 491 /* shutdown the device first so the host stops sending us packets. */ 492 ret = avp_dev_ctrl_shutdown(eth_dev); 493 if (ret < 0) { 494 PMD_DRV_LOG_LINE(ERR, "Failed to send/recv shutdown to host, ret=%d", 495 ret); 496 avp->flags &= ~AVP_F_DETACHED; 497 goto unlock; 498 } 499 500 avp->flags |= AVP_F_DETACHED; 501 rte_wmb(); 502 503 /* wait for queues to acknowledge the presence of the detach flag */ 504 rte_delay_ms(1); 505 506 ret = 0; 507 508 unlock: 509 rte_spinlock_unlock(&avp->lock); 510 return ret; 511 } 512 513 static void 514 _avp_set_rx_queue_mappings(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id) 515 { 516 struct avp_dev *avp = 517 AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 518 struct avp_queue *rxq; 519 uint16_t queue_count; 520 uint16_t remainder; 521 522 rxq = (struct avp_queue *)eth_dev->data->rx_queues[rx_queue_id]; 523 524 /* 525 * Must map all AVP fifos as evenly as possible between the configured 526 * device queues. Each device queue will service a subset of the AVP 527 * fifos. If there is an odd number of device queues the first set of 528 * device queues will get the extra AVP fifos. 529 */ 530 queue_count = avp->num_rx_queues / eth_dev->data->nb_rx_queues; 531 remainder = avp->num_rx_queues % eth_dev->data->nb_rx_queues; 532 if (rx_queue_id < remainder) { 533 /* these queues must service one extra FIFO */ 534 rxq->queue_base = rx_queue_id * (queue_count + 1); 535 rxq->queue_limit = rxq->queue_base + (queue_count + 1) - 1; 536 } else { 537 /* these queues service the regular number of FIFO */ 538 rxq->queue_base = ((remainder * (queue_count + 1)) + 539 ((rx_queue_id - remainder) * queue_count)); 540 rxq->queue_limit = rxq->queue_base + queue_count - 1; 541 } 542 543 PMD_DRV_LOG_LINE(DEBUG, "rxq %u at %p base %u limit %u", 544 rx_queue_id, rxq, rxq->queue_base, rxq->queue_limit); 545 546 rxq->queue_id = rxq->queue_base; 547 } 548 549 static void 550 _avp_set_queue_counts(struct rte_eth_dev *eth_dev) 551 { 552 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 553 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 554 struct rte_avp_device_info *host_info; 555 void *addr; 556 557 addr = pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR].addr; 558 host_info = (struct rte_avp_device_info *)addr; 559 560 /* 561 * the transmit direction is not negotiated beyond respecting the max 562 * number of queues because the host can handle arbitrary guest tx 563 * queues (host rx queues). 564 */ 565 avp->num_tx_queues = eth_dev->data->nb_tx_queues; 566 567 /* 568 * the receive direction is more restrictive. The host requires a 569 * minimum number of guest rx queues (host tx queues) therefore 570 * negotiate a value that is at least as large as the host minimum 571 * requirement. If the host and guest values are not identical then a 572 * mapping will be established in the receive_queue_setup function. 573 */ 574 avp->num_rx_queues = RTE_MAX(host_info->min_rx_queues, 575 eth_dev->data->nb_rx_queues); 576 577 PMD_DRV_LOG_LINE(DEBUG, "Requesting %u Tx and %u Rx queues from host", 578 avp->num_tx_queues, avp->num_rx_queues); 579 } 580 581 static int 582 avp_dev_attach(struct rte_eth_dev *eth_dev) 583 { 584 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 585 struct rte_avp_device_config config; 586 unsigned int i; 587 int ret; 588 589 PMD_DRV_LOG_LINE(NOTICE, "Attaching port %u to AVP device 0x%" PRIx64 "", 590 eth_dev->data->port_id, avp->device_id); 591 592 rte_spinlock_lock(&avp->lock); 593 594 if (!(avp->flags & AVP_F_DETACHED)) { 595 PMD_DRV_LOG_LINE(NOTICE, "port %u already attached", 596 eth_dev->data->port_id); 597 ret = 0; 598 goto unlock; 599 } 600 601 /* 602 * make sure that the detached flag is set prior to reconfiguring the 603 * queues. 604 */ 605 avp->flags |= AVP_F_DETACHED; 606 rte_wmb(); 607 608 /* 609 * re-run the device create utility which will parse the new host info 610 * and setup the AVP device queue pointers. 611 */ 612 ret = avp_dev_create(RTE_ETH_DEV_TO_PCI(eth_dev), eth_dev); 613 if (ret < 0) { 614 PMD_DRV_LOG_LINE(ERR, "Failed to re-create AVP device, ret=%d", 615 ret); 616 goto unlock; 617 } 618 619 if (avp->flags & AVP_F_CONFIGURED) { 620 /* 621 * Update the receive queue mapping to handle cases where the 622 * source and destination hosts have different queue 623 * requirements. As long as the DETACHED flag is asserted the 624 * queue table should not be referenced so it should be safe to 625 * update it. 626 */ 627 _avp_set_queue_counts(eth_dev); 628 for (i = 0; i < eth_dev->data->nb_rx_queues; i++) 629 _avp_set_rx_queue_mappings(eth_dev, i); 630 631 /* 632 * Update the host with our config details so that it knows the 633 * device is active. 634 */ 635 memset(&config, 0, sizeof(config)); 636 config.device_id = avp->device_id; 637 config.driver_type = RTE_AVP_DRIVER_TYPE_DPDK; 638 config.driver_version = AVP_DPDK_DRIVER_VERSION; 639 config.features = avp->features; 640 config.num_tx_queues = avp->num_tx_queues; 641 config.num_rx_queues = avp->num_rx_queues; 642 config.if_up = !!(avp->flags & AVP_F_LINKUP); 643 644 ret = avp_dev_ctrl_set_config(eth_dev, &config); 645 if (ret < 0) { 646 PMD_DRV_LOG_LINE(ERR, "Config request failed by host, ret=%d", 647 ret); 648 goto unlock; 649 } 650 } 651 652 rte_wmb(); 653 avp->flags &= ~AVP_F_DETACHED; 654 655 ret = 0; 656 657 unlock: 658 rte_spinlock_unlock(&avp->lock); 659 return ret; 660 } 661 662 static void 663 avp_dev_interrupt_handler(void *data) 664 { 665 struct rte_eth_dev *eth_dev = data; 666 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 667 void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr; 668 uint32_t status, value; 669 int ret; 670 671 if (registers == NULL) 672 rte_panic("no mapped MMIO register space\n"); 673 674 /* read the interrupt status register 675 * note: this register clears on read so all raised interrupts must be 676 * handled or remembered for later processing 677 */ 678 status = AVP_READ32( 679 RTE_PTR_ADD(registers, 680 RTE_AVP_INTERRUPT_STATUS_OFFSET)); 681 682 if (status & RTE_AVP_MIGRATION_INTERRUPT_MASK) { 683 /* handle interrupt based on current status */ 684 value = AVP_READ32( 685 RTE_PTR_ADD(registers, 686 RTE_AVP_MIGRATION_STATUS_OFFSET)); 687 switch (value) { 688 case RTE_AVP_MIGRATION_DETACHED: 689 ret = avp_dev_detach(eth_dev); 690 break; 691 case RTE_AVP_MIGRATION_ATTACHED: 692 ret = avp_dev_attach(eth_dev); 693 break; 694 default: 695 PMD_DRV_LOG_LINE(ERR, "unexpected migration status, status=%u", 696 value); 697 ret = -EINVAL; 698 } 699 700 /* acknowledge the request by writing out our current status */ 701 value = (ret == 0 ? value : RTE_AVP_MIGRATION_ERROR); 702 AVP_WRITE32(value, 703 RTE_PTR_ADD(registers, 704 RTE_AVP_MIGRATION_ACK_OFFSET)); 705 706 PMD_DRV_LOG_LINE(NOTICE, "AVP migration interrupt handled"); 707 } 708 709 if (status & ~RTE_AVP_MIGRATION_INTERRUPT_MASK) 710 PMD_DRV_LOG_LINE(WARNING, "AVP unexpected interrupt, status=0x%08x", 711 status); 712 713 /* re-enable UIO interrupt handling */ 714 ret = rte_intr_ack(pci_dev->intr_handle); 715 if (ret < 0) { 716 PMD_DRV_LOG_LINE(ERR, "Failed to re-enable UIO interrupts, ret=%d", 717 ret); 718 /* continue */ 719 } 720 } 721 722 static int 723 avp_dev_enable_interrupts(struct rte_eth_dev *eth_dev) 724 { 725 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 726 void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr; 727 int ret; 728 729 if (registers == NULL) 730 return -EINVAL; 731 732 /* enable UIO interrupt handling */ 733 ret = rte_intr_enable(pci_dev->intr_handle); 734 if (ret < 0) { 735 PMD_DRV_LOG_LINE(ERR, "Failed to enable UIO interrupts, ret=%d", 736 ret); 737 return ret; 738 } 739 740 /* inform the device that all interrupts are enabled */ 741 AVP_WRITE32(RTE_AVP_APP_INTERRUPTS_MASK, 742 RTE_PTR_ADD(registers, RTE_AVP_INTERRUPT_MASK_OFFSET)); 743 744 return 0; 745 } 746 747 static int 748 avp_dev_disable_interrupts(struct rte_eth_dev *eth_dev) 749 { 750 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 751 void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr; 752 int ret; 753 754 if (registers == NULL) 755 return 0; 756 757 /* inform the device that all interrupts are disabled */ 758 AVP_WRITE32(RTE_AVP_NO_INTERRUPTS_MASK, 759 RTE_PTR_ADD(registers, RTE_AVP_INTERRUPT_MASK_OFFSET)); 760 761 /* enable UIO interrupt handling */ 762 ret = rte_intr_disable(pci_dev->intr_handle); 763 if (ret < 0) { 764 PMD_DRV_LOG_LINE(ERR, "Failed to disable UIO interrupts, ret=%d", 765 ret); 766 return ret; 767 } 768 769 return 0; 770 } 771 772 static int 773 avp_dev_setup_interrupts(struct rte_eth_dev *eth_dev) 774 { 775 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 776 int ret; 777 778 /* register a callback handler with UIO for interrupt notifications */ 779 ret = rte_intr_callback_register(pci_dev->intr_handle, 780 avp_dev_interrupt_handler, 781 (void *)eth_dev); 782 if (ret < 0) { 783 PMD_DRV_LOG_LINE(ERR, "Failed to register UIO interrupt callback, ret=%d", 784 ret); 785 return ret; 786 } 787 788 /* enable interrupt processing */ 789 return avp_dev_enable_interrupts(eth_dev); 790 } 791 792 static int 793 avp_dev_migration_pending(struct rte_eth_dev *eth_dev) 794 { 795 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 796 void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr; 797 uint32_t value; 798 799 if (registers == NULL) 800 return 0; 801 802 value = AVP_READ32(RTE_PTR_ADD(registers, 803 RTE_AVP_MIGRATION_STATUS_OFFSET)); 804 if (value == RTE_AVP_MIGRATION_DETACHED) { 805 /* migration is in progress; ack it if we have not already */ 806 AVP_WRITE32(value, 807 RTE_PTR_ADD(registers, 808 RTE_AVP_MIGRATION_ACK_OFFSET)); 809 return 1; 810 } 811 return 0; 812 } 813 814 /* 815 * create a AVP device using the supplied device info by first translating it 816 * to guest address space(s). 817 */ 818 static int 819 avp_dev_create(struct rte_pci_device *pci_dev, 820 struct rte_eth_dev *eth_dev) 821 { 822 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 823 struct rte_avp_device_info *host_info; 824 struct rte_mem_resource *resource; 825 unsigned int i; 826 827 resource = &pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR]; 828 if (resource->addr == NULL) { 829 PMD_DRV_LOG_LINE(ERR, "BAR%u is not mapped", 830 RTE_AVP_PCI_DEVICE_BAR); 831 return -EFAULT; 832 } 833 host_info = (struct rte_avp_device_info *)resource->addr; 834 835 if ((host_info->magic != RTE_AVP_DEVICE_MAGIC) || 836 avp_dev_version_check(host_info->version)) { 837 PMD_DRV_LOG_LINE(ERR, "Invalid AVP PCI device, magic 0x%08x version 0x%08x > 0x%08x", 838 host_info->magic, host_info->version, 839 AVP_DPDK_DRIVER_VERSION); 840 return -EINVAL; 841 } 842 843 PMD_DRV_LOG_LINE(DEBUG, "AVP host device is v%u.%u.%u", 844 RTE_AVP_GET_RELEASE_VERSION(host_info->version), 845 RTE_AVP_GET_MAJOR_VERSION(host_info->version), 846 RTE_AVP_GET_MINOR_VERSION(host_info->version)); 847 848 PMD_DRV_LOG_LINE(DEBUG, "AVP host supports %u to %u TX queue(s)", 849 host_info->min_tx_queues, host_info->max_tx_queues); 850 PMD_DRV_LOG_LINE(DEBUG, "AVP host supports %u to %u RX queue(s)", 851 host_info->min_rx_queues, host_info->max_rx_queues); 852 PMD_DRV_LOG_LINE(DEBUG, "AVP host supports features 0x%08x", 853 host_info->features); 854 855 if (avp->magic != AVP_ETHDEV_MAGIC) { 856 /* 857 * First time initialization (i.e., not during a VM 858 * migration) 859 */ 860 memset(avp, 0, sizeof(*avp)); 861 avp->magic = AVP_ETHDEV_MAGIC; 862 avp->dev_data = eth_dev->data; 863 avp->port_id = eth_dev->data->port_id; 864 avp->host_mbuf_size = host_info->mbuf_size; 865 avp->host_features = host_info->features; 866 rte_spinlock_init(&avp->lock); 867 memcpy(&avp->ethaddr.addr_bytes[0], 868 host_info->ethaddr, RTE_ETHER_ADDR_LEN); 869 /* adjust max values to not exceed our max */ 870 avp->max_tx_queues = 871 RTE_MIN(host_info->max_tx_queues, RTE_AVP_MAX_QUEUES); 872 avp->max_rx_queues = 873 RTE_MIN(host_info->max_rx_queues, RTE_AVP_MAX_QUEUES); 874 } else { 875 /* Re-attaching during migration */ 876 877 /* TODO... requires validation of host values */ 878 if ((host_info->features & avp->features) != avp->features) { 879 PMD_DRV_LOG_LINE(ERR, "AVP host features mismatched; 0x%08x, host=0x%08x", 880 avp->features, host_info->features); 881 /* this should not be possible; continue for now */ 882 } 883 } 884 885 /* the device id is allowed to change over migrations */ 886 avp->device_id = host_info->device_id; 887 888 /* translate incoming host addresses to guest address space */ 889 PMD_DRV_LOG_LINE(DEBUG, "AVP first host tx queue at 0x%" PRIx64 "", 890 host_info->tx_phys); 891 PMD_DRV_LOG_LINE(DEBUG, "AVP first host alloc queue at 0x%" PRIx64 "", 892 host_info->alloc_phys); 893 for (i = 0; i < avp->max_tx_queues; i++) { 894 avp->tx_q[i] = avp_dev_translate_address(eth_dev, 895 host_info->tx_phys + (i * host_info->tx_size)); 896 897 avp->alloc_q[i] = avp_dev_translate_address(eth_dev, 898 host_info->alloc_phys + (i * host_info->alloc_size)); 899 } 900 901 PMD_DRV_LOG_LINE(DEBUG, "AVP first host rx queue at 0x%" PRIx64 "", 902 host_info->rx_phys); 903 PMD_DRV_LOG_LINE(DEBUG, "AVP first host free queue at 0x%" PRIx64 "", 904 host_info->free_phys); 905 for (i = 0; i < avp->max_rx_queues; i++) { 906 avp->rx_q[i] = avp_dev_translate_address(eth_dev, 907 host_info->rx_phys + (i * host_info->rx_size)); 908 avp->free_q[i] = avp_dev_translate_address(eth_dev, 909 host_info->free_phys + (i * host_info->free_size)); 910 } 911 912 PMD_DRV_LOG_LINE(DEBUG, "AVP host request queue at 0x%" PRIx64 "", 913 host_info->req_phys); 914 PMD_DRV_LOG_LINE(DEBUG, "AVP host response queue at 0x%" PRIx64 "", 915 host_info->resp_phys); 916 PMD_DRV_LOG_LINE(DEBUG, "AVP host sync address at 0x%" PRIx64 "", 917 host_info->sync_phys); 918 PMD_DRV_LOG_LINE(DEBUG, "AVP host mbuf address at 0x%" PRIx64 "", 919 host_info->mbuf_phys); 920 avp->req_q = avp_dev_translate_address(eth_dev, host_info->req_phys); 921 avp->resp_q = avp_dev_translate_address(eth_dev, host_info->resp_phys); 922 avp->sync_addr = 923 avp_dev_translate_address(eth_dev, host_info->sync_phys); 924 avp->mbuf_addr = 925 avp_dev_translate_address(eth_dev, host_info->mbuf_phys); 926 927 /* 928 * store the host mbuf virtual address so that we can calculate 929 * relative offsets for each mbuf as they are processed 930 */ 931 avp->host_mbuf_addr = host_info->mbuf_va; 932 avp->host_sync_addr = host_info->sync_va; 933 934 /* 935 * store the maximum packet length that is supported by the host. 936 */ 937 avp->max_rx_pkt_len = host_info->max_rx_pkt_len; 938 PMD_DRV_LOG_LINE(DEBUG, "AVP host max receive packet length is %u", 939 host_info->max_rx_pkt_len); 940 941 return 0; 942 } 943 944 /* 945 * This function is based on probe() function in avp_pci.c 946 * It returns 0 on success. 947 */ 948 static int 949 eth_avp_dev_init(struct rte_eth_dev *eth_dev) 950 { 951 struct avp_dev *avp = 952 AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 953 struct rte_pci_device *pci_dev; 954 int ret; 955 956 pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 957 eth_dev->dev_ops = &avp_eth_dev_ops; 958 eth_dev->rx_pkt_burst = &avp_recv_pkts; 959 eth_dev->tx_pkt_burst = &avp_xmit_pkts; 960 961 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 962 /* 963 * no setup required on secondary processes. All data is saved 964 * in dev_private by the primary process. All resource should 965 * be mapped to the same virtual address so all pointers should 966 * be valid. 967 */ 968 if (eth_dev->data->scattered_rx) { 969 PMD_DRV_LOG_LINE(NOTICE, "AVP device configured for chained mbufs"); 970 eth_dev->rx_pkt_burst = avp_recv_scattered_pkts; 971 eth_dev->tx_pkt_burst = avp_xmit_scattered_pkts; 972 } 973 return 0; 974 } 975 976 rte_eth_copy_pci_info(eth_dev, pci_dev); 977 eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS; 978 979 /* Check current migration status */ 980 if (avp_dev_migration_pending(eth_dev)) { 981 PMD_DRV_LOG_LINE(ERR, "VM live migration operation in progress"); 982 return -EBUSY; 983 } 984 985 /* Check BAR resources */ 986 ret = avp_dev_check_regions(eth_dev); 987 if (ret < 0) { 988 PMD_DRV_LOG_LINE(ERR, "Failed to validate BAR resources, ret=%d", 989 ret); 990 return ret; 991 } 992 993 /* Enable interrupts */ 994 ret = avp_dev_setup_interrupts(eth_dev); 995 if (ret < 0) { 996 PMD_DRV_LOG_LINE(ERR, "Failed to enable interrupts, ret=%d", ret); 997 return ret; 998 } 999 1000 /* Handle each subtype */ 1001 ret = avp_dev_create(pci_dev, eth_dev); 1002 if (ret < 0) { 1003 PMD_DRV_LOG_LINE(ERR, "Failed to create device, ret=%d", ret); 1004 return ret; 1005 } 1006 1007 /* Allocate memory for storing MAC addresses */ 1008 eth_dev->data->mac_addrs = rte_zmalloc("avp_ethdev", 1009 RTE_ETHER_ADDR_LEN, 0); 1010 if (eth_dev->data->mac_addrs == NULL) { 1011 PMD_DRV_LOG_LINE(ERR, "Failed to allocate %d bytes needed to store MAC addresses", 1012 RTE_ETHER_ADDR_LEN); 1013 return -ENOMEM; 1014 } 1015 1016 /* Get a mac from device config */ 1017 rte_ether_addr_copy(&avp->ethaddr, ð_dev->data->mac_addrs[0]); 1018 1019 return 0; 1020 } 1021 1022 static int 1023 eth_avp_dev_uninit(struct rte_eth_dev *eth_dev) 1024 { 1025 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 1026 return -EPERM; 1027 1028 if (eth_dev->data == NULL) 1029 return 0; 1030 1031 avp_dev_close(eth_dev); 1032 1033 return 0; 1034 } 1035 1036 static int 1037 eth_avp_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 1038 struct rte_pci_device *pci_dev) 1039 { 1040 return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct avp_adapter), 1041 eth_avp_dev_init); 1042 } 1043 1044 static int 1045 eth_avp_pci_remove(struct rte_pci_device *pci_dev) 1046 { 1047 return rte_eth_dev_pci_generic_remove(pci_dev, 1048 eth_avp_dev_uninit); 1049 } 1050 1051 static struct rte_pci_driver rte_avp_pmd = { 1052 .id_table = pci_id_avp_map, 1053 .drv_flags = RTE_PCI_DRV_NEED_MAPPING, 1054 .probe = eth_avp_pci_probe, 1055 .remove = eth_avp_pci_remove, 1056 }; 1057 1058 static int 1059 avp_dev_enable_scattered(struct rte_eth_dev *eth_dev, 1060 struct avp_dev *avp) 1061 { 1062 unsigned int max_rx_pktlen; 1063 1064 max_rx_pktlen = eth_dev->data->mtu + RTE_ETHER_HDR_LEN + 1065 RTE_ETHER_CRC_LEN; 1066 1067 if (max_rx_pktlen > avp->guest_mbuf_size || 1068 max_rx_pktlen > avp->host_mbuf_size) { 1069 /* 1070 * If the guest MTU is greater than either the host or guest 1071 * buffers then chained mbufs have to be enabled in the TX 1072 * direction. It is assumed that the application will not need 1073 * to send packets larger than their MTU. 1074 */ 1075 return 1; 1076 } 1077 1078 if ((avp->max_rx_pkt_len > avp->guest_mbuf_size) || 1079 (avp->max_rx_pkt_len > avp->host_mbuf_size)) { 1080 /* 1081 * If the host MRU is greater than its own mbuf size or the 1082 * guest mbuf size then chained mbufs have to be enabled in the 1083 * RX direction. 1084 */ 1085 return 1; 1086 } 1087 1088 return 0; 1089 } 1090 1091 static int 1092 avp_dev_rx_queue_setup(struct rte_eth_dev *eth_dev, 1093 uint16_t rx_queue_id, 1094 uint16_t nb_rx_desc, 1095 unsigned int socket_id, 1096 const struct rte_eth_rxconf *rx_conf, 1097 struct rte_mempool *pool) 1098 { 1099 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 1100 struct rte_pktmbuf_pool_private *mbp_priv; 1101 struct avp_queue *rxq; 1102 1103 if (rx_queue_id >= eth_dev->data->nb_rx_queues) { 1104 PMD_DRV_LOG_LINE(ERR, "RX queue id is out of range: rx_queue_id=%u, nb_rx_queues=%u", 1105 rx_queue_id, eth_dev->data->nb_rx_queues); 1106 return -EINVAL; 1107 } 1108 1109 /* Save mbuf pool pointer */ 1110 avp->pool = pool; 1111 1112 /* Save the local mbuf size */ 1113 mbp_priv = rte_mempool_get_priv(pool); 1114 avp->guest_mbuf_size = (uint16_t)(mbp_priv->mbuf_data_room_size); 1115 avp->guest_mbuf_size -= RTE_PKTMBUF_HEADROOM; 1116 1117 if (avp_dev_enable_scattered(eth_dev, avp)) { 1118 if (!eth_dev->data->scattered_rx) { 1119 PMD_DRV_LOG_LINE(NOTICE, "AVP device configured for chained mbufs"); 1120 eth_dev->data->scattered_rx = 1; 1121 eth_dev->rx_pkt_burst = avp_recv_scattered_pkts; 1122 eth_dev->tx_pkt_burst = avp_xmit_scattered_pkts; 1123 } 1124 } 1125 1126 PMD_DRV_LOG_LINE(DEBUG, "AVP max_rx_pkt_len=(%u,%u) mbuf_size=(%u,%u)", 1127 avp->max_rx_pkt_len, 1128 eth_dev->data->mtu + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN, 1129 avp->host_mbuf_size, 1130 avp->guest_mbuf_size); 1131 1132 /* allocate a queue object */ 1133 rxq = rte_zmalloc_socket("ethdev RX queue", sizeof(struct avp_queue), 1134 RTE_CACHE_LINE_SIZE, socket_id); 1135 if (rxq == NULL) { 1136 PMD_DRV_LOG_LINE(ERR, "Failed to allocate new Rx queue object"); 1137 return -ENOMEM; 1138 } 1139 1140 /* save back pointers to AVP and Ethernet devices */ 1141 rxq->avp = avp; 1142 rxq->dev_data = eth_dev->data; 1143 eth_dev->data->rx_queues[rx_queue_id] = (void *)rxq; 1144 1145 /* setup the queue receive mapping for the current queue. */ 1146 _avp_set_rx_queue_mappings(eth_dev, rx_queue_id); 1147 1148 PMD_DRV_LOG_LINE(DEBUG, "Rx queue %u setup at %p", rx_queue_id, rxq); 1149 1150 (void)nb_rx_desc; 1151 (void)rx_conf; 1152 return 0; 1153 } 1154 1155 static int 1156 avp_dev_tx_queue_setup(struct rte_eth_dev *eth_dev, 1157 uint16_t tx_queue_id, 1158 uint16_t nb_tx_desc, 1159 unsigned int socket_id, 1160 const struct rte_eth_txconf *tx_conf) 1161 { 1162 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 1163 struct avp_queue *txq; 1164 1165 if (tx_queue_id >= eth_dev->data->nb_tx_queues) { 1166 PMD_DRV_LOG_LINE(ERR, "TX queue id is out of range: tx_queue_id=%u, nb_tx_queues=%u", 1167 tx_queue_id, eth_dev->data->nb_tx_queues); 1168 return -EINVAL; 1169 } 1170 1171 /* allocate a queue object */ 1172 txq = rte_zmalloc_socket("ethdev TX queue", sizeof(struct avp_queue), 1173 RTE_CACHE_LINE_SIZE, socket_id); 1174 if (txq == NULL) { 1175 PMD_DRV_LOG_LINE(ERR, "Failed to allocate new Tx queue object"); 1176 return -ENOMEM; 1177 } 1178 1179 /* only the configured set of transmit queues are used */ 1180 txq->queue_id = tx_queue_id; 1181 txq->queue_base = tx_queue_id; 1182 txq->queue_limit = tx_queue_id; 1183 1184 /* save back pointers to AVP and Ethernet devices */ 1185 txq->avp = avp; 1186 txq->dev_data = eth_dev->data; 1187 eth_dev->data->tx_queues[tx_queue_id] = (void *)txq; 1188 1189 PMD_DRV_LOG_LINE(DEBUG, "Tx queue %u setup at %p", tx_queue_id, txq); 1190 1191 (void)nb_tx_desc; 1192 (void)tx_conf; 1193 return 0; 1194 } 1195 1196 static inline int 1197 _avp_cmp_ether_addr(struct rte_ether_addr *a, struct rte_ether_addr *b) 1198 { 1199 uint16_t *_a = (uint16_t *)&a->addr_bytes[0]; 1200 uint16_t *_b = (uint16_t *)&b->addr_bytes[0]; 1201 return (_a[0] ^ _b[0]) | (_a[1] ^ _b[1]) | (_a[2] ^ _b[2]); 1202 } 1203 1204 static inline int 1205 _avp_mac_filter(struct avp_dev *avp, struct rte_mbuf *m) 1206 { 1207 struct rte_ether_hdr *eth = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); 1208 1209 if (likely(_avp_cmp_ether_addr(&avp->ethaddr, ð->dst_addr) == 0)) { 1210 /* allow all packets destined to our address */ 1211 return 0; 1212 } 1213 1214 if (likely(rte_is_broadcast_ether_addr(ð->dst_addr))) { 1215 /* allow all broadcast packets */ 1216 return 0; 1217 } 1218 1219 if (likely(rte_is_multicast_ether_addr(ð->dst_addr))) { 1220 /* allow all multicast packets */ 1221 return 0; 1222 } 1223 1224 if (avp->flags & AVP_F_PROMISC) { 1225 /* allow all packets when in promiscuous mode */ 1226 return 0; 1227 } 1228 1229 return -1; 1230 } 1231 1232 #ifdef RTE_LIBRTE_AVP_DEBUG_BUFFERS 1233 static inline void 1234 __avp_dev_buffer_sanity_check(struct avp_dev *avp, struct rte_avp_desc *buf) 1235 { 1236 struct rte_avp_desc *first_buf; 1237 struct rte_avp_desc *pkt_buf; 1238 unsigned int pkt_len; 1239 unsigned int nb_segs; 1240 void *pkt_data; 1241 unsigned int i; 1242 1243 first_buf = avp_dev_translate_buffer(avp, buf); 1244 1245 i = 0; 1246 pkt_len = 0; 1247 nb_segs = first_buf->nb_segs; 1248 do { 1249 /* Adjust pointers for guest addressing */ 1250 pkt_buf = avp_dev_translate_buffer(avp, buf); 1251 if (pkt_buf == NULL) 1252 rte_panic("bad buffer: segment %u has an invalid address %p\n", 1253 i, buf); 1254 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data); 1255 if (pkt_data == NULL) 1256 rte_panic("bad buffer: segment %u has a NULL data pointer\n", 1257 i); 1258 if (pkt_buf->data_len == 0) 1259 rte_panic("bad buffer: segment %u has 0 data length\n", 1260 i); 1261 pkt_len += pkt_buf->data_len; 1262 nb_segs--; 1263 i++; 1264 1265 } while (nb_segs && (buf = pkt_buf->next) != NULL); 1266 1267 if (nb_segs != 0) 1268 rte_panic("bad buffer: expected %u segments found %u\n", 1269 first_buf->nb_segs, (first_buf->nb_segs - nb_segs)); 1270 if (pkt_len != first_buf->pkt_len) 1271 rte_panic("bad buffer: expected length %u found %u\n", 1272 first_buf->pkt_len, pkt_len); 1273 } 1274 1275 #define avp_dev_buffer_sanity_check(a, b) \ 1276 __avp_dev_buffer_sanity_check((a), (b)) 1277 1278 #else /* RTE_LIBRTE_AVP_DEBUG_BUFFERS */ 1279 1280 #define avp_dev_buffer_sanity_check(a, b) do {} while (0) 1281 1282 #endif 1283 1284 /* 1285 * Copy a host buffer chain to a set of mbufs. This function assumes that 1286 * there exactly the required number of mbufs to copy all source bytes. 1287 */ 1288 static inline struct rte_mbuf * 1289 avp_dev_copy_from_buffers(struct avp_dev *avp, 1290 struct rte_avp_desc *buf, 1291 struct rte_mbuf **mbufs, 1292 unsigned int count) 1293 { 1294 struct rte_mbuf *m_previous = NULL; 1295 struct rte_avp_desc *pkt_buf; 1296 unsigned int total_length = 0; 1297 unsigned int copy_length; 1298 unsigned int src_offset; 1299 struct rte_mbuf *m; 1300 uint16_t ol_flags; 1301 uint16_t vlan_tci; 1302 void *pkt_data; 1303 unsigned int i; 1304 1305 avp_dev_buffer_sanity_check(avp, buf); 1306 1307 /* setup the first source buffer */ 1308 pkt_buf = avp_dev_translate_buffer(avp, buf); 1309 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data); 1310 total_length = pkt_buf->pkt_len; 1311 src_offset = 0; 1312 1313 if (pkt_buf->ol_flags & RTE_AVP_RX_VLAN_PKT) { 1314 ol_flags = RTE_MBUF_F_RX_VLAN; 1315 vlan_tci = pkt_buf->vlan_tci; 1316 } else { 1317 ol_flags = 0; 1318 vlan_tci = 0; 1319 } 1320 1321 for (i = 0; (i < count) && (buf != NULL); i++) { 1322 /* fill each destination buffer */ 1323 m = mbufs[i]; 1324 1325 if (m_previous != NULL) 1326 m_previous->next = m; 1327 1328 m_previous = m; 1329 1330 do { 1331 /* 1332 * Copy as many source buffers as will fit in the 1333 * destination buffer. 1334 */ 1335 copy_length = RTE_MIN((avp->guest_mbuf_size - 1336 rte_pktmbuf_data_len(m)), 1337 (pkt_buf->data_len - 1338 src_offset)); 1339 rte_memcpy(RTE_PTR_ADD(rte_pktmbuf_mtod(m, void *), 1340 rte_pktmbuf_data_len(m)), 1341 RTE_PTR_ADD(pkt_data, src_offset), 1342 copy_length); 1343 rte_pktmbuf_data_len(m) += copy_length; 1344 src_offset += copy_length; 1345 1346 if (likely(src_offset == pkt_buf->data_len)) { 1347 /* need a new source buffer */ 1348 buf = pkt_buf->next; 1349 if (buf != NULL) { 1350 pkt_buf = avp_dev_translate_buffer( 1351 avp, buf); 1352 pkt_data = avp_dev_translate_buffer( 1353 avp, pkt_buf->data); 1354 src_offset = 0; 1355 } 1356 } 1357 1358 if (unlikely(rte_pktmbuf_data_len(m) == 1359 avp->guest_mbuf_size)) { 1360 /* need a new destination mbuf */ 1361 break; 1362 } 1363 1364 } while (buf != NULL); 1365 } 1366 1367 m = mbufs[0]; 1368 m->ol_flags = ol_flags; 1369 m->nb_segs = count; 1370 rte_pktmbuf_pkt_len(m) = total_length; 1371 m->vlan_tci = vlan_tci; 1372 1373 __rte_mbuf_sanity_check(m, 1); 1374 1375 return m; 1376 } 1377 1378 static uint16_t 1379 avp_recv_scattered_pkts(void *rx_queue, 1380 struct rte_mbuf **rx_pkts, 1381 uint16_t nb_pkts) 1382 { 1383 struct avp_queue *rxq = (struct avp_queue *)rx_queue; 1384 struct rte_avp_desc *avp_bufs[AVP_MAX_RX_BURST]; 1385 struct rte_mbuf *mbufs[RTE_AVP_MAX_MBUF_SEGMENTS]; 1386 struct avp_dev *avp = rxq->avp; 1387 struct rte_avp_desc *pkt_buf; 1388 struct rte_avp_fifo *free_q; 1389 struct rte_avp_fifo *rx_q; 1390 struct rte_avp_desc *buf; 1391 unsigned int count, avail, n; 1392 unsigned int guest_mbuf_size; 1393 struct rte_mbuf *m; 1394 unsigned int required; 1395 unsigned int buf_len; 1396 unsigned int port_id; 1397 unsigned int i; 1398 1399 if (unlikely(avp->flags & AVP_F_DETACHED)) { 1400 /* VM live migration in progress */ 1401 return 0; 1402 } 1403 1404 guest_mbuf_size = avp->guest_mbuf_size; 1405 port_id = avp->port_id; 1406 rx_q = avp->rx_q[rxq->queue_id]; 1407 free_q = avp->free_q[rxq->queue_id]; 1408 1409 /* setup next queue to service */ 1410 rxq->queue_id = (rxq->queue_id < rxq->queue_limit) ? 1411 (rxq->queue_id + 1) : rxq->queue_base; 1412 1413 /* determine how many slots are available in the free queue */ 1414 count = avp_fifo_free_count(free_q); 1415 1416 /* determine how many packets are available in the rx queue */ 1417 avail = avp_fifo_count(rx_q); 1418 1419 /* determine how many packets can be received */ 1420 count = RTE_MIN(count, avail); 1421 count = RTE_MIN(count, nb_pkts); 1422 count = RTE_MIN(count, (unsigned int)AVP_MAX_RX_BURST); 1423 1424 if (unlikely(count == 0)) { 1425 /* no free buffers, or no buffers on the rx queue */ 1426 return 0; 1427 } 1428 1429 /* retrieve pending packets */ 1430 n = avp_fifo_get(rx_q, (void **)&avp_bufs, count); 1431 PMD_RX_LOG_LINE(DEBUG, "Receiving %u packets from Rx queue at %p", 1432 count, rx_q); 1433 1434 count = 0; 1435 for (i = 0; i < n; i++) { 1436 /* prefetch next entry while processing current one */ 1437 if (i + 1 < n) { 1438 pkt_buf = avp_dev_translate_buffer(avp, 1439 avp_bufs[i + 1]); 1440 rte_prefetch0(pkt_buf); 1441 } 1442 buf = avp_bufs[i]; 1443 1444 /* Peek into the first buffer to determine the total length */ 1445 pkt_buf = avp_dev_translate_buffer(avp, buf); 1446 buf_len = pkt_buf->pkt_len; 1447 1448 /* Allocate enough mbufs to receive the entire packet */ 1449 required = (buf_len + guest_mbuf_size - 1) / guest_mbuf_size; 1450 if (rte_pktmbuf_alloc_bulk(avp->pool, mbufs, required)) { 1451 rxq->dev_data->rx_mbuf_alloc_failed++; 1452 continue; 1453 } 1454 1455 /* Copy the data from the buffers to our mbufs */ 1456 m = avp_dev_copy_from_buffers(avp, buf, mbufs, required); 1457 1458 /* finalize mbuf */ 1459 m->port = port_id; 1460 1461 if (_avp_mac_filter(avp, m) != 0) { 1462 /* silently discard packets not destined to our MAC */ 1463 rte_pktmbuf_free(m); 1464 continue; 1465 } 1466 1467 /* return new mbuf to caller */ 1468 rx_pkts[count++] = m; 1469 rxq->bytes += buf_len; 1470 } 1471 1472 rxq->packets += count; 1473 1474 /* return the buffers to the free queue */ 1475 avp_fifo_put(free_q, (void **)&avp_bufs[0], n); 1476 1477 return count; 1478 } 1479 1480 1481 static uint16_t 1482 avp_recv_pkts(void *rx_queue, 1483 struct rte_mbuf **rx_pkts, 1484 uint16_t nb_pkts) 1485 { 1486 struct avp_queue *rxq = (struct avp_queue *)rx_queue; 1487 struct rte_avp_desc *avp_bufs[AVP_MAX_RX_BURST]; 1488 struct avp_dev *avp = rxq->avp; 1489 struct rte_avp_desc *pkt_buf; 1490 struct rte_avp_fifo *free_q; 1491 struct rte_avp_fifo *rx_q; 1492 unsigned int count, avail, n; 1493 unsigned int pkt_len; 1494 struct rte_mbuf *m; 1495 char *pkt_data; 1496 unsigned int i; 1497 1498 if (unlikely(avp->flags & AVP_F_DETACHED)) { 1499 /* VM live migration in progress */ 1500 return 0; 1501 } 1502 1503 rx_q = avp->rx_q[rxq->queue_id]; 1504 free_q = avp->free_q[rxq->queue_id]; 1505 1506 /* setup next queue to service */ 1507 rxq->queue_id = (rxq->queue_id < rxq->queue_limit) ? 1508 (rxq->queue_id + 1) : rxq->queue_base; 1509 1510 /* determine how many slots are available in the free queue */ 1511 count = avp_fifo_free_count(free_q); 1512 1513 /* determine how many packets are available in the rx queue */ 1514 avail = avp_fifo_count(rx_q); 1515 1516 /* determine how many packets can be received */ 1517 count = RTE_MIN(count, avail); 1518 count = RTE_MIN(count, nb_pkts); 1519 count = RTE_MIN(count, (unsigned int)AVP_MAX_RX_BURST); 1520 1521 if (unlikely(count == 0)) { 1522 /* no free buffers, or no buffers on the rx queue */ 1523 return 0; 1524 } 1525 1526 /* retrieve pending packets */ 1527 n = avp_fifo_get(rx_q, (void **)&avp_bufs, count); 1528 PMD_RX_LOG_LINE(DEBUG, "Receiving %u packets from Rx queue at %p", 1529 count, rx_q); 1530 1531 count = 0; 1532 for (i = 0; i < n; i++) { 1533 /* prefetch next entry while processing current one */ 1534 if (i < n - 1) { 1535 pkt_buf = avp_dev_translate_buffer(avp, 1536 avp_bufs[i + 1]); 1537 rte_prefetch0(pkt_buf); 1538 } 1539 1540 /* Adjust host pointers for guest addressing */ 1541 pkt_buf = avp_dev_translate_buffer(avp, avp_bufs[i]); 1542 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data); 1543 pkt_len = pkt_buf->pkt_len; 1544 1545 if (unlikely((pkt_len > avp->guest_mbuf_size) || 1546 (pkt_buf->nb_segs > 1))) { 1547 /* 1548 * application should be using the scattered receive 1549 * function 1550 */ 1551 rxq->errors++; 1552 continue; 1553 } 1554 1555 /* process each packet to be transmitted */ 1556 m = rte_pktmbuf_alloc(avp->pool); 1557 if (unlikely(m == NULL)) { 1558 rxq->dev_data->rx_mbuf_alloc_failed++; 1559 continue; 1560 } 1561 1562 /* copy data out of the host buffer to our buffer */ 1563 m->data_off = RTE_PKTMBUF_HEADROOM; 1564 rte_memcpy(rte_pktmbuf_mtod(m, void *), pkt_data, pkt_len); 1565 1566 /* initialize the local mbuf */ 1567 rte_pktmbuf_data_len(m) = pkt_len; 1568 rte_pktmbuf_pkt_len(m) = pkt_len; 1569 m->port = avp->port_id; 1570 1571 if (pkt_buf->ol_flags & RTE_AVP_RX_VLAN_PKT) { 1572 m->ol_flags = RTE_MBUF_F_RX_VLAN; 1573 m->vlan_tci = pkt_buf->vlan_tci; 1574 } 1575 1576 if (_avp_mac_filter(avp, m) != 0) { 1577 /* silently discard packets not destined to our MAC */ 1578 rte_pktmbuf_free(m); 1579 continue; 1580 } 1581 1582 /* return new mbuf to caller */ 1583 rx_pkts[count++] = m; 1584 rxq->bytes += pkt_len; 1585 } 1586 1587 rxq->packets += count; 1588 1589 /* return the buffers to the free queue */ 1590 avp_fifo_put(free_q, (void **)&avp_bufs[0], n); 1591 1592 return count; 1593 } 1594 1595 /* 1596 * Copy a chained mbuf to a set of host buffers. This function assumes that 1597 * there are sufficient destination buffers to contain the entire source 1598 * packet. 1599 */ 1600 static inline uint16_t 1601 avp_dev_copy_to_buffers(struct avp_dev *avp, 1602 struct rte_mbuf *mbuf, 1603 struct rte_avp_desc **buffers, 1604 unsigned int count) 1605 { 1606 struct rte_avp_desc *previous_buf = NULL; 1607 struct rte_avp_desc *first_buf = NULL; 1608 struct rte_avp_desc *pkt_buf; 1609 struct rte_avp_desc *buf; 1610 size_t total_length; 1611 struct rte_mbuf *m; 1612 size_t copy_length; 1613 size_t src_offset; 1614 char *pkt_data; 1615 unsigned int i; 1616 1617 __rte_mbuf_sanity_check(mbuf, 1); 1618 1619 m = mbuf; 1620 src_offset = 0; 1621 total_length = rte_pktmbuf_pkt_len(m); 1622 for (i = 0; (i < count) && (m != NULL); i++) { 1623 /* fill each destination buffer */ 1624 buf = buffers[i]; 1625 1626 if (i < count - 1) { 1627 /* prefetch next entry while processing this one */ 1628 pkt_buf = avp_dev_translate_buffer(avp, buffers[i + 1]); 1629 rte_prefetch0(pkt_buf); 1630 } 1631 1632 /* Adjust pointers for guest addressing */ 1633 pkt_buf = avp_dev_translate_buffer(avp, buf); 1634 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data); 1635 1636 /* setup the buffer chain */ 1637 if (previous_buf != NULL) 1638 previous_buf->next = buf; 1639 else 1640 first_buf = pkt_buf; 1641 1642 previous_buf = pkt_buf; 1643 1644 do { 1645 /* 1646 * copy as many source mbuf segments as will fit in the 1647 * destination buffer. 1648 */ 1649 copy_length = RTE_MIN((avp->host_mbuf_size - 1650 pkt_buf->data_len), 1651 (rte_pktmbuf_data_len(m) - 1652 src_offset)); 1653 rte_memcpy(RTE_PTR_ADD(pkt_data, pkt_buf->data_len), 1654 RTE_PTR_ADD(rte_pktmbuf_mtod(m, void *), 1655 src_offset), 1656 copy_length); 1657 pkt_buf->data_len += copy_length; 1658 src_offset += copy_length; 1659 1660 if (likely(src_offset == rte_pktmbuf_data_len(m))) { 1661 /* need a new source buffer */ 1662 m = m->next; 1663 src_offset = 0; 1664 } 1665 1666 if (unlikely(pkt_buf->data_len == 1667 avp->host_mbuf_size)) { 1668 /* need a new destination buffer */ 1669 break; 1670 } 1671 1672 } while (m != NULL); 1673 } 1674 1675 first_buf->nb_segs = count; 1676 first_buf->pkt_len = total_length; 1677 1678 if (mbuf->ol_flags & RTE_MBUF_F_TX_VLAN) { 1679 first_buf->ol_flags |= RTE_AVP_TX_VLAN_PKT; 1680 first_buf->vlan_tci = mbuf->vlan_tci; 1681 } 1682 1683 avp_dev_buffer_sanity_check(avp, buffers[0]); 1684 1685 return total_length; 1686 } 1687 1688 1689 static uint16_t 1690 avp_xmit_scattered_pkts(void *tx_queue, 1691 struct rte_mbuf **tx_pkts, 1692 uint16_t nb_pkts) 1693 { 1694 struct rte_avp_desc *avp_bufs[(AVP_MAX_TX_BURST * 1695 RTE_AVP_MAX_MBUF_SEGMENTS)] = {}; 1696 struct avp_queue *txq = (struct avp_queue *)tx_queue; 1697 struct rte_avp_desc *tx_bufs[AVP_MAX_TX_BURST]; 1698 struct avp_dev *avp = txq->avp; 1699 struct rte_avp_fifo *alloc_q; 1700 struct rte_avp_fifo *tx_q; 1701 unsigned int count, avail, n; 1702 unsigned int orig_nb_pkts; 1703 struct rte_mbuf *m; 1704 unsigned int required; 1705 unsigned int segments; 1706 unsigned int tx_bytes; 1707 unsigned int i; 1708 1709 orig_nb_pkts = nb_pkts; 1710 if (unlikely(avp->flags & AVP_F_DETACHED)) { 1711 /* VM live migration in progress */ 1712 /* TODO ... buffer for X packets then drop? */ 1713 txq->errors += nb_pkts; 1714 return 0; 1715 } 1716 1717 tx_q = avp->tx_q[txq->queue_id]; 1718 alloc_q = avp->alloc_q[txq->queue_id]; 1719 1720 /* limit the number of transmitted packets to the max burst size */ 1721 if (unlikely(nb_pkts > AVP_MAX_TX_BURST)) 1722 nb_pkts = AVP_MAX_TX_BURST; 1723 1724 /* determine how many buffers are available to copy into */ 1725 avail = avp_fifo_count(alloc_q); 1726 if (unlikely(avail > (AVP_MAX_TX_BURST * 1727 RTE_AVP_MAX_MBUF_SEGMENTS))) 1728 avail = AVP_MAX_TX_BURST * RTE_AVP_MAX_MBUF_SEGMENTS; 1729 1730 /* determine how many slots are available in the transmit queue */ 1731 count = avp_fifo_free_count(tx_q); 1732 1733 /* determine how many packets can be sent */ 1734 nb_pkts = RTE_MIN(count, nb_pkts); 1735 1736 /* determine how many packets will fit in the available buffers */ 1737 count = 0; 1738 segments = 0; 1739 for (i = 0; i < nb_pkts; i++) { 1740 m = tx_pkts[i]; 1741 if (likely(i < (unsigned int)nb_pkts - 1)) { 1742 /* prefetch next entry while processing this one */ 1743 rte_prefetch0(tx_pkts[i + 1]); 1744 } 1745 required = (rte_pktmbuf_pkt_len(m) + avp->host_mbuf_size - 1) / 1746 avp->host_mbuf_size; 1747 1748 if (unlikely((required == 0) || 1749 (required > RTE_AVP_MAX_MBUF_SEGMENTS))) 1750 break; 1751 else if (unlikely(required + segments > avail)) 1752 break; 1753 segments += required; 1754 count++; 1755 } 1756 nb_pkts = count; 1757 1758 if (unlikely(nb_pkts == 0)) { 1759 /* no available buffers, or no space on the tx queue */ 1760 txq->errors += orig_nb_pkts; 1761 return 0; 1762 } 1763 1764 PMD_TX_LOG_LINE(DEBUG, "Sending %u packets on Tx queue at %p", 1765 nb_pkts, tx_q); 1766 1767 /* retrieve sufficient send buffers */ 1768 n = avp_fifo_get(alloc_q, (void **)&avp_bufs, segments); 1769 if (unlikely(n != segments)) { 1770 PMD_TX_LOG_LINE(DEBUG, "Failed to allocate buffers n=%u, segments=%u, orig=%u", 1771 n, segments, orig_nb_pkts); 1772 txq->errors += orig_nb_pkts; 1773 return 0; 1774 } 1775 1776 tx_bytes = 0; 1777 count = 0; 1778 for (i = 0; i < nb_pkts; i++) { 1779 /* process each packet to be transmitted */ 1780 m = tx_pkts[i]; 1781 1782 /* determine how many buffers are required for this packet */ 1783 required = (rte_pktmbuf_pkt_len(m) + avp->host_mbuf_size - 1) / 1784 avp->host_mbuf_size; 1785 1786 tx_bytes += avp_dev_copy_to_buffers(avp, m, 1787 &avp_bufs[count], required); 1788 tx_bufs[i] = avp_bufs[count]; 1789 count += required; 1790 1791 /* free the original mbuf */ 1792 rte_pktmbuf_free(m); 1793 } 1794 1795 txq->packets += nb_pkts; 1796 txq->bytes += tx_bytes; 1797 1798 #ifdef RTE_LIBRTE_AVP_DEBUG_BUFFERS 1799 for (i = 0; i < nb_pkts; i++) 1800 avp_dev_buffer_sanity_check(avp, tx_bufs[i]); 1801 #endif 1802 1803 /* send the packets */ 1804 n = avp_fifo_put(tx_q, (void **)&tx_bufs[0], nb_pkts); 1805 if (unlikely(n != orig_nb_pkts)) 1806 txq->errors += (orig_nb_pkts - n); 1807 1808 return n; 1809 } 1810 1811 1812 static uint16_t 1813 avp_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) 1814 { 1815 struct avp_queue *txq = (struct avp_queue *)tx_queue; 1816 struct rte_avp_desc *avp_bufs[AVP_MAX_TX_BURST]; 1817 struct avp_dev *avp = txq->avp; 1818 struct rte_avp_desc *pkt_buf; 1819 struct rte_avp_fifo *alloc_q; 1820 struct rte_avp_fifo *tx_q; 1821 unsigned int count, avail, n; 1822 struct rte_mbuf *m; 1823 unsigned int pkt_len; 1824 unsigned int tx_bytes; 1825 char *pkt_data; 1826 unsigned int i; 1827 1828 if (unlikely(avp->flags & AVP_F_DETACHED)) { 1829 /* VM live migration in progress */ 1830 /* TODO ... buffer for X packets then drop?! */ 1831 txq->errors++; 1832 return 0; 1833 } 1834 1835 tx_q = avp->tx_q[txq->queue_id]; 1836 alloc_q = avp->alloc_q[txq->queue_id]; 1837 1838 /* limit the number of transmitted packets to the max burst size */ 1839 if (unlikely(nb_pkts > AVP_MAX_TX_BURST)) 1840 nb_pkts = AVP_MAX_TX_BURST; 1841 1842 /* determine how many buffers are available to copy into */ 1843 avail = avp_fifo_count(alloc_q); 1844 1845 /* determine how many slots are available in the transmit queue */ 1846 count = avp_fifo_free_count(tx_q); 1847 1848 /* determine how many packets can be sent */ 1849 count = RTE_MIN(count, avail); 1850 count = RTE_MIN(count, nb_pkts); 1851 1852 if (unlikely(count == 0)) { 1853 /* no available buffers, or no space on the tx queue */ 1854 txq->errors += nb_pkts; 1855 return 0; 1856 } 1857 1858 PMD_TX_LOG_LINE(DEBUG, "Sending %u packets on Tx queue at %p", 1859 count, tx_q); 1860 1861 /* retrieve sufficient send buffers */ 1862 n = avp_fifo_get(alloc_q, (void **)&avp_bufs, count); 1863 if (unlikely(n != count)) { 1864 txq->errors++; 1865 return 0; 1866 } 1867 1868 tx_bytes = 0; 1869 for (i = 0; i < count; i++) { 1870 /* prefetch next entry while processing the current one */ 1871 if (i < count - 1) { 1872 pkt_buf = avp_dev_translate_buffer(avp, 1873 avp_bufs[i + 1]); 1874 rte_prefetch0(pkt_buf); 1875 } 1876 1877 /* process each packet to be transmitted */ 1878 m = tx_pkts[i]; 1879 1880 /* Adjust pointers for guest addressing */ 1881 pkt_buf = avp_dev_translate_buffer(avp, avp_bufs[i]); 1882 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data); 1883 pkt_len = rte_pktmbuf_pkt_len(m); 1884 1885 if (unlikely((pkt_len > avp->guest_mbuf_size) || 1886 (pkt_len > avp->host_mbuf_size))) { 1887 /* 1888 * application should be using the scattered transmit 1889 * function; send it truncated to avoid the performance 1890 * hit of having to manage returning the already 1891 * allocated buffer to the free list. This should not 1892 * happen since the application should have not send 1893 * packages larger than its MTU and it should be 1894 * policing its own packet sizes. 1895 */ 1896 txq->errors++; 1897 pkt_len = RTE_MIN(avp->guest_mbuf_size, 1898 avp->host_mbuf_size); 1899 } 1900 1901 /* copy data out of our mbuf and into the AVP buffer */ 1902 rte_memcpy(pkt_data, rte_pktmbuf_mtod(m, void *), pkt_len); 1903 pkt_buf->pkt_len = pkt_len; 1904 pkt_buf->data_len = pkt_len; 1905 pkt_buf->nb_segs = 1; 1906 pkt_buf->next = NULL; 1907 1908 if (m->ol_flags & RTE_MBUF_F_TX_VLAN) { 1909 pkt_buf->ol_flags |= RTE_AVP_TX_VLAN_PKT; 1910 pkt_buf->vlan_tci = m->vlan_tci; 1911 } 1912 1913 tx_bytes += pkt_len; 1914 1915 /* free the original mbuf */ 1916 rte_pktmbuf_free(m); 1917 } 1918 1919 txq->packets += count; 1920 txq->bytes += tx_bytes; 1921 1922 /* send the packets */ 1923 n = avp_fifo_put(tx_q, (void **)&avp_bufs[0], count); 1924 1925 return n; 1926 } 1927 1928 static void 1929 avp_dev_rx_queue_release(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id) 1930 { 1931 if (eth_dev->data->rx_queues[rx_queue_id] != NULL) { 1932 rte_free(eth_dev->data->rx_queues[rx_queue_id]); 1933 eth_dev->data->rx_queues[rx_queue_id] = NULL; 1934 } 1935 } 1936 1937 static void 1938 avp_dev_rx_queue_release_all(struct rte_eth_dev *eth_dev) 1939 { 1940 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 1941 struct rte_eth_dev_data *data = avp->dev_data; 1942 unsigned int i; 1943 1944 for (i = 0; i < avp->num_rx_queues; i++) { 1945 if (data->rx_queues[i]) { 1946 rte_free(data->rx_queues[i]); 1947 data->rx_queues[i] = NULL; 1948 } 1949 } 1950 } 1951 1952 static void 1953 avp_dev_tx_queue_release(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id) 1954 { 1955 if (eth_dev->data->tx_queues[tx_queue_id] != NULL) { 1956 rte_free(eth_dev->data->tx_queues[tx_queue_id]); 1957 eth_dev->data->tx_queues[tx_queue_id] = NULL; 1958 } 1959 } 1960 1961 static void 1962 avp_dev_tx_queue_release_all(struct rte_eth_dev *eth_dev) 1963 { 1964 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 1965 struct rte_eth_dev_data *data = avp->dev_data; 1966 unsigned int i; 1967 1968 for (i = 0; i < avp->num_tx_queues; i++) { 1969 if (data->tx_queues[i]) { 1970 rte_free(data->tx_queues[i]); 1971 data->tx_queues[i] = NULL; 1972 } 1973 } 1974 } 1975 1976 static int 1977 avp_dev_configure(struct rte_eth_dev *eth_dev) 1978 { 1979 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 1980 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 1981 struct rte_avp_device_info *host_info; 1982 struct rte_avp_device_config config; 1983 int mask = 0; 1984 void *addr; 1985 int ret; 1986 1987 rte_spinlock_lock(&avp->lock); 1988 if (avp->flags & AVP_F_DETACHED) { 1989 PMD_DRV_LOG_LINE(ERR, "Operation not supported during VM live migration"); 1990 ret = -ENOTSUP; 1991 goto unlock; 1992 } 1993 1994 addr = pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR].addr; 1995 host_info = (struct rte_avp_device_info *)addr; 1996 1997 /* Setup required number of queues */ 1998 _avp_set_queue_counts(eth_dev); 1999 2000 mask = (RTE_ETH_VLAN_STRIP_MASK | 2001 RTE_ETH_VLAN_FILTER_MASK | 2002 RTE_ETH_VLAN_EXTEND_MASK); 2003 ret = avp_vlan_offload_set(eth_dev, mask); 2004 if (ret < 0) { 2005 PMD_DRV_LOG_LINE(ERR, "VLAN offload set failed by host, ret=%d", 2006 ret); 2007 goto unlock; 2008 } 2009 2010 /* update device config */ 2011 memset(&config, 0, sizeof(config)); 2012 config.device_id = host_info->device_id; 2013 config.driver_type = RTE_AVP_DRIVER_TYPE_DPDK; 2014 config.driver_version = AVP_DPDK_DRIVER_VERSION; 2015 config.features = avp->features; 2016 config.num_tx_queues = avp->num_tx_queues; 2017 config.num_rx_queues = avp->num_rx_queues; 2018 2019 ret = avp_dev_ctrl_set_config(eth_dev, &config); 2020 if (ret < 0) { 2021 PMD_DRV_LOG_LINE(ERR, "Config request failed by host, ret=%d", 2022 ret); 2023 goto unlock; 2024 } 2025 2026 avp->flags |= AVP_F_CONFIGURED; 2027 ret = 0; 2028 2029 unlock: 2030 rte_spinlock_unlock(&avp->lock); 2031 return ret; 2032 } 2033 2034 static int 2035 avp_dev_start(struct rte_eth_dev *eth_dev) 2036 { 2037 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2038 uint16_t i; 2039 int ret; 2040 2041 rte_spinlock_lock(&avp->lock); 2042 if (avp->flags & AVP_F_DETACHED) { 2043 PMD_DRV_LOG_LINE(ERR, "Operation not supported during VM live migration"); 2044 ret = -ENOTSUP; 2045 goto unlock; 2046 } 2047 2048 /* update link state */ 2049 ret = avp_dev_ctrl_set_link_state(eth_dev, 1); 2050 if (ret < 0) { 2051 PMD_DRV_LOG_LINE(ERR, "Link state change failed by host, ret=%d", 2052 ret); 2053 goto unlock; 2054 } 2055 2056 /* remember current link state */ 2057 avp->flags |= AVP_F_LINKUP; 2058 2059 for (i = 0; i < avp->num_rx_queues; i++) 2060 eth_dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED; 2061 for (i = 0; i < avp->num_tx_queues; i++) 2062 eth_dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED; 2063 2064 ret = 0; 2065 2066 unlock: 2067 rte_spinlock_unlock(&avp->lock); 2068 return ret; 2069 } 2070 2071 static int 2072 avp_dev_stop(struct rte_eth_dev *eth_dev) 2073 { 2074 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2075 uint16_t i; 2076 int ret; 2077 2078 rte_spinlock_lock(&avp->lock); 2079 if (avp->flags & AVP_F_DETACHED) { 2080 PMD_DRV_LOG_LINE(ERR, "Operation not supported during VM live migration"); 2081 ret = -ENOTSUP; 2082 goto unlock; 2083 } 2084 2085 /* remember current link state */ 2086 avp->flags &= ~AVP_F_LINKUP; 2087 2088 /* update link state */ 2089 ret = avp_dev_ctrl_set_link_state(eth_dev, 0); 2090 if (ret < 0) { 2091 PMD_DRV_LOG_LINE(ERR, "Link state change failed by host, ret=%d", 2092 ret); 2093 } 2094 2095 for (i = 0; i < avp->num_rx_queues; i++) 2096 eth_dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED; 2097 for (i = 0; i < avp->num_tx_queues; i++) 2098 eth_dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED; 2099 2100 unlock: 2101 rte_spinlock_unlock(&avp->lock); 2102 return ret; 2103 } 2104 2105 static int 2106 avp_dev_close(struct rte_eth_dev *eth_dev) 2107 { 2108 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2109 int ret; 2110 2111 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 2112 return 0; 2113 2114 rte_spinlock_lock(&avp->lock); 2115 if (avp->flags & AVP_F_DETACHED) { 2116 PMD_DRV_LOG_LINE(ERR, "Operation not supported during VM live migration"); 2117 goto unlock; 2118 } 2119 2120 /* remember current link state */ 2121 avp->flags &= ~AVP_F_LINKUP; 2122 avp->flags &= ~AVP_F_CONFIGURED; 2123 2124 ret = avp_dev_disable_interrupts(eth_dev); 2125 if (ret < 0) { 2126 PMD_DRV_LOG_LINE(ERR, "Failed to disable interrupts"); 2127 /* continue */ 2128 } 2129 2130 /* update device state */ 2131 ret = avp_dev_ctrl_shutdown(eth_dev); 2132 if (ret < 0) { 2133 PMD_DRV_LOG_LINE(ERR, "Device shutdown failed by host, ret=%d", 2134 ret); 2135 /* continue */ 2136 } 2137 2138 /* release dynamic storage for rx/tx queues */ 2139 avp_dev_rx_queue_release_all(eth_dev); 2140 avp_dev_tx_queue_release_all(eth_dev); 2141 2142 unlock: 2143 rte_spinlock_unlock(&avp->lock); 2144 return 0; 2145 } 2146 2147 static int 2148 avp_dev_link_update(struct rte_eth_dev *eth_dev, 2149 __rte_unused int wait_to_complete) 2150 { 2151 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2152 struct rte_eth_link *link = ð_dev->data->dev_link; 2153 2154 link->link_speed = RTE_ETH_SPEED_NUM_10G; 2155 link->link_duplex = RTE_ETH_LINK_FULL_DUPLEX; 2156 link->link_status = !!(avp->flags & AVP_F_LINKUP); 2157 2158 return -1; 2159 } 2160 2161 static int 2162 avp_dev_promiscuous_enable(struct rte_eth_dev *eth_dev) 2163 { 2164 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2165 2166 rte_spinlock_lock(&avp->lock); 2167 if ((avp->flags & AVP_F_PROMISC) == 0) { 2168 avp->flags |= AVP_F_PROMISC; 2169 PMD_DRV_LOG_LINE(DEBUG, "Promiscuous mode enabled on %u", 2170 eth_dev->data->port_id); 2171 } 2172 rte_spinlock_unlock(&avp->lock); 2173 2174 return 0; 2175 } 2176 2177 static int 2178 avp_dev_promiscuous_disable(struct rte_eth_dev *eth_dev) 2179 { 2180 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2181 2182 rte_spinlock_lock(&avp->lock); 2183 if ((avp->flags & AVP_F_PROMISC) != 0) { 2184 avp->flags &= ~AVP_F_PROMISC; 2185 PMD_DRV_LOG_LINE(DEBUG, "Promiscuous mode disabled on %u", 2186 eth_dev->data->port_id); 2187 } 2188 rte_spinlock_unlock(&avp->lock); 2189 2190 return 0; 2191 } 2192 2193 static int 2194 avp_dev_info_get(struct rte_eth_dev *eth_dev, 2195 struct rte_eth_dev_info *dev_info) 2196 { 2197 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2198 2199 dev_info->max_rx_queues = avp->max_rx_queues; 2200 dev_info->max_tx_queues = avp->max_tx_queues; 2201 dev_info->min_rx_bufsize = AVP_MIN_RX_BUFSIZE; 2202 dev_info->max_rx_pktlen = avp->max_rx_pkt_len; 2203 dev_info->max_mac_addrs = AVP_MAX_MAC_ADDRS; 2204 if (avp->host_features & RTE_AVP_FEATURE_VLAN_OFFLOAD) { 2205 dev_info->rx_offload_capa = RTE_ETH_RX_OFFLOAD_VLAN_STRIP; 2206 dev_info->tx_offload_capa = RTE_ETH_TX_OFFLOAD_VLAN_INSERT; 2207 } 2208 2209 return 0; 2210 } 2211 2212 static int 2213 avp_vlan_offload_set(struct rte_eth_dev *eth_dev, int mask) 2214 { 2215 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2216 struct rte_eth_conf *dev_conf = ð_dev->data->dev_conf; 2217 uint64_t offloads = dev_conf->rxmode.offloads; 2218 2219 if (mask & RTE_ETH_VLAN_STRIP_MASK) { 2220 if (avp->host_features & RTE_AVP_FEATURE_VLAN_OFFLOAD) { 2221 if (offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP) 2222 avp->features |= RTE_AVP_FEATURE_VLAN_OFFLOAD; 2223 else 2224 avp->features &= ~RTE_AVP_FEATURE_VLAN_OFFLOAD; 2225 } else { 2226 PMD_DRV_LOG_LINE(ERR, "VLAN strip offload not supported"); 2227 } 2228 } 2229 2230 if (mask & RTE_ETH_VLAN_FILTER_MASK) { 2231 if (offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER) 2232 PMD_DRV_LOG_LINE(ERR, "VLAN filter offload not supported"); 2233 } 2234 2235 if (mask & RTE_ETH_VLAN_EXTEND_MASK) { 2236 if (offloads & RTE_ETH_RX_OFFLOAD_VLAN_EXTEND) 2237 PMD_DRV_LOG_LINE(ERR, "VLAN extend offload not supported"); 2238 } 2239 2240 return 0; 2241 } 2242 2243 static int 2244 avp_dev_stats_get(struct rte_eth_dev *eth_dev, struct rte_eth_stats *stats) 2245 { 2246 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2247 unsigned int i; 2248 2249 for (i = 0; i < avp->num_rx_queues; i++) { 2250 struct avp_queue *rxq = avp->dev_data->rx_queues[i]; 2251 2252 if (rxq) { 2253 stats->ipackets += rxq->packets; 2254 stats->ibytes += rxq->bytes; 2255 stats->ierrors += rxq->errors; 2256 2257 stats->q_ipackets[i] += rxq->packets; 2258 stats->q_ibytes[i] += rxq->bytes; 2259 stats->q_errors[i] += rxq->errors; 2260 } 2261 } 2262 2263 for (i = 0; i < avp->num_tx_queues; i++) { 2264 struct avp_queue *txq = avp->dev_data->tx_queues[i]; 2265 2266 if (txq) { 2267 stats->opackets += txq->packets; 2268 stats->obytes += txq->bytes; 2269 stats->oerrors += txq->errors; 2270 2271 stats->q_opackets[i] += txq->packets; 2272 stats->q_obytes[i] += txq->bytes; 2273 } 2274 } 2275 2276 return 0; 2277 } 2278 2279 static int 2280 avp_dev_stats_reset(struct rte_eth_dev *eth_dev) 2281 { 2282 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2283 unsigned int i; 2284 2285 for (i = 0; i < avp->num_rx_queues; i++) { 2286 struct avp_queue *rxq = avp->dev_data->rx_queues[i]; 2287 2288 if (rxq) { 2289 rxq->bytes = 0; 2290 rxq->packets = 0; 2291 rxq->errors = 0; 2292 } 2293 } 2294 2295 for (i = 0; i < avp->num_tx_queues; i++) { 2296 struct avp_queue *txq = avp->dev_data->tx_queues[i]; 2297 2298 if (txq) { 2299 txq->bytes = 0; 2300 txq->packets = 0; 2301 txq->errors = 0; 2302 } 2303 } 2304 2305 return 0; 2306 } 2307 2308 RTE_PMD_REGISTER_PCI(net_avp, rte_avp_pmd); 2309 RTE_PMD_REGISTER_PCI_TABLE(net_avp, pci_id_avp_map); 2310 RTE_LOG_REGISTER_SUFFIX(avp_logtype_driver, driver, NOTICE); 2311