1 /* 2 * BSD LICENSE 3 * 4 * Copyright (c) 2013-2017, Wind River Systems, Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions are met: 8 * 9 * 1) Redistributions of source code must retain the above copyright notice, 10 * this list of conditions and the following disclaimer. 11 * 12 * 2) Redistributions in binary form must reproduce the above copyright notice, 13 * this list of conditions and the following disclaimer in the documentation 14 * and/or other materials provided with the distribution. 15 * 16 * 3) Neither the name of Wind River Systems nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 21 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 24 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 #include <stdint.h> 34 #include <string.h> 35 #include <stdio.h> 36 #include <errno.h> 37 #include <unistd.h> 38 39 #include <rte_ethdev.h> 40 #include <rte_ethdev_pci.h> 41 #include <rte_memcpy.h> 42 #include <rte_string_fns.h> 43 #include <rte_memzone.h> 44 #include <rte_malloc.h> 45 #include <rte_atomic.h> 46 #include <rte_branch_prediction.h> 47 #include <rte_pci.h> 48 #include <rte_ether.h> 49 #include <rte_common.h> 50 #include <rte_cycles.h> 51 #include <rte_spinlock.h> 52 #include <rte_byteorder.h> 53 #include <rte_dev.h> 54 #include <rte_memory.h> 55 #include <rte_eal.h> 56 #include <rte_io.h> 57 58 #include "rte_avp_common.h" 59 #include "rte_avp_fifo.h" 60 61 #include "avp_logs.h" 62 63 64 static int avp_dev_create(struct rte_pci_device *pci_dev, 65 struct rte_eth_dev *eth_dev); 66 67 static int avp_dev_configure(struct rte_eth_dev *dev); 68 static int avp_dev_start(struct rte_eth_dev *dev); 69 static void avp_dev_stop(struct rte_eth_dev *dev); 70 static void avp_dev_close(struct rte_eth_dev *dev); 71 static void avp_dev_info_get(struct rte_eth_dev *dev, 72 struct rte_eth_dev_info *dev_info); 73 static void avp_vlan_offload_set(struct rte_eth_dev *dev, int mask); 74 static int avp_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete); 75 static void avp_dev_promiscuous_enable(struct rte_eth_dev *dev); 76 static void avp_dev_promiscuous_disable(struct rte_eth_dev *dev); 77 78 static int avp_dev_rx_queue_setup(struct rte_eth_dev *dev, 79 uint16_t rx_queue_id, 80 uint16_t nb_rx_desc, 81 unsigned int socket_id, 82 const struct rte_eth_rxconf *rx_conf, 83 struct rte_mempool *pool); 84 85 static int avp_dev_tx_queue_setup(struct rte_eth_dev *dev, 86 uint16_t tx_queue_id, 87 uint16_t nb_tx_desc, 88 unsigned int socket_id, 89 const struct rte_eth_txconf *tx_conf); 90 91 static uint16_t avp_recv_scattered_pkts(void *rx_queue, 92 struct rte_mbuf **rx_pkts, 93 uint16_t nb_pkts); 94 95 static uint16_t avp_recv_pkts(void *rx_queue, 96 struct rte_mbuf **rx_pkts, 97 uint16_t nb_pkts); 98 99 static uint16_t avp_xmit_scattered_pkts(void *tx_queue, 100 struct rte_mbuf **tx_pkts, 101 uint16_t nb_pkts); 102 103 static uint16_t avp_xmit_pkts(void *tx_queue, 104 struct rte_mbuf **tx_pkts, 105 uint16_t nb_pkts); 106 107 static void avp_dev_rx_queue_release(void *rxq); 108 static void avp_dev_tx_queue_release(void *txq); 109 110 static void avp_dev_stats_get(struct rte_eth_dev *dev, 111 struct rte_eth_stats *stats); 112 static void avp_dev_stats_reset(struct rte_eth_dev *dev); 113 114 115 #define AVP_MAX_RX_BURST 64 116 #define AVP_MAX_TX_BURST 64 117 #define AVP_MAX_MAC_ADDRS 1 118 #define AVP_MIN_RX_BUFSIZE ETHER_MIN_LEN 119 120 121 /* 122 * Defines the number of microseconds to wait before checking the response 123 * queue for completion. 124 */ 125 #define AVP_REQUEST_DELAY_USECS (5000) 126 127 /* 128 * Defines the number times to check the response queue for completion before 129 * declaring a timeout. 130 */ 131 #define AVP_MAX_REQUEST_RETRY (100) 132 133 /* Defines the current PCI driver version number */ 134 #define AVP_DPDK_DRIVER_VERSION RTE_AVP_CURRENT_GUEST_VERSION 135 136 /* 137 * The set of PCI devices this driver supports 138 */ 139 static const struct rte_pci_id pci_id_avp_map[] = { 140 { .vendor_id = RTE_AVP_PCI_VENDOR_ID, 141 .device_id = RTE_AVP_PCI_DEVICE_ID, 142 .subsystem_vendor_id = RTE_AVP_PCI_SUB_VENDOR_ID, 143 .subsystem_device_id = RTE_AVP_PCI_SUB_DEVICE_ID, 144 .class_id = RTE_CLASS_ANY_ID, 145 }, 146 147 { .vendor_id = 0, /* sentinel */ 148 }, 149 }; 150 151 /* 152 * dev_ops for avp, bare necessities for basic operation 153 */ 154 static const struct eth_dev_ops avp_eth_dev_ops = { 155 .dev_configure = avp_dev_configure, 156 .dev_start = avp_dev_start, 157 .dev_stop = avp_dev_stop, 158 .dev_close = avp_dev_close, 159 .dev_infos_get = avp_dev_info_get, 160 .vlan_offload_set = avp_vlan_offload_set, 161 .stats_get = avp_dev_stats_get, 162 .stats_reset = avp_dev_stats_reset, 163 .link_update = avp_dev_link_update, 164 .promiscuous_enable = avp_dev_promiscuous_enable, 165 .promiscuous_disable = avp_dev_promiscuous_disable, 166 .rx_queue_setup = avp_dev_rx_queue_setup, 167 .rx_queue_release = avp_dev_rx_queue_release, 168 .tx_queue_setup = avp_dev_tx_queue_setup, 169 .tx_queue_release = avp_dev_tx_queue_release, 170 }; 171 172 /**@{ AVP device flags */ 173 #define AVP_F_PROMISC (1 << 1) 174 #define AVP_F_CONFIGURED (1 << 2) 175 #define AVP_F_LINKUP (1 << 3) 176 #define AVP_F_DETACHED (1 << 4) 177 /**@} */ 178 179 /* Ethernet device validation marker */ 180 #define AVP_ETHDEV_MAGIC 0x92972862 181 182 /* 183 * Defines the AVP device attributes which are attached to an RTE ethernet 184 * device 185 */ 186 struct avp_dev { 187 uint32_t magic; /**< Memory validation marker */ 188 uint64_t device_id; /**< Unique system identifier */ 189 struct ether_addr ethaddr; /**< Host specified MAC address */ 190 struct rte_eth_dev_data *dev_data; 191 /**< Back pointer to ethernet device data */ 192 volatile uint32_t flags; /**< Device operational flags */ 193 uint8_t port_id; /**< Ethernet port identifier */ 194 struct rte_mempool *pool; /**< pkt mbuf mempool */ 195 unsigned int guest_mbuf_size; /**< local pool mbuf size */ 196 unsigned int host_mbuf_size; /**< host mbuf size */ 197 unsigned int max_rx_pkt_len; /**< maximum receive unit */ 198 uint32_t host_features; /**< Supported feature bitmap */ 199 uint32_t features; /**< Enabled feature bitmap */ 200 unsigned int num_tx_queues; /**< Negotiated number of transmit queues */ 201 unsigned int max_tx_queues; /**< Maximum number of transmit queues */ 202 unsigned int num_rx_queues; /**< Negotiated number of receive queues */ 203 unsigned int max_rx_queues; /**< Maximum number of receive queues */ 204 205 struct rte_avp_fifo *tx_q[RTE_AVP_MAX_QUEUES]; /**< TX queue */ 206 struct rte_avp_fifo *rx_q[RTE_AVP_MAX_QUEUES]; /**< RX queue */ 207 struct rte_avp_fifo *alloc_q[RTE_AVP_MAX_QUEUES]; 208 /**< Allocated mbufs queue */ 209 struct rte_avp_fifo *free_q[RTE_AVP_MAX_QUEUES]; 210 /**< To be freed mbufs queue */ 211 212 /* mutual exclusion over the 'flag' and 'resp_q/req_q' fields */ 213 rte_spinlock_t lock; 214 215 /* For request & response */ 216 struct rte_avp_fifo *req_q; /**< Request queue */ 217 struct rte_avp_fifo *resp_q; /**< Response queue */ 218 void *host_sync_addr; /**< (host) Req/Resp Mem address */ 219 void *sync_addr; /**< Req/Resp Mem address */ 220 void *host_mbuf_addr; /**< (host) MBUF pool start address */ 221 void *mbuf_addr; /**< MBUF pool start address */ 222 } __rte_cache_aligned; 223 224 /* RTE ethernet private data */ 225 struct avp_adapter { 226 struct avp_dev avp; 227 } __rte_cache_aligned; 228 229 230 /* 32-bit MMIO register write */ 231 #define AVP_WRITE32(_value, _addr) rte_write32_relaxed((_value), (_addr)) 232 233 /* 32-bit MMIO register read */ 234 #define AVP_READ32(_addr) rte_read32_relaxed((_addr)) 235 236 /* Macro to cast the ethernet device private data to a AVP object */ 237 #define AVP_DEV_PRIVATE_TO_HW(adapter) \ 238 (&((struct avp_adapter *)adapter)->avp) 239 240 /* 241 * Defines the structure of a AVP device queue for the purpose of handling the 242 * receive and transmit burst callback functions 243 */ 244 struct avp_queue { 245 struct rte_eth_dev_data *dev_data; 246 /**< Backpointer to ethernet device data */ 247 struct avp_dev *avp; /**< Backpointer to AVP device */ 248 uint16_t queue_id; 249 /**< Queue identifier used for indexing current queue */ 250 uint16_t queue_base; 251 /**< Base queue identifier for queue servicing */ 252 uint16_t queue_limit; 253 /**< Maximum queue identifier for queue servicing */ 254 255 uint64_t packets; 256 uint64_t bytes; 257 uint64_t errors; 258 }; 259 260 /* send a request and wait for a response 261 * 262 * @warning must be called while holding the avp->lock spinlock. 263 */ 264 static int 265 avp_dev_process_request(struct avp_dev *avp, struct rte_avp_request *request) 266 { 267 unsigned int retry = AVP_MAX_REQUEST_RETRY; 268 void *resp_addr = NULL; 269 unsigned int count; 270 int ret; 271 272 PMD_DRV_LOG(DEBUG, "Sending request %u to host\n", request->req_id); 273 274 request->result = -ENOTSUP; 275 276 /* Discard any stale responses before starting a new request */ 277 while (avp_fifo_get(avp->resp_q, (void **)&resp_addr, 1)) 278 PMD_DRV_LOG(DEBUG, "Discarding stale response\n"); 279 280 rte_memcpy(avp->sync_addr, request, sizeof(*request)); 281 count = avp_fifo_put(avp->req_q, &avp->host_sync_addr, 1); 282 if (count < 1) { 283 PMD_DRV_LOG(ERR, "Cannot send request %u to host\n", 284 request->req_id); 285 ret = -EBUSY; 286 goto done; 287 } 288 289 while (retry--) { 290 /* wait for a response */ 291 usleep(AVP_REQUEST_DELAY_USECS); 292 293 count = avp_fifo_count(avp->resp_q); 294 if (count >= 1) { 295 /* response received */ 296 break; 297 } 298 299 if ((count < 1) && (retry == 0)) { 300 PMD_DRV_LOG(ERR, "Timeout while waiting for a response for %u\n", 301 request->req_id); 302 ret = -ETIME; 303 goto done; 304 } 305 } 306 307 /* retrieve the response */ 308 count = avp_fifo_get(avp->resp_q, (void **)&resp_addr, 1); 309 if ((count != 1) || (resp_addr != avp->host_sync_addr)) { 310 PMD_DRV_LOG(ERR, "Invalid response from host, count=%u resp=%p host_sync_addr=%p\n", 311 count, resp_addr, avp->host_sync_addr); 312 ret = -ENODATA; 313 goto done; 314 } 315 316 /* copy to user buffer */ 317 rte_memcpy(request, avp->sync_addr, sizeof(*request)); 318 ret = 0; 319 320 PMD_DRV_LOG(DEBUG, "Result %d received for request %u\n", 321 request->result, request->req_id); 322 323 done: 324 return ret; 325 } 326 327 static int 328 avp_dev_ctrl_set_link_state(struct rte_eth_dev *eth_dev, unsigned int state) 329 { 330 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 331 struct rte_avp_request request; 332 int ret; 333 334 /* setup a link state change request */ 335 memset(&request, 0, sizeof(request)); 336 request.req_id = RTE_AVP_REQ_CFG_NETWORK_IF; 337 request.if_up = state; 338 339 ret = avp_dev_process_request(avp, &request); 340 341 return ret == 0 ? request.result : ret; 342 } 343 344 static int 345 avp_dev_ctrl_set_config(struct rte_eth_dev *eth_dev, 346 struct rte_avp_device_config *config) 347 { 348 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 349 struct rte_avp_request request; 350 int ret; 351 352 /* setup a configure request */ 353 memset(&request, 0, sizeof(request)); 354 request.req_id = RTE_AVP_REQ_CFG_DEVICE; 355 memcpy(&request.config, config, sizeof(request.config)); 356 357 ret = avp_dev_process_request(avp, &request); 358 359 return ret == 0 ? request.result : ret; 360 } 361 362 static int 363 avp_dev_ctrl_shutdown(struct rte_eth_dev *eth_dev) 364 { 365 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 366 struct rte_avp_request request; 367 int ret; 368 369 /* setup a shutdown request */ 370 memset(&request, 0, sizeof(request)); 371 request.req_id = RTE_AVP_REQ_SHUTDOWN_DEVICE; 372 373 ret = avp_dev_process_request(avp, &request); 374 375 return ret == 0 ? request.result : ret; 376 } 377 378 /* translate from host mbuf virtual address to guest virtual address */ 379 static inline void * 380 avp_dev_translate_buffer(struct avp_dev *avp, void *host_mbuf_address) 381 { 382 return RTE_PTR_ADD(RTE_PTR_SUB(host_mbuf_address, 383 (uintptr_t)avp->host_mbuf_addr), 384 (uintptr_t)avp->mbuf_addr); 385 } 386 387 /* translate from host physical address to guest virtual address */ 388 static void * 389 avp_dev_translate_address(struct rte_eth_dev *eth_dev, 390 phys_addr_t host_phys_addr) 391 { 392 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 393 struct rte_mem_resource *resource; 394 struct rte_avp_memmap_info *info; 395 struct rte_avp_memmap *map; 396 off_t offset; 397 void *addr; 398 unsigned int i; 399 400 addr = pci_dev->mem_resource[RTE_AVP_PCI_MEMORY_BAR].addr; 401 resource = &pci_dev->mem_resource[RTE_AVP_PCI_MEMMAP_BAR]; 402 info = (struct rte_avp_memmap_info *)resource->addr; 403 404 offset = 0; 405 for (i = 0; i < info->nb_maps; i++) { 406 /* search all segments looking for a matching address */ 407 map = &info->maps[i]; 408 409 if ((host_phys_addr >= map->phys_addr) && 410 (host_phys_addr < (map->phys_addr + map->length))) { 411 /* address is within this segment */ 412 offset += (host_phys_addr - map->phys_addr); 413 addr = RTE_PTR_ADD(addr, offset); 414 415 PMD_DRV_LOG(DEBUG, "Translating host physical 0x%" PRIx64 " to guest virtual 0x%p\n", 416 host_phys_addr, addr); 417 418 return addr; 419 } 420 offset += map->length; 421 } 422 423 return NULL; 424 } 425 426 /* verify that the incoming device version is compatible with our version */ 427 static int 428 avp_dev_version_check(uint32_t version) 429 { 430 uint32_t driver = RTE_AVP_STRIP_MINOR_VERSION(AVP_DPDK_DRIVER_VERSION); 431 uint32_t device = RTE_AVP_STRIP_MINOR_VERSION(version); 432 433 if (device <= driver) { 434 /* the host driver version is less than or equal to ours */ 435 return 0; 436 } 437 438 return 1; 439 } 440 441 /* verify that memory regions have expected version and validation markers */ 442 static int 443 avp_dev_check_regions(struct rte_eth_dev *eth_dev) 444 { 445 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 446 struct rte_avp_memmap_info *memmap; 447 struct rte_avp_device_info *info; 448 struct rte_mem_resource *resource; 449 unsigned int i; 450 451 /* Dump resource info for debug */ 452 for (i = 0; i < PCI_MAX_RESOURCE; i++) { 453 resource = &pci_dev->mem_resource[i]; 454 if ((resource->phys_addr == 0) || (resource->len == 0)) 455 continue; 456 457 PMD_DRV_LOG(DEBUG, "resource[%u]: phys=0x%" PRIx64 " len=%" PRIu64 " addr=%p\n", 458 i, resource->phys_addr, 459 resource->len, resource->addr); 460 461 switch (i) { 462 case RTE_AVP_PCI_MEMMAP_BAR: 463 memmap = (struct rte_avp_memmap_info *)resource->addr; 464 if ((memmap->magic != RTE_AVP_MEMMAP_MAGIC) || 465 (memmap->version != RTE_AVP_MEMMAP_VERSION)) { 466 PMD_DRV_LOG(ERR, "Invalid memmap magic 0x%08x and version %u\n", 467 memmap->magic, memmap->version); 468 return -EINVAL; 469 } 470 break; 471 472 case RTE_AVP_PCI_DEVICE_BAR: 473 info = (struct rte_avp_device_info *)resource->addr; 474 if ((info->magic != RTE_AVP_DEVICE_MAGIC) || 475 avp_dev_version_check(info->version)) { 476 PMD_DRV_LOG(ERR, "Invalid device info magic 0x%08x or version 0x%08x > 0x%08x\n", 477 info->magic, info->version, 478 AVP_DPDK_DRIVER_VERSION); 479 return -EINVAL; 480 } 481 break; 482 483 case RTE_AVP_PCI_MEMORY_BAR: 484 case RTE_AVP_PCI_MMIO_BAR: 485 if (resource->addr == NULL) { 486 PMD_DRV_LOG(ERR, "Missing address space for BAR%u\n", 487 i); 488 return -EINVAL; 489 } 490 break; 491 492 case RTE_AVP_PCI_MSIX_BAR: 493 default: 494 /* no validation required */ 495 break; 496 } 497 } 498 499 return 0; 500 } 501 502 static int 503 avp_dev_detach(struct rte_eth_dev *eth_dev) 504 { 505 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 506 int ret; 507 508 PMD_DRV_LOG(NOTICE, "Detaching port %u from AVP device 0x%" PRIx64 "\n", 509 eth_dev->data->port_id, avp->device_id); 510 511 rte_spinlock_lock(&avp->lock); 512 513 if (avp->flags & AVP_F_DETACHED) { 514 PMD_DRV_LOG(NOTICE, "port %u already detached\n", 515 eth_dev->data->port_id); 516 ret = 0; 517 goto unlock; 518 } 519 520 /* shutdown the device first so the host stops sending us packets. */ 521 ret = avp_dev_ctrl_shutdown(eth_dev); 522 if (ret < 0) { 523 PMD_DRV_LOG(ERR, "Failed to send/recv shutdown to host, ret=%d\n", 524 ret); 525 avp->flags &= ~AVP_F_DETACHED; 526 goto unlock; 527 } 528 529 avp->flags |= AVP_F_DETACHED; 530 rte_wmb(); 531 532 /* wait for queues to acknowledge the presence of the detach flag */ 533 rte_delay_ms(1); 534 535 ret = 0; 536 537 unlock: 538 rte_spinlock_unlock(&avp->lock); 539 return ret; 540 } 541 542 static void 543 _avp_set_rx_queue_mappings(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id) 544 { 545 struct avp_dev *avp = 546 AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 547 struct avp_queue *rxq; 548 uint16_t queue_count; 549 uint16_t remainder; 550 551 rxq = (struct avp_queue *)eth_dev->data->rx_queues[rx_queue_id]; 552 553 /* 554 * Must map all AVP fifos as evenly as possible between the configured 555 * device queues. Each device queue will service a subset of the AVP 556 * fifos. If there is an odd number of device queues the first set of 557 * device queues will get the extra AVP fifos. 558 */ 559 queue_count = avp->num_rx_queues / eth_dev->data->nb_rx_queues; 560 remainder = avp->num_rx_queues % eth_dev->data->nb_rx_queues; 561 if (rx_queue_id < remainder) { 562 /* these queues must service one extra FIFO */ 563 rxq->queue_base = rx_queue_id * (queue_count + 1); 564 rxq->queue_limit = rxq->queue_base + (queue_count + 1) - 1; 565 } else { 566 /* these queues service the regular number of FIFO */ 567 rxq->queue_base = ((remainder * (queue_count + 1)) + 568 ((rx_queue_id - remainder) * queue_count)); 569 rxq->queue_limit = rxq->queue_base + queue_count - 1; 570 } 571 572 PMD_DRV_LOG(DEBUG, "rxq %u at %p base %u limit %u\n", 573 rx_queue_id, rxq, rxq->queue_base, rxq->queue_limit); 574 575 rxq->queue_id = rxq->queue_base; 576 } 577 578 static void 579 _avp_set_queue_counts(struct rte_eth_dev *eth_dev) 580 { 581 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 582 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 583 struct rte_avp_device_info *host_info; 584 void *addr; 585 586 addr = pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR].addr; 587 host_info = (struct rte_avp_device_info *)addr; 588 589 /* 590 * the transmit direction is not negotiated beyond respecting the max 591 * number of queues because the host can handle arbitrary guest tx 592 * queues (host rx queues). 593 */ 594 avp->num_tx_queues = eth_dev->data->nb_tx_queues; 595 596 /* 597 * the receive direction is more restrictive. The host requires a 598 * minimum number of guest rx queues (host tx queues) therefore 599 * negotiate a value that is at least as large as the host minimum 600 * requirement. If the host and guest values are not identical then a 601 * mapping will be established in the receive_queue_setup function. 602 */ 603 avp->num_rx_queues = RTE_MAX(host_info->min_rx_queues, 604 eth_dev->data->nb_rx_queues); 605 606 PMD_DRV_LOG(DEBUG, "Requesting %u Tx and %u Rx queues from host\n", 607 avp->num_tx_queues, avp->num_rx_queues); 608 } 609 610 static int 611 avp_dev_attach(struct rte_eth_dev *eth_dev) 612 { 613 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 614 struct rte_avp_device_config config; 615 unsigned int i; 616 int ret; 617 618 PMD_DRV_LOG(NOTICE, "Attaching port %u to AVP device 0x%" PRIx64 "\n", 619 eth_dev->data->port_id, avp->device_id); 620 621 rte_spinlock_lock(&avp->lock); 622 623 if (!(avp->flags & AVP_F_DETACHED)) { 624 PMD_DRV_LOG(NOTICE, "port %u already attached\n", 625 eth_dev->data->port_id); 626 ret = 0; 627 goto unlock; 628 } 629 630 /* 631 * make sure that the detached flag is set prior to reconfiguring the 632 * queues. 633 */ 634 avp->flags |= AVP_F_DETACHED; 635 rte_wmb(); 636 637 /* 638 * re-run the device create utility which will parse the new host info 639 * and setup the AVP device queue pointers. 640 */ 641 ret = avp_dev_create(RTE_ETH_DEV_TO_PCI(eth_dev), eth_dev); 642 if (ret < 0) { 643 PMD_DRV_LOG(ERR, "Failed to re-create AVP device, ret=%d\n", 644 ret); 645 goto unlock; 646 } 647 648 if (avp->flags & AVP_F_CONFIGURED) { 649 /* 650 * Update the receive queue mapping to handle cases where the 651 * source and destination hosts have different queue 652 * requirements. As long as the DETACHED flag is asserted the 653 * queue table should not be referenced so it should be safe to 654 * update it. 655 */ 656 _avp_set_queue_counts(eth_dev); 657 for (i = 0; i < eth_dev->data->nb_rx_queues; i++) 658 _avp_set_rx_queue_mappings(eth_dev, i); 659 660 /* 661 * Update the host with our config details so that it knows the 662 * device is active. 663 */ 664 memset(&config, 0, sizeof(config)); 665 config.device_id = avp->device_id; 666 config.driver_type = RTE_AVP_DRIVER_TYPE_DPDK; 667 config.driver_version = AVP_DPDK_DRIVER_VERSION; 668 config.features = avp->features; 669 config.num_tx_queues = avp->num_tx_queues; 670 config.num_rx_queues = avp->num_rx_queues; 671 config.if_up = !!(avp->flags & AVP_F_LINKUP); 672 673 ret = avp_dev_ctrl_set_config(eth_dev, &config); 674 if (ret < 0) { 675 PMD_DRV_LOG(ERR, "Config request failed by host, ret=%d\n", 676 ret); 677 goto unlock; 678 } 679 } 680 681 rte_wmb(); 682 avp->flags &= ~AVP_F_DETACHED; 683 684 ret = 0; 685 686 unlock: 687 rte_spinlock_unlock(&avp->lock); 688 return ret; 689 } 690 691 static void 692 avp_dev_interrupt_handler(void *data) 693 { 694 struct rte_eth_dev *eth_dev = data; 695 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 696 void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr; 697 uint32_t status, value; 698 int ret; 699 700 if (registers == NULL) 701 rte_panic("no mapped MMIO register space\n"); 702 703 /* read the interrupt status register 704 * note: this register clears on read so all raised interrupts must be 705 * handled or remembered for later processing 706 */ 707 status = AVP_READ32( 708 RTE_PTR_ADD(registers, 709 RTE_AVP_INTERRUPT_STATUS_OFFSET)); 710 711 if (status & RTE_AVP_MIGRATION_INTERRUPT_MASK) { 712 /* handle interrupt based on current status */ 713 value = AVP_READ32( 714 RTE_PTR_ADD(registers, 715 RTE_AVP_MIGRATION_STATUS_OFFSET)); 716 switch (value) { 717 case RTE_AVP_MIGRATION_DETACHED: 718 ret = avp_dev_detach(eth_dev); 719 break; 720 case RTE_AVP_MIGRATION_ATTACHED: 721 ret = avp_dev_attach(eth_dev); 722 break; 723 default: 724 PMD_DRV_LOG(ERR, "unexpected migration status, status=%u\n", 725 value); 726 ret = -EINVAL; 727 } 728 729 /* acknowledge the request by writing out our current status */ 730 value = (ret == 0 ? value : RTE_AVP_MIGRATION_ERROR); 731 AVP_WRITE32(value, 732 RTE_PTR_ADD(registers, 733 RTE_AVP_MIGRATION_ACK_OFFSET)); 734 735 PMD_DRV_LOG(NOTICE, "AVP migration interrupt handled\n"); 736 } 737 738 if (status & ~RTE_AVP_MIGRATION_INTERRUPT_MASK) 739 PMD_DRV_LOG(WARNING, "AVP unexpected interrupt, status=0x%08x\n", 740 status); 741 742 /* re-enable UIO interrupt handling */ 743 ret = rte_intr_enable(&pci_dev->intr_handle); 744 if (ret < 0) { 745 PMD_DRV_LOG(ERR, "Failed to re-enable UIO interrupts, ret=%d\n", 746 ret); 747 /* continue */ 748 } 749 } 750 751 static int 752 avp_dev_enable_interrupts(struct rte_eth_dev *eth_dev) 753 { 754 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 755 void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr; 756 int ret; 757 758 if (registers == NULL) 759 return -EINVAL; 760 761 /* enable UIO interrupt handling */ 762 ret = rte_intr_enable(&pci_dev->intr_handle); 763 if (ret < 0) { 764 PMD_DRV_LOG(ERR, "Failed to enable UIO interrupts, ret=%d\n", 765 ret); 766 return ret; 767 } 768 769 /* inform the device that all interrupts are enabled */ 770 AVP_WRITE32(RTE_AVP_APP_INTERRUPTS_MASK, 771 RTE_PTR_ADD(registers, RTE_AVP_INTERRUPT_MASK_OFFSET)); 772 773 return 0; 774 } 775 776 static int 777 avp_dev_disable_interrupts(struct rte_eth_dev *eth_dev) 778 { 779 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 780 void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr; 781 int ret; 782 783 if (registers == NULL) 784 return 0; 785 786 /* inform the device that all interrupts are disabled */ 787 AVP_WRITE32(RTE_AVP_NO_INTERRUPTS_MASK, 788 RTE_PTR_ADD(registers, RTE_AVP_INTERRUPT_MASK_OFFSET)); 789 790 /* enable UIO interrupt handling */ 791 ret = rte_intr_disable(&pci_dev->intr_handle); 792 if (ret < 0) { 793 PMD_DRV_LOG(ERR, "Failed to disable UIO interrupts, ret=%d\n", 794 ret); 795 return ret; 796 } 797 798 return 0; 799 } 800 801 static int 802 avp_dev_setup_interrupts(struct rte_eth_dev *eth_dev) 803 { 804 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 805 int ret; 806 807 /* register a callback handler with UIO for interrupt notifications */ 808 ret = rte_intr_callback_register(&pci_dev->intr_handle, 809 avp_dev_interrupt_handler, 810 (void *)eth_dev); 811 if (ret < 0) { 812 PMD_DRV_LOG(ERR, "Failed to register UIO interrupt callback, ret=%d\n", 813 ret); 814 return ret; 815 } 816 817 /* enable interrupt processing */ 818 return avp_dev_enable_interrupts(eth_dev); 819 } 820 821 static int 822 avp_dev_migration_pending(struct rte_eth_dev *eth_dev) 823 { 824 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 825 void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr; 826 uint32_t value; 827 828 if (registers == NULL) 829 return 0; 830 831 value = AVP_READ32(RTE_PTR_ADD(registers, 832 RTE_AVP_MIGRATION_STATUS_OFFSET)); 833 if (value == RTE_AVP_MIGRATION_DETACHED) { 834 /* migration is in progress; ack it if we have not already */ 835 AVP_WRITE32(value, 836 RTE_PTR_ADD(registers, 837 RTE_AVP_MIGRATION_ACK_OFFSET)); 838 return 1; 839 } 840 return 0; 841 } 842 843 /* 844 * create a AVP device using the supplied device info by first translating it 845 * to guest address space(s). 846 */ 847 static int 848 avp_dev_create(struct rte_pci_device *pci_dev, 849 struct rte_eth_dev *eth_dev) 850 { 851 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 852 struct rte_avp_device_info *host_info; 853 struct rte_mem_resource *resource; 854 unsigned int i; 855 856 resource = &pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR]; 857 if (resource->addr == NULL) { 858 PMD_DRV_LOG(ERR, "BAR%u is not mapped\n", 859 RTE_AVP_PCI_DEVICE_BAR); 860 return -EFAULT; 861 } 862 host_info = (struct rte_avp_device_info *)resource->addr; 863 864 if ((host_info->magic != RTE_AVP_DEVICE_MAGIC) || 865 avp_dev_version_check(host_info->version)) { 866 PMD_DRV_LOG(ERR, "Invalid AVP PCI device, magic 0x%08x version 0x%08x > 0x%08x\n", 867 host_info->magic, host_info->version, 868 AVP_DPDK_DRIVER_VERSION); 869 return -EINVAL; 870 } 871 872 PMD_DRV_LOG(DEBUG, "AVP host device is v%u.%u.%u\n", 873 RTE_AVP_GET_RELEASE_VERSION(host_info->version), 874 RTE_AVP_GET_MAJOR_VERSION(host_info->version), 875 RTE_AVP_GET_MINOR_VERSION(host_info->version)); 876 877 PMD_DRV_LOG(DEBUG, "AVP host supports %u to %u TX queue(s)\n", 878 host_info->min_tx_queues, host_info->max_tx_queues); 879 PMD_DRV_LOG(DEBUG, "AVP host supports %u to %u RX queue(s)\n", 880 host_info->min_rx_queues, host_info->max_rx_queues); 881 PMD_DRV_LOG(DEBUG, "AVP host supports features 0x%08x\n", 882 host_info->features); 883 884 if (avp->magic != AVP_ETHDEV_MAGIC) { 885 /* 886 * First time initialization (i.e., not during a VM 887 * migration) 888 */ 889 memset(avp, 0, sizeof(*avp)); 890 avp->magic = AVP_ETHDEV_MAGIC; 891 avp->dev_data = eth_dev->data; 892 avp->port_id = eth_dev->data->port_id; 893 avp->host_mbuf_size = host_info->mbuf_size; 894 avp->host_features = host_info->features; 895 rte_spinlock_init(&avp->lock); 896 memcpy(&avp->ethaddr.addr_bytes[0], 897 host_info->ethaddr, ETHER_ADDR_LEN); 898 /* adjust max values to not exceed our max */ 899 avp->max_tx_queues = 900 RTE_MIN(host_info->max_tx_queues, RTE_AVP_MAX_QUEUES); 901 avp->max_rx_queues = 902 RTE_MIN(host_info->max_rx_queues, RTE_AVP_MAX_QUEUES); 903 } else { 904 /* Re-attaching during migration */ 905 906 /* TODO... requires validation of host values */ 907 if ((host_info->features & avp->features) != avp->features) { 908 PMD_DRV_LOG(ERR, "AVP host features mismatched; 0x%08x, host=0x%08x\n", 909 avp->features, host_info->features); 910 /* this should not be possible; continue for now */ 911 } 912 } 913 914 /* the device id is allowed to change over migrations */ 915 avp->device_id = host_info->device_id; 916 917 /* translate incoming host addresses to guest address space */ 918 PMD_DRV_LOG(DEBUG, "AVP first host tx queue at 0x%" PRIx64 "\n", 919 host_info->tx_phys); 920 PMD_DRV_LOG(DEBUG, "AVP first host alloc queue at 0x%" PRIx64 "\n", 921 host_info->alloc_phys); 922 for (i = 0; i < avp->max_tx_queues; i++) { 923 avp->tx_q[i] = avp_dev_translate_address(eth_dev, 924 host_info->tx_phys + (i * host_info->tx_size)); 925 926 avp->alloc_q[i] = avp_dev_translate_address(eth_dev, 927 host_info->alloc_phys + (i * host_info->alloc_size)); 928 } 929 930 PMD_DRV_LOG(DEBUG, "AVP first host rx queue at 0x%" PRIx64 "\n", 931 host_info->rx_phys); 932 PMD_DRV_LOG(DEBUG, "AVP first host free queue at 0x%" PRIx64 "\n", 933 host_info->free_phys); 934 for (i = 0; i < avp->max_rx_queues; i++) { 935 avp->rx_q[i] = avp_dev_translate_address(eth_dev, 936 host_info->rx_phys + (i * host_info->rx_size)); 937 avp->free_q[i] = avp_dev_translate_address(eth_dev, 938 host_info->free_phys + (i * host_info->free_size)); 939 } 940 941 PMD_DRV_LOG(DEBUG, "AVP host request queue at 0x%" PRIx64 "\n", 942 host_info->req_phys); 943 PMD_DRV_LOG(DEBUG, "AVP host response queue at 0x%" PRIx64 "\n", 944 host_info->resp_phys); 945 PMD_DRV_LOG(DEBUG, "AVP host sync address at 0x%" PRIx64 "\n", 946 host_info->sync_phys); 947 PMD_DRV_LOG(DEBUG, "AVP host mbuf address at 0x%" PRIx64 "\n", 948 host_info->mbuf_phys); 949 avp->req_q = avp_dev_translate_address(eth_dev, host_info->req_phys); 950 avp->resp_q = avp_dev_translate_address(eth_dev, host_info->resp_phys); 951 avp->sync_addr = 952 avp_dev_translate_address(eth_dev, host_info->sync_phys); 953 avp->mbuf_addr = 954 avp_dev_translate_address(eth_dev, host_info->mbuf_phys); 955 956 /* 957 * store the host mbuf virtual address so that we can calculate 958 * relative offsets for each mbuf as they are processed 959 */ 960 avp->host_mbuf_addr = host_info->mbuf_va; 961 avp->host_sync_addr = host_info->sync_va; 962 963 /* 964 * store the maximum packet length that is supported by the host. 965 */ 966 avp->max_rx_pkt_len = host_info->max_rx_pkt_len; 967 PMD_DRV_LOG(DEBUG, "AVP host max receive packet length is %u\n", 968 host_info->max_rx_pkt_len); 969 970 return 0; 971 } 972 973 /* 974 * This function is based on probe() function in avp_pci.c 975 * It returns 0 on success. 976 */ 977 static int 978 eth_avp_dev_init(struct rte_eth_dev *eth_dev) 979 { 980 struct avp_dev *avp = 981 AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 982 struct rte_pci_device *pci_dev; 983 int ret; 984 985 pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 986 eth_dev->dev_ops = &avp_eth_dev_ops; 987 eth_dev->rx_pkt_burst = &avp_recv_pkts; 988 eth_dev->tx_pkt_burst = &avp_xmit_pkts; 989 990 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 991 /* 992 * no setup required on secondary processes. All data is saved 993 * in dev_private by the primary process. All resource should 994 * be mapped to the same virtual address so all pointers should 995 * be valid. 996 */ 997 if (eth_dev->data->scattered_rx) { 998 PMD_DRV_LOG(NOTICE, "AVP device configured for chained mbufs\n"); 999 eth_dev->rx_pkt_burst = avp_recv_scattered_pkts; 1000 eth_dev->tx_pkt_burst = avp_xmit_scattered_pkts; 1001 } 1002 return 0; 1003 } 1004 1005 rte_eth_copy_pci_info(eth_dev, pci_dev); 1006 1007 eth_dev->data->dev_flags |= RTE_ETH_DEV_DETACHABLE; 1008 1009 /* Check current migration status */ 1010 if (avp_dev_migration_pending(eth_dev)) { 1011 PMD_DRV_LOG(ERR, "VM live migration operation in progress\n"); 1012 return -EBUSY; 1013 } 1014 1015 /* Check BAR resources */ 1016 ret = avp_dev_check_regions(eth_dev); 1017 if (ret < 0) { 1018 PMD_DRV_LOG(ERR, "Failed to validate BAR resources, ret=%d\n", 1019 ret); 1020 return ret; 1021 } 1022 1023 /* Enable interrupts */ 1024 ret = avp_dev_setup_interrupts(eth_dev); 1025 if (ret < 0) { 1026 PMD_DRV_LOG(ERR, "Failed to enable interrupts, ret=%d\n", ret); 1027 return ret; 1028 } 1029 1030 /* Handle each subtype */ 1031 ret = avp_dev_create(pci_dev, eth_dev); 1032 if (ret < 0) { 1033 PMD_DRV_LOG(ERR, "Failed to create device, ret=%d\n", ret); 1034 return ret; 1035 } 1036 1037 /* Allocate memory for storing MAC addresses */ 1038 eth_dev->data->mac_addrs = rte_zmalloc("avp_ethdev", ETHER_ADDR_LEN, 0); 1039 if (eth_dev->data->mac_addrs == NULL) { 1040 PMD_DRV_LOG(ERR, "Failed to allocate %d bytes needed to store MAC addresses\n", 1041 ETHER_ADDR_LEN); 1042 return -ENOMEM; 1043 } 1044 1045 /* Get a mac from device config */ 1046 ether_addr_copy(&avp->ethaddr, ð_dev->data->mac_addrs[0]); 1047 1048 return 0; 1049 } 1050 1051 static int 1052 eth_avp_dev_uninit(struct rte_eth_dev *eth_dev) 1053 { 1054 int ret; 1055 1056 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 1057 return -EPERM; 1058 1059 if (eth_dev->data == NULL) 1060 return 0; 1061 1062 ret = avp_dev_disable_interrupts(eth_dev); 1063 if (ret != 0) { 1064 PMD_DRV_LOG(ERR, "Failed to disable interrupts, ret=%d\n", ret); 1065 return ret; 1066 } 1067 1068 if (eth_dev->data->mac_addrs != NULL) { 1069 rte_free(eth_dev->data->mac_addrs); 1070 eth_dev->data->mac_addrs = NULL; 1071 } 1072 1073 return 0; 1074 } 1075 1076 static int 1077 eth_avp_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 1078 struct rte_pci_device *pci_dev) 1079 { 1080 struct rte_eth_dev *eth_dev; 1081 int ret; 1082 1083 eth_dev = rte_eth_dev_pci_allocate(pci_dev, 1084 sizeof(struct avp_adapter)); 1085 if (eth_dev == NULL) 1086 return -ENOMEM; 1087 1088 ret = eth_avp_dev_init(eth_dev); 1089 if (ret) 1090 rte_eth_dev_pci_release(eth_dev); 1091 1092 return ret; 1093 } 1094 1095 static int 1096 eth_avp_pci_remove(struct rte_pci_device *pci_dev) 1097 { 1098 return rte_eth_dev_pci_generic_remove(pci_dev, 1099 eth_avp_dev_uninit); 1100 } 1101 1102 static struct rte_pci_driver rte_avp_pmd = { 1103 .id_table = pci_id_avp_map, 1104 .drv_flags = RTE_PCI_DRV_NEED_MAPPING, 1105 .probe = eth_avp_pci_probe, 1106 .remove = eth_avp_pci_remove, 1107 }; 1108 1109 static int 1110 avp_dev_enable_scattered(struct rte_eth_dev *eth_dev, 1111 struct avp_dev *avp) 1112 { 1113 unsigned int max_rx_pkt_len; 1114 1115 max_rx_pkt_len = eth_dev->data->dev_conf.rxmode.max_rx_pkt_len; 1116 1117 if ((max_rx_pkt_len > avp->guest_mbuf_size) || 1118 (max_rx_pkt_len > avp->host_mbuf_size)) { 1119 /* 1120 * If the guest MTU is greater than either the host or guest 1121 * buffers then chained mbufs have to be enabled in the TX 1122 * direction. It is assumed that the application will not need 1123 * to send packets larger than their max_rx_pkt_len (MRU). 1124 */ 1125 return 1; 1126 } 1127 1128 if ((avp->max_rx_pkt_len > avp->guest_mbuf_size) || 1129 (avp->max_rx_pkt_len > avp->host_mbuf_size)) { 1130 /* 1131 * If the host MRU is greater than its own mbuf size or the 1132 * guest mbuf size then chained mbufs have to be enabled in the 1133 * RX direction. 1134 */ 1135 return 1; 1136 } 1137 1138 return 0; 1139 } 1140 1141 static int 1142 avp_dev_rx_queue_setup(struct rte_eth_dev *eth_dev, 1143 uint16_t rx_queue_id, 1144 uint16_t nb_rx_desc, 1145 unsigned int socket_id, 1146 const struct rte_eth_rxconf *rx_conf, 1147 struct rte_mempool *pool) 1148 { 1149 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 1150 struct rte_pktmbuf_pool_private *mbp_priv; 1151 struct avp_queue *rxq; 1152 1153 if (rx_queue_id >= eth_dev->data->nb_rx_queues) { 1154 PMD_DRV_LOG(ERR, "RX queue id is out of range: rx_queue_id=%u, nb_rx_queues=%u\n", 1155 rx_queue_id, eth_dev->data->nb_rx_queues); 1156 return -EINVAL; 1157 } 1158 1159 /* Save mbuf pool pointer */ 1160 avp->pool = pool; 1161 1162 /* Save the local mbuf size */ 1163 mbp_priv = rte_mempool_get_priv(pool); 1164 avp->guest_mbuf_size = (uint16_t)(mbp_priv->mbuf_data_room_size); 1165 avp->guest_mbuf_size -= RTE_PKTMBUF_HEADROOM; 1166 1167 if (avp_dev_enable_scattered(eth_dev, avp)) { 1168 if (!eth_dev->data->scattered_rx) { 1169 PMD_DRV_LOG(NOTICE, "AVP device configured for chained mbufs\n"); 1170 eth_dev->data->scattered_rx = 1; 1171 eth_dev->rx_pkt_burst = avp_recv_scattered_pkts; 1172 eth_dev->tx_pkt_burst = avp_xmit_scattered_pkts; 1173 } 1174 } 1175 1176 PMD_DRV_LOG(DEBUG, "AVP max_rx_pkt_len=(%u,%u) mbuf_size=(%u,%u)\n", 1177 avp->max_rx_pkt_len, 1178 eth_dev->data->dev_conf.rxmode.max_rx_pkt_len, 1179 avp->host_mbuf_size, 1180 avp->guest_mbuf_size); 1181 1182 /* allocate a queue object */ 1183 rxq = rte_zmalloc_socket("ethdev RX queue", sizeof(struct avp_queue), 1184 RTE_CACHE_LINE_SIZE, socket_id); 1185 if (rxq == NULL) { 1186 PMD_DRV_LOG(ERR, "Failed to allocate new Rx queue object\n"); 1187 return -ENOMEM; 1188 } 1189 1190 /* save back pointers to AVP and Ethernet devices */ 1191 rxq->avp = avp; 1192 rxq->dev_data = eth_dev->data; 1193 eth_dev->data->rx_queues[rx_queue_id] = (void *)rxq; 1194 1195 /* setup the queue receive mapping for the current queue. */ 1196 _avp_set_rx_queue_mappings(eth_dev, rx_queue_id); 1197 1198 PMD_DRV_LOG(DEBUG, "Rx queue %u setup at %p\n", rx_queue_id, rxq); 1199 1200 (void)nb_rx_desc; 1201 (void)rx_conf; 1202 return 0; 1203 } 1204 1205 static int 1206 avp_dev_tx_queue_setup(struct rte_eth_dev *eth_dev, 1207 uint16_t tx_queue_id, 1208 uint16_t nb_tx_desc, 1209 unsigned int socket_id, 1210 const struct rte_eth_txconf *tx_conf) 1211 { 1212 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 1213 struct avp_queue *txq; 1214 1215 if (tx_queue_id >= eth_dev->data->nb_tx_queues) { 1216 PMD_DRV_LOG(ERR, "TX queue id is out of range: tx_queue_id=%u, nb_tx_queues=%u\n", 1217 tx_queue_id, eth_dev->data->nb_tx_queues); 1218 return -EINVAL; 1219 } 1220 1221 /* allocate a queue object */ 1222 txq = rte_zmalloc_socket("ethdev TX queue", sizeof(struct avp_queue), 1223 RTE_CACHE_LINE_SIZE, socket_id); 1224 if (txq == NULL) { 1225 PMD_DRV_LOG(ERR, "Failed to allocate new Tx queue object\n"); 1226 return -ENOMEM; 1227 } 1228 1229 /* only the configured set of transmit queues are used */ 1230 txq->queue_id = tx_queue_id; 1231 txq->queue_base = tx_queue_id; 1232 txq->queue_limit = tx_queue_id; 1233 1234 /* save back pointers to AVP and Ethernet devices */ 1235 txq->avp = avp; 1236 txq->dev_data = eth_dev->data; 1237 eth_dev->data->tx_queues[tx_queue_id] = (void *)txq; 1238 1239 PMD_DRV_LOG(DEBUG, "Tx queue %u setup at %p\n", tx_queue_id, txq); 1240 1241 (void)nb_tx_desc; 1242 (void)tx_conf; 1243 return 0; 1244 } 1245 1246 static inline int 1247 _avp_cmp_ether_addr(struct ether_addr *a, struct ether_addr *b) 1248 { 1249 uint16_t *_a = (uint16_t *)&a->addr_bytes[0]; 1250 uint16_t *_b = (uint16_t *)&b->addr_bytes[0]; 1251 return (_a[0] ^ _b[0]) | (_a[1] ^ _b[1]) | (_a[2] ^ _b[2]); 1252 } 1253 1254 static inline int 1255 _avp_mac_filter(struct avp_dev *avp, struct rte_mbuf *m) 1256 { 1257 struct ether_hdr *eth = rte_pktmbuf_mtod(m, struct ether_hdr *); 1258 1259 if (likely(_avp_cmp_ether_addr(&avp->ethaddr, ð->d_addr) == 0)) { 1260 /* allow all packets destined to our address */ 1261 return 0; 1262 } 1263 1264 if (likely(is_broadcast_ether_addr(ð->d_addr))) { 1265 /* allow all broadcast packets */ 1266 return 0; 1267 } 1268 1269 if (likely(is_multicast_ether_addr(ð->d_addr))) { 1270 /* allow all multicast packets */ 1271 return 0; 1272 } 1273 1274 if (avp->flags & AVP_F_PROMISC) { 1275 /* allow all packets when in promiscuous mode */ 1276 return 0; 1277 } 1278 1279 return -1; 1280 } 1281 1282 #ifdef RTE_LIBRTE_AVP_DEBUG_BUFFERS 1283 static inline void 1284 __avp_dev_buffer_sanity_check(struct avp_dev *avp, struct rte_avp_desc *buf) 1285 { 1286 struct rte_avp_desc *first_buf; 1287 struct rte_avp_desc *pkt_buf; 1288 unsigned int pkt_len; 1289 unsigned int nb_segs; 1290 void *pkt_data; 1291 unsigned int i; 1292 1293 first_buf = avp_dev_translate_buffer(avp, buf); 1294 1295 i = 0; 1296 pkt_len = 0; 1297 nb_segs = first_buf->nb_segs; 1298 do { 1299 /* Adjust pointers for guest addressing */ 1300 pkt_buf = avp_dev_translate_buffer(avp, buf); 1301 if (pkt_buf == NULL) 1302 rte_panic("bad buffer: segment %u has an invalid address %p\n", 1303 i, buf); 1304 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data); 1305 if (pkt_data == NULL) 1306 rte_panic("bad buffer: segment %u has a NULL data pointer\n", 1307 i); 1308 if (pkt_buf->data_len == 0) 1309 rte_panic("bad buffer: segment %u has 0 data length\n", 1310 i); 1311 pkt_len += pkt_buf->data_len; 1312 nb_segs--; 1313 i++; 1314 1315 } while (nb_segs && (buf = pkt_buf->next) != NULL); 1316 1317 if (nb_segs != 0) 1318 rte_panic("bad buffer: expected %u segments found %u\n", 1319 first_buf->nb_segs, (first_buf->nb_segs - nb_segs)); 1320 if (pkt_len != first_buf->pkt_len) 1321 rte_panic("bad buffer: expected length %u found %u\n", 1322 first_buf->pkt_len, pkt_len); 1323 } 1324 1325 #define avp_dev_buffer_sanity_check(a, b) \ 1326 __avp_dev_buffer_sanity_check((a), (b)) 1327 1328 #else /* RTE_LIBRTE_AVP_DEBUG_BUFFERS */ 1329 1330 #define avp_dev_buffer_sanity_check(a, b) do {} while (0) 1331 1332 #endif 1333 1334 /* 1335 * Copy a host buffer chain to a set of mbufs. This function assumes that 1336 * there exactly the required number of mbufs to copy all source bytes. 1337 */ 1338 static inline struct rte_mbuf * 1339 avp_dev_copy_from_buffers(struct avp_dev *avp, 1340 struct rte_avp_desc *buf, 1341 struct rte_mbuf **mbufs, 1342 unsigned int count) 1343 { 1344 struct rte_mbuf *m_previous = NULL; 1345 struct rte_avp_desc *pkt_buf; 1346 unsigned int total_length = 0; 1347 unsigned int copy_length; 1348 unsigned int src_offset; 1349 struct rte_mbuf *m; 1350 uint16_t ol_flags; 1351 uint16_t vlan_tci; 1352 void *pkt_data; 1353 unsigned int i; 1354 1355 avp_dev_buffer_sanity_check(avp, buf); 1356 1357 /* setup the first source buffer */ 1358 pkt_buf = avp_dev_translate_buffer(avp, buf); 1359 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data); 1360 total_length = pkt_buf->pkt_len; 1361 src_offset = 0; 1362 1363 if (pkt_buf->ol_flags & RTE_AVP_RX_VLAN_PKT) { 1364 ol_flags = PKT_RX_VLAN_PKT; 1365 vlan_tci = pkt_buf->vlan_tci; 1366 } else { 1367 ol_flags = 0; 1368 vlan_tci = 0; 1369 } 1370 1371 for (i = 0; (i < count) && (buf != NULL); i++) { 1372 /* fill each destination buffer */ 1373 m = mbufs[i]; 1374 1375 if (m_previous != NULL) 1376 m_previous->next = m; 1377 1378 m_previous = m; 1379 1380 do { 1381 /* 1382 * Copy as many source buffers as will fit in the 1383 * destination buffer. 1384 */ 1385 copy_length = RTE_MIN((avp->guest_mbuf_size - 1386 rte_pktmbuf_data_len(m)), 1387 (pkt_buf->data_len - 1388 src_offset)); 1389 rte_memcpy(RTE_PTR_ADD(rte_pktmbuf_mtod(m, void *), 1390 rte_pktmbuf_data_len(m)), 1391 RTE_PTR_ADD(pkt_data, src_offset), 1392 copy_length); 1393 rte_pktmbuf_data_len(m) += copy_length; 1394 src_offset += copy_length; 1395 1396 if (likely(src_offset == pkt_buf->data_len)) { 1397 /* need a new source buffer */ 1398 buf = pkt_buf->next; 1399 if (buf != NULL) { 1400 pkt_buf = avp_dev_translate_buffer( 1401 avp, buf); 1402 pkt_data = avp_dev_translate_buffer( 1403 avp, pkt_buf->data); 1404 src_offset = 0; 1405 } 1406 } 1407 1408 if (unlikely(rte_pktmbuf_data_len(m) == 1409 avp->guest_mbuf_size)) { 1410 /* need a new destination mbuf */ 1411 break; 1412 } 1413 1414 } while (buf != NULL); 1415 } 1416 1417 m = mbufs[0]; 1418 m->ol_flags = ol_flags; 1419 m->nb_segs = count; 1420 rte_pktmbuf_pkt_len(m) = total_length; 1421 m->vlan_tci = vlan_tci; 1422 1423 __rte_mbuf_sanity_check(m, 1); 1424 1425 return m; 1426 } 1427 1428 static uint16_t 1429 avp_recv_scattered_pkts(void *rx_queue, 1430 struct rte_mbuf **rx_pkts, 1431 uint16_t nb_pkts) 1432 { 1433 struct avp_queue *rxq = (struct avp_queue *)rx_queue; 1434 struct rte_avp_desc *avp_bufs[AVP_MAX_RX_BURST]; 1435 struct rte_mbuf *mbufs[RTE_AVP_MAX_MBUF_SEGMENTS]; 1436 struct avp_dev *avp = rxq->avp; 1437 struct rte_avp_desc *pkt_buf; 1438 struct rte_avp_fifo *free_q; 1439 struct rte_avp_fifo *rx_q; 1440 struct rte_avp_desc *buf; 1441 unsigned int count, avail, n; 1442 unsigned int guest_mbuf_size; 1443 struct rte_mbuf *m; 1444 unsigned int required; 1445 unsigned int buf_len; 1446 unsigned int port_id; 1447 unsigned int i; 1448 1449 if (unlikely(avp->flags & AVP_F_DETACHED)) { 1450 /* VM live migration in progress */ 1451 return 0; 1452 } 1453 1454 guest_mbuf_size = avp->guest_mbuf_size; 1455 port_id = avp->port_id; 1456 rx_q = avp->rx_q[rxq->queue_id]; 1457 free_q = avp->free_q[rxq->queue_id]; 1458 1459 /* setup next queue to service */ 1460 rxq->queue_id = (rxq->queue_id < rxq->queue_limit) ? 1461 (rxq->queue_id + 1) : rxq->queue_base; 1462 1463 /* determine how many slots are available in the free queue */ 1464 count = avp_fifo_free_count(free_q); 1465 1466 /* determine how many packets are available in the rx queue */ 1467 avail = avp_fifo_count(rx_q); 1468 1469 /* determine how many packets can be received */ 1470 count = RTE_MIN(count, avail); 1471 count = RTE_MIN(count, nb_pkts); 1472 count = RTE_MIN(count, (unsigned int)AVP_MAX_RX_BURST); 1473 1474 if (unlikely(count == 0)) { 1475 /* no free buffers, or no buffers on the rx queue */ 1476 return 0; 1477 } 1478 1479 /* retrieve pending packets */ 1480 n = avp_fifo_get(rx_q, (void **)&avp_bufs, count); 1481 PMD_RX_LOG(DEBUG, "Receiving %u packets from Rx queue at %p\n", 1482 count, rx_q); 1483 1484 count = 0; 1485 for (i = 0; i < n; i++) { 1486 /* prefetch next entry while processing current one */ 1487 if (i + 1 < n) { 1488 pkt_buf = avp_dev_translate_buffer(avp, 1489 avp_bufs[i + 1]); 1490 rte_prefetch0(pkt_buf); 1491 } 1492 buf = avp_bufs[i]; 1493 1494 /* Peek into the first buffer to determine the total length */ 1495 pkt_buf = avp_dev_translate_buffer(avp, buf); 1496 buf_len = pkt_buf->pkt_len; 1497 1498 /* Allocate enough mbufs to receive the entire packet */ 1499 required = (buf_len + guest_mbuf_size - 1) / guest_mbuf_size; 1500 if (rte_pktmbuf_alloc_bulk(avp->pool, mbufs, required)) { 1501 rxq->dev_data->rx_mbuf_alloc_failed++; 1502 continue; 1503 } 1504 1505 /* Copy the data from the buffers to our mbufs */ 1506 m = avp_dev_copy_from_buffers(avp, buf, mbufs, required); 1507 1508 /* finalize mbuf */ 1509 m->port = port_id; 1510 1511 if (_avp_mac_filter(avp, m) != 0) { 1512 /* silently discard packets not destined to our MAC */ 1513 rte_pktmbuf_free(m); 1514 continue; 1515 } 1516 1517 /* return new mbuf to caller */ 1518 rx_pkts[count++] = m; 1519 rxq->bytes += buf_len; 1520 } 1521 1522 rxq->packets += count; 1523 1524 /* return the buffers to the free queue */ 1525 avp_fifo_put(free_q, (void **)&avp_bufs[0], n); 1526 1527 return count; 1528 } 1529 1530 1531 static uint16_t 1532 avp_recv_pkts(void *rx_queue, 1533 struct rte_mbuf **rx_pkts, 1534 uint16_t nb_pkts) 1535 { 1536 struct avp_queue *rxq = (struct avp_queue *)rx_queue; 1537 struct rte_avp_desc *avp_bufs[AVP_MAX_RX_BURST]; 1538 struct avp_dev *avp = rxq->avp; 1539 struct rte_avp_desc *pkt_buf; 1540 struct rte_avp_fifo *free_q; 1541 struct rte_avp_fifo *rx_q; 1542 unsigned int count, avail, n; 1543 unsigned int pkt_len; 1544 struct rte_mbuf *m; 1545 char *pkt_data; 1546 unsigned int i; 1547 1548 if (unlikely(avp->flags & AVP_F_DETACHED)) { 1549 /* VM live migration in progress */ 1550 return 0; 1551 } 1552 1553 rx_q = avp->rx_q[rxq->queue_id]; 1554 free_q = avp->free_q[rxq->queue_id]; 1555 1556 /* setup next queue to service */ 1557 rxq->queue_id = (rxq->queue_id < rxq->queue_limit) ? 1558 (rxq->queue_id + 1) : rxq->queue_base; 1559 1560 /* determine how many slots are available in the free queue */ 1561 count = avp_fifo_free_count(free_q); 1562 1563 /* determine how many packets are available in the rx queue */ 1564 avail = avp_fifo_count(rx_q); 1565 1566 /* determine how many packets can be received */ 1567 count = RTE_MIN(count, avail); 1568 count = RTE_MIN(count, nb_pkts); 1569 count = RTE_MIN(count, (unsigned int)AVP_MAX_RX_BURST); 1570 1571 if (unlikely(count == 0)) { 1572 /* no free buffers, or no buffers on the rx queue */ 1573 return 0; 1574 } 1575 1576 /* retrieve pending packets */ 1577 n = avp_fifo_get(rx_q, (void **)&avp_bufs, count); 1578 PMD_RX_LOG(DEBUG, "Receiving %u packets from Rx queue at %p\n", 1579 count, rx_q); 1580 1581 count = 0; 1582 for (i = 0; i < n; i++) { 1583 /* prefetch next entry while processing current one */ 1584 if (i < n - 1) { 1585 pkt_buf = avp_dev_translate_buffer(avp, 1586 avp_bufs[i + 1]); 1587 rte_prefetch0(pkt_buf); 1588 } 1589 1590 /* Adjust host pointers for guest addressing */ 1591 pkt_buf = avp_dev_translate_buffer(avp, avp_bufs[i]); 1592 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data); 1593 pkt_len = pkt_buf->pkt_len; 1594 1595 if (unlikely((pkt_len > avp->guest_mbuf_size) || 1596 (pkt_buf->nb_segs > 1))) { 1597 /* 1598 * application should be using the scattered receive 1599 * function 1600 */ 1601 rxq->errors++; 1602 continue; 1603 } 1604 1605 /* process each packet to be transmitted */ 1606 m = rte_pktmbuf_alloc(avp->pool); 1607 if (unlikely(m == NULL)) { 1608 rxq->dev_data->rx_mbuf_alloc_failed++; 1609 continue; 1610 } 1611 1612 /* copy data out of the host buffer to our buffer */ 1613 m->data_off = RTE_PKTMBUF_HEADROOM; 1614 rte_memcpy(rte_pktmbuf_mtod(m, void *), pkt_data, pkt_len); 1615 1616 /* initialize the local mbuf */ 1617 rte_pktmbuf_data_len(m) = pkt_len; 1618 rte_pktmbuf_pkt_len(m) = pkt_len; 1619 m->port = avp->port_id; 1620 1621 if (pkt_buf->ol_flags & RTE_AVP_RX_VLAN_PKT) { 1622 m->ol_flags = PKT_RX_VLAN_PKT; 1623 m->vlan_tci = pkt_buf->vlan_tci; 1624 } 1625 1626 if (_avp_mac_filter(avp, m) != 0) { 1627 /* silently discard packets not destined to our MAC */ 1628 rte_pktmbuf_free(m); 1629 continue; 1630 } 1631 1632 /* return new mbuf to caller */ 1633 rx_pkts[count++] = m; 1634 rxq->bytes += pkt_len; 1635 } 1636 1637 rxq->packets += count; 1638 1639 /* return the buffers to the free queue */ 1640 avp_fifo_put(free_q, (void **)&avp_bufs[0], n); 1641 1642 return count; 1643 } 1644 1645 /* 1646 * Copy a chained mbuf to a set of host buffers. This function assumes that 1647 * there are sufficient destination buffers to contain the entire source 1648 * packet. 1649 */ 1650 static inline uint16_t 1651 avp_dev_copy_to_buffers(struct avp_dev *avp, 1652 struct rte_mbuf *mbuf, 1653 struct rte_avp_desc **buffers, 1654 unsigned int count) 1655 { 1656 struct rte_avp_desc *previous_buf = NULL; 1657 struct rte_avp_desc *first_buf = NULL; 1658 struct rte_avp_desc *pkt_buf; 1659 struct rte_avp_desc *buf; 1660 size_t total_length; 1661 struct rte_mbuf *m; 1662 size_t copy_length; 1663 size_t src_offset; 1664 char *pkt_data; 1665 unsigned int i; 1666 1667 __rte_mbuf_sanity_check(mbuf, 1); 1668 1669 m = mbuf; 1670 src_offset = 0; 1671 total_length = rte_pktmbuf_pkt_len(m); 1672 for (i = 0; (i < count) && (m != NULL); i++) { 1673 /* fill each destination buffer */ 1674 buf = buffers[i]; 1675 1676 if (i < count - 1) { 1677 /* prefetch next entry while processing this one */ 1678 pkt_buf = avp_dev_translate_buffer(avp, buffers[i + 1]); 1679 rte_prefetch0(pkt_buf); 1680 } 1681 1682 /* Adjust pointers for guest addressing */ 1683 pkt_buf = avp_dev_translate_buffer(avp, buf); 1684 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data); 1685 1686 /* setup the buffer chain */ 1687 if (previous_buf != NULL) 1688 previous_buf->next = buf; 1689 else 1690 first_buf = pkt_buf; 1691 1692 previous_buf = pkt_buf; 1693 1694 do { 1695 /* 1696 * copy as many source mbuf segments as will fit in the 1697 * destination buffer. 1698 */ 1699 copy_length = RTE_MIN((avp->host_mbuf_size - 1700 pkt_buf->data_len), 1701 (rte_pktmbuf_data_len(m) - 1702 src_offset)); 1703 rte_memcpy(RTE_PTR_ADD(pkt_data, pkt_buf->data_len), 1704 RTE_PTR_ADD(rte_pktmbuf_mtod(m, void *), 1705 src_offset), 1706 copy_length); 1707 pkt_buf->data_len += copy_length; 1708 src_offset += copy_length; 1709 1710 if (likely(src_offset == rte_pktmbuf_data_len(m))) { 1711 /* need a new source buffer */ 1712 m = m->next; 1713 src_offset = 0; 1714 } 1715 1716 if (unlikely(pkt_buf->data_len == 1717 avp->host_mbuf_size)) { 1718 /* need a new destination buffer */ 1719 break; 1720 } 1721 1722 } while (m != NULL); 1723 } 1724 1725 first_buf->nb_segs = count; 1726 first_buf->pkt_len = total_length; 1727 1728 if (mbuf->ol_flags & PKT_TX_VLAN_PKT) { 1729 first_buf->ol_flags |= RTE_AVP_TX_VLAN_PKT; 1730 first_buf->vlan_tci = mbuf->vlan_tci; 1731 } 1732 1733 avp_dev_buffer_sanity_check(avp, buffers[0]); 1734 1735 return total_length; 1736 } 1737 1738 1739 static uint16_t 1740 avp_xmit_scattered_pkts(void *tx_queue, 1741 struct rte_mbuf **tx_pkts, 1742 uint16_t nb_pkts) 1743 { 1744 struct rte_avp_desc *avp_bufs[(AVP_MAX_TX_BURST * 1745 RTE_AVP_MAX_MBUF_SEGMENTS)]; 1746 struct avp_queue *txq = (struct avp_queue *)tx_queue; 1747 struct rte_avp_desc *tx_bufs[AVP_MAX_TX_BURST]; 1748 struct avp_dev *avp = txq->avp; 1749 struct rte_avp_fifo *alloc_q; 1750 struct rte_avp_fifo *tx_q; 1751 unsigned int count, avail, n; 1752 unsigned int orig_nb_pkts; 1753 struct rte_mbuf *m; 1754 unsigned int required; 1755 unsigned int segments; 1756 unsigned int tx_bytes; 1757 unsigned int i; 1758 1759 orig_nb_pkts = nb_pkts; 1760 if (unlikely(avp->flags & AVP_F_DETACHED)) { 1761 /* VM live migration in progress */ 1762 /* TODO ... buffer for X packets then drop? */ 1763 txq->errors += nb_pkts; 1764 return 0; 1765 } 1766 1767 tx_q = avp->tx_q[txq->queue_id]; 1768 alloc_q = avp->alloc_q[txq->queue_id]; 1769 1770 /* limit the number of transmitted packets to the max burst size */ 1771 if (unlikely(nb_pkts > AVP_MAX_TX_BURST)) 1772 nb_pkts = AVP_MAX_TX_BURST; 1773 1774 /* determine how many buffers are available to copy into */ 1775 avail = avp_fifo_count(alloc_q); 1776 if (unlikely(avail > (AVP_MAX_TX_BURST * 1777 RTE_AVP_MAX_MBUF_SEGMENTS))) 1778 avail = AVP_MAX_TX_BURST * RTE_AVP_MAX_MBUF_SEGMENTS; 1779 1780 /* determine how many slots are available in the transmit queue */ 1781 count = avp_fifo_free_count(tx_q); 1782 1783 /* determine how many packets can be sent */ 1784 nb_pkts = RTE_MIN(count, nb_pkts); 1785 1786 /* determine how many packets will fit in the available buffers */ 1787 count = 0; 1788 segments = 0; 1789 for (i = 0; i < nb_pkts; i++) { 1790 m = tx_pkts[i]; 1791 if (likely(i < (unsigned int)nb_pkts - 1)) { 1792 /* prefetch next entry while processing this one */ 1793 rte_prefetch0(tx_pkts[i + 1]); 1794 } 1795 required = (rte_pktmbuf_pkt_len(m) + avp->host_mbuf_size - 1) / 1796 avp->host_mbuf_size; 1797 1798 if (unlikely((required == 0) || 1799 (required > RTE_AVP_MAX_MBUF_SEGMENTS))) 1800 break; 1801 else if (unlikely(required + segments > avail)) 1802 break; 1803 segments += required; 1804 count++; 1805 } 1806 nb_pkts = count; 1807 1808 if (unlikely(nb_pkts == 0)) { 1809 /* no available buffers, or no space on the tx queue */ 1810 txq->errors += orig_nb_pkts; 1811 return 0; 1812 } 1813 1814 PMD_TX_LOG(DEBUG, "Sending %u packets on Tx queue at %p\n", 1815 nb_pkts, tx_q); 1816 1817 /* retrieve sufficient send buffers */ 1818 n = avp_fifo_get(alloc_q, (void **)&avp_bufs, segments); 1819 if (unlikely(n != segments)) { 1820 PMD_TX_LOG(DEBUG, "Failed to allocate buffers " 1821 "n=%u, segments=%u, orig=%u\n", 1822 n, segments, orig_nb_pkts); 1823 txq->errors += orig_nb_pkts; 1824 return 0; 1825 } 1826 1827 tx_bytes = 0; 1828 count = 0; 1829 for (i = 0; i < nb_pkts; i++) { 1830 /* process each packet to be transmitted */ 1831 m = tx_pkts[i]; 1832 1833 /* determine how many buffers are required for this packet */ 1834 required = (rte_pktmbuf_pkt_len(m) + avp->host_mbuf_size - 1) / 1835 avp->host_mbuf_size; 1836 1837 tx_bytes += avp_dev_copy_to_buffers(avp, m, 1838 &avp_bufs[count], required); 1839 tx_bufs[i] = avp_bufs[count]; 1840 count += required; 1841 1842 /* free the original mbuf */ 1843 rte_pktmbuf_free(m); 1844 } 1845 1846 txq->packets += nb_pkts; 1847 txq->bytes += tx_bytes; 1848 1849 #ifdef RTE_LIBRTE_AVP_DEBUG_BUFFERS 1850 for (i = 0; i < nb_pkts; i++) 1851 avp_dev_buffer_sanity_check(avp, tx_bufs[i]); 1852 #endif 1853 1854 /* send the packets */ 1855 n = avp_fifo_put(tx_q, (void **)&tx_bufs[0], nb_pkts); 1856 if (unlikely(n != orig_nb_pkts)) 1857 txq->errors += (orig_nb_pkts - n); 1858 1859 return n; 1860 } 1861 1862 1863 static uint16_t 1864 avp_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) 1865 { 1866 struct avp_queue *txq = (struct avp_queue *)tx_queue; 1867 struct rte_avp_desc *avp_bufs[AVP_MAX_TX_BURST]; 1868 struct avp_dev *avp = txq->avp; 1869 struct rte_avp_desc *pkt_buf; 1870 struct rte_avp_fifo *alloc_q; 1871 struct rte_avp_fifo *tx_q; 1872 unsigned int count, avail, n; 1873 struct rte_mbuf *m; 1874 unsigned int pkt_len; 1875 unsigned int tx_bytes; 1876 char *pkt_data; 1877 unsigned int i; 1878 1879 if (unlikely(avp->flags & AVP_F_DETACHED)) { 1880 /* VM live migration in progress */ 1881 /* TODO ... buffer for X packets then drop?! */ 1882 txq->errors++; 1883 return 0; 1884 } 1885 1886 tx_q = avp->tx_q[txq->queue_id]; 1887 alloc_q = avp->alloc_q[txq->queue_id]; 1888 1889 /* limit the number of transmitted packets to the max burst size */ 1890 if (unlikely(nb_pkts > AVP_MAX_TX_BURST)) 1891 nb_pkts = AVP_MAX_TX_BURST; 1892 1893 /* determine how many buffers are available to copy into */ 1894 avail = avp_fifo_count(alloc_q); 1895 1896 /* determine how many slots are available in the transmit queue */ 1897 count = avp_fifo_free_count(tx_q); 1898 1899 /* determine how many packets can be sent */ 1900 count = RTE_MIN(count, avail); 1901 count = RTE_MIN(count, nb_pkts); 1902 1903 if (unlikely(count == 0)) { 1904 /* no available buffers, or no space on the tx queue */ 1905 txq->errors += nb_pkts; 1906 return 0; 1907 } 1908 1909 PMD_TX_LOG(DEBUG, "Sending %u packets on Tx queue at %p\n", 1910 count, tx_q); 1911 1912 /* retrieve sufficient send buffers */ 1913 n = avp_fifo_get(alloc_q, (void **)&avp_bufs, count); 1914 if (unlikely(n != count)) { 1915 txq->errors++; 1916 return 0; 1917 } 1918 1919 tx_bytes = 0; 1920 for (i = 0; i < count; i++) { 1921 /* prefetch next entry while processing the current one */ 1922 if (i < count - 1) { 1923 pkt_buf = avp_dev_translate_buffer(avp, 1924 avp_bufs[i + 1]); 1925 rte_prefetch0(pkt_buf); 1926 } 1927 1928 /* process each packet to be transmitted */ 1929 m = tx_pkts[i]; 1930 1931 /* Adjust pointers for guest addressing */ 1932 pkt_buf = avp_dev_translate_buffer(avp, avp_bufs[i]); 1933 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data); 1934 pkt_len = rte_pktmbuf_pkt_len(m); 1935 1936 if (unlikely((pkt_len > avp->guest_mbuf_size) || 1937 (pkt_len > avp->host_mbuf_size))) { 1938 /* 1939 * application should be using the scattered transmit 1940 * function; send it truncated to avoid the performance 1941 * hit of having to manage returning the already 1942 * allocated buffer to the free list. This should not 1943 * happen since the application should have set the 1944 * max_rx_pkt_len based on its MTU and it should be 1945 * policing its own packet sizes. 1946 */ 1947 txq->errors++; 1948 pkt_len = RTE_MIN(avp->guest_mbuf_size, 1949 avp->host_mbuf_size); 1950 } 1951 1952 /* copy data out of our mbuf and into the AVP buffer */ 1953 rte_memcpy(pkt_data, rte_pktmbuf_mtod(m, void *), pkt_len); 1954 pkt_buf->pkt_len = pkt_len; 1955 pkt_buf->data_len = pkt_len; 1956 pkt_buf->nb_segs = 1; 1957 pkt_buf->next = NULL; 1958 1959 if (m->ol_flags & PKT_TX_VLAN_PKT) { 1960 pkt_buf->ol_flags |= RTE_AVP_TX_VLAN_PKT; 1961 pkt_buf->vlan_tci = m->vlan_tci; 1962 } 1963 1964 tx_bytes += pkt_len; 1965 1966 /* free the original mbuf */ 1967 rte_pktmbuf_free(m); 1968 } 1969 1970 txq->packets += count; 1971 txq->bytes += tx_bytes; 1972 1973 /* send the packets */ 1974 n = avp_fifo_put(tx_q, (void **)&avp_bufs[0], count); 1975 1976 return n; 1977 } 1978 1979 static void 1980 avp_dev_rx_queue_release(void *rx_queue) 1981 { 1982 struct avp_queue *rxq = (struct avp_queue *)rx_queue; 1983 struct avp_dev *avp = rxq->avp; 1984 struct rte_eth_dev_data *data = avp->dev_data; 1985 unsigned int i; 1986 1987 for (i = 0; i < avp->num_rx_queues; i++) { 1988 if (data->rx_queues[i] == rxq) 1989 data->rx_queues[i] = NULL; 1990 } 1991 } 1992 1993 static void 1994 avp_dev_tx_queue_release(void *tx_queue) 1995 { 1996 struct avp_queue *txq = (struct avp_queue *)tx_queue; 1997 struct avp_dev *avp = txq->avp; 1998 struct rte_eth_dev_data *data = avp->dev_data; 1999 unsigned int i; 2000 2001 for (i = 0; i < avp->num_tx_queues; i++) { 2002 if (data->tx_queues[i] == txq) 2003 data->tx_queues[i] = NULL; 2004 } 2005 } 2006 2007 static int 2008 avp_dev_configure(struct rte_eth_dev *eth_dev) 2009 { 2010 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 2011 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2012 struct rte_avp_device_info *host_info; 2013 struct rte_avp_device_config config; 2014 int mask = 0; 2015 void *addr; 2016 int ret; 2017 2018 rte_spinlock_lock(&avp->lock); 2019 if (avp->flags & AVP_F_DETACHED) { 2020 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n"); 2021 ret = -ENOTSUP; 2022 goto unlock; 2023 } 2024 2025 addr = pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR].addr; 2026 host_info = (struct rte_avp_device_info *)addr; 2027 2028 /* Setup required number of queues */ 2029 _avp_set_queue_counts(eth_dev); 2030 2031 mask = (ETH_VLAN_STRIP_MASK | 2032 ETH_VLAN_FILTER_MASK | 2033 ETH_VLAN_EXTEND_MASK); 2034 avp_vlan_offload_set(eth_dev, mask); 2035 2036 /* update device config */ 2037 memset(&config, 0, sizeof(config)); 2038 config.device_id = host_info->device_id; 2039 config.driver_type = RTE_AVP_DRIVER_TYPE_DPDK; 2040 config.driver_version = AVP_DPDK_DRIVER_VERSION; 2041 config.features = avp->features; 2042 config.num_tx_queues = avp->num_tx_queues; 2043 config.num_rx_queues = avp->num_rx_queues; 2044 2045 ret = avp_dev_ctrl_set_config(eth_dev, &config); 2046 if (ret < 0) { 2047 PMD_DRV_LOG(ERR, "Config request failed by host, ret=%d\n", 2048 ret); 2049 goto unlock; 2050 } 2051 2052 avp->flags |= AVP_F_CONFIGURED; 2053 ret = 0; 2054 2055 unlock: 2056 rte_spinlock_unlock(&avp->lock); 2057 return ret; 2058 } 2059 2060 static int 2061 avp_dev_start(struct rte_eth_dev *eth_dev) 2062 { 2063 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2064 int ret; 2065 2066 rte_spinlock_lock(&avp->lock); 2067 if (avp->flags & AVP_F_DETACHED) { 2068 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n"); 2069 ret = -ENOTSUP; 2070 goto unlock; 2071 } 2072 2073 /* disable features that we do not support */ 2074 eth_dev->data->dev_conf.rxmode.hw_ip_checksum = 0; 2075 eth_dev->data->dev_conf.rxmode.hw_vlan_filter = 0; 2076 eth_dev->data->dev_conf.rxmode.hw_vlan_extend = 0; 2077 eth_dev->data->dev_conf.rxmode.hw_strip_crc = 0; 2078 2079 /* update link state */ 2080 ret = avp_dev_ctrl_set_link_state(eth_dev, 1); 2081 if (ret < 0) { 2082 PMD_DRV_LOG(ERR, "Link state change failed by host, ret=%d\n", 2083 ret); 2084 goto unlock; 2085 } 2086 2087 /* remember current link state */ 2088 avp->flags |= AVP_F_LINKUP; 2089 2090 ret = 0; 2091 2092 unlock: 2093 rte_spinlock_unlock(&avp->lock); 2094 return ret; 2095 } 2096 2097 static void 2098 avp_dev_stop(struct rte_eth_dev *eth_dev) 2099 { 2100 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2101 int ret; 2102 2103 rte_spinlock_lock(&avp->lock); 2104 if (avp->flags & AVP_F_DETACHED) { 2105 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n"); 2106 goto unlock; 2107 } 2108 2109 /* remember current link state */ 2110 avp->flags &= ~AVP_F_LINKUP; 2111 2112 /* update link state */ 2113 ret = avp_dev_ctrl_set_link_state(eth_dev, 0); 2114 if (ret < 0) { 2115 PMD_DRV_LOG(ERR, "Link state change failed by host, ret=%d\n", 2116 ret); 2117 } 2118 2119 unlock: 2120 rte_spinlock_unlock(&avp->lock); 2121 } 2122 2123 static void 2124 avp_dev_close(struct rte_eth_dev *eth_dev) 2125 { 2126 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2127 int ret; 2128 2129 rte_spinlock_lock(&avp->lock); 2130 if (avp->flags & AVP_F_DETACHED) { 2131 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n"); 2132 goto unlock; 2133 } 2134 2135 /* remember current link state */ 2136 avp->flags &= ~AVP_F_LINKUP; 2137 avp->flags &= ~AVP_F_CONFIGURED; 2138 2139 ret = avp_dev_disable_interrupts(eth_dev); 2140 if (ret < 0) { 2141 PMD_DRV_LOG(ERR, "Failed to disable interrupts\n"); 2142 /* continue */ 2143 } 2144 2145 /* update device state */ 2146 ret = avp_dev_ctrl_shutdown(eth_dev); 2147 if (ret < 0) { 2148 PMD_DRV_LOG(ERR, "Device shutdown failed by host, ret=%d\n", 2149 ret); 2150 /* continue */ 2151 } 2152 2153 unlock: 2154 rte_spinlock_unlock(&avp->lock); 2155 } 2156 2157 static int 2158 avp_dev_link_update(struct rte_eth_dev *eth_dev, 2159 __rte_unused int wait_to_complete) 2160 { 2161 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2162 struct rte_eth_link *link = ð_dev->data->dev_link; 2163 2164 link->link_speed = ETH_SPEED_NUM_10G; 2165 link->link_duplex = ETH_LINK_FULL_DUPLEX; 2166 link->link_status = !!(avp->flags & AVP_F_LINKUP); 2167 2168 return -1; 2169 } 2170 2171 static void 2172 avp_dev_promiscuous_enable(struct rte_eth_dev *eth_dev) 2173 { 2174 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2175 2176 rte_spinlock_lock(&avp->lock); 2177 if ((avp->flags & AVP_F_PROMISC) == 0) { 2178 avp->flags |= AVP_F_PROMISC; 2179 PMD_DRV_LOG(DEBUG, "Promiscuous mode enabled on %u\n", 2180 eth_dev->data->port_id); 2181 } 2182 rte_spinlock_unlock(&avp->lock); 2183 } 2184 2185 static void 2186 avp_dev_promiscuous_disable(struct rte_eth_dev *eth_dev) 2187 { 2188 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2189 2190 rte_spinlock_lock(&avp->lock); 2191 if ((avp->flags & AVP_F_PROMISC) != 0) { 2192 avp->flags &= ~AVP_F_PROMISC; 2193 PMD_DRV_LOG(DEBUG, "Promiscuous mode disabled on %u\n", 2194 eth_dev->data->port_id); 2195 } 2196 rte_spinlock_unlock(&avp->lock); 2197 } 2198 2199 static void 2200 avp_dev_info_get(struct rte_eth_dev *eth_dev, 2201 struct rte_eth_dev_info *dev_info) 2202 { 2203 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2204 2205 dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 2206 dev_info->max_rx_queues = avp->max_rx_queues; 2207 dev_info->max_tx_queues = avp->max_tx_queues; 2208 dev_info->min_rx_bufsize = AVP_MIN_RX_BUFSIZE; 2209 dev_info->max_rx_pktlen = avp->max_rx_pkt_len; 2210 dev_info->max_mac_addrs = AVP_MAX_MAC_ADDRS; 2211 if (avp->host_features & RTE_AVP_FEATURE_VLAN_OFFLOAD) { 2212 dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP; 2213 dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT; 2214 } 2215 } 2216 2217 static void 2218 avp_vlan_offload_set(struct rte_eth_dev *eth_dev, int mask) 2219 { 2220 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2221 2222 if (mask & ETH_VLAN_STRIP_MASK) { 2223 if (avp->host_features & RTE_AVP_FEATURE_VLAN_OFFLOAD) { 2224 if (eth_dev->data->dev_conf.rxmode.hw_vlan_strip) 2225 avp->features |= RTE_AVP_FEATURE_VLAN_OFFLOAD; 2226 else 2227 avp->features &= ~RTE_AVP_FEATURE_VLAN_OFFLOAD; 2228 } else { 2229 PMD_DRV_LOG(ERR, "VLAN strip offload not supported\n"); 2230 } 2231 } 2232 2233 if (mask & ETH_VLAN_FILTER_MASK) { 2234 if (eth_dev->data->dev_conf.rxmode.hw_vlan_filter) 2235 PMD_DRV_LOG(ERR, "VLAN filter offload not supported\n"); 2236 } 2237 2238 if (mask & ETH_VLAN_EXTEND_MASK) { 2239 if (eth_dev->data->dev_conf.rxmode.hw_vlan_extend) 2240 PMD_DRV_LOG(ERR, "VLAN extend offload not supported\n"); 2241 } 2242 } 2243 2244 static void 2245 avp_dev_stats_get(struct rte_eth_dev *eth_dev, struct rte_eth_stats *stats) 2246 { 2247 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2248 unsigned int i; 2249 2250 for (i = 0; i < avp->num_rx_queues; i++) { 2251 struct avp_queue *rxq = avp->dev_data->rx_queues[i]; 2252 2253 if (rxq) { 2254 stats->ipackets += rxq->packets; 2255 stats->ibytes += rxq->bytes; 2256 stats->ierrors += rxq->errors; 2257 2258 stats->q_ipackets[i] += rxq->packets; 2259 stats->q_ibytes[i] += rxq->bytes; 2260 stats->q_errors[i] += rxq->errors; 2261 } 2262 } 2263 2264 for (i = 0; i < avp->num_tx_queues; i++) { 2265 struct avp_queue *txq = avp->dev_data->tx_queues[i]; 2266 2267 if (txq) { 2268 stats->opackets += txq->packets; 2269 stats->obytes += txq->bytes; 2270 stats->oerrors += txq->errors; 2271 2272 stats->q_opackets[i] += txq->packets; 2273 stats->q_obytes[i] += txq->bytes; 2274 stats->q_errors[i] += txq->errors; 2275 } 2276 } 2277 } 2278 2279 static void 2280 avp_dev_stats_reset(struct rte_eth_dev *eth_dev) 2281 { 2282 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2283 unsigned int i; 2284 2285 for (i = 0; i < avp->num_rx_queues; i++) { 2286 struct avp_queue *rxq = avp->dev_data->rx_queues[i]; 2287 2288 if (rxq) { 2289 rxq->bytes = 0; 2290 rxq->packets = 0; 2291 rxq->errors = 0; 2292 } 2293 } 2294 2295 for (i = 0; i < avp->num_tx_queues; i++) { 2296 struct avp_queue *txq = avp->dev_data->tx_queues[i]; 2297 2298 if (txq) { 2299 txq->bytes = 0; 2300 txq->packets = 0; 2301 txq->errors = 0; 2302 } 2303 } 2304 } 2305 2306 RTE_PMD_REGISTER_PCI(net_avp, rte_avp_pmd); 2307 RTE_PMD_REGISTER_PCI_TABLE(net_avp, pci_id_avp_map); 2308