1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2013-2017 Wind River Systems, Inc. 3 */ 4 5 #include <stdint.h> 6 #include <string.h> 7 #include <stdio.h> 8 #include <errno.h> 9 #include <unistd.h> 10 11 #include <rte_ethdev_driver.h> 12 #include <rte_ethdev_pci.h> 13 #include <rte_memcpy.h> 14 #include <rte_string_fns.h> 15 #include <rte_malloc.h> 16 #include <rte_atomic.h> 17 #include <rte_branch_prediction.h> 18 #include <rte_pci.h> 19 #include <rte_bus_pci.h> 20 #include <rte_ether.h> 21 #include <rte_common.h> 22 #include <rte_cycles.h> 23 #include <rte_spinlock.h> 24 #include <rte_byteorder.h> 25 #include <rte_dev.h> 26 #include <rte_memory.h> 27 #include <rte_eal.h> 28 #include <rte_io.h> 29 30 #include "rte_avp_common.h" 31 #include "rte_avp_fifo.h" 32 33 #include "avp_logs.h" 34 35 int avp_logtype_driver; 36 37 static int avp_dev_create(struct rte_pci_device *pci_dev, 38 struct rte_eth_dev *eth_dev); 39 40 static int avp_dev_configure(struct rte_eth_dev *dev); 41 static int avp_dev_start(struct rte_eth_dev *dev); 42 static void avp_dev_stop(struct rte_eth_dev *dev); 43 static void avp_dev_close(struct rte_eth_dev *dev); 44 static void avp_dev_info_get(struct rte_eth_dev *dev, 45 struct rte_eth_dev_info *dev_info); 46 static int avp_vlan_offload_set(struct rte_eth_dev *dev, int mask); 47 static int avp_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete); 48 static void avp_dev_promiscuous_enable(struct rte_eth_dev *dev); 49 static void avp_dev_promiscuous_disable(struct rte_eth_dev *dev); 50 51 static int avp_dev_rx_queue_setup(struct rte_eth_dev *dev, 52 uint16_t rx_queue_id, 53 uint16_t nb_rx_desc, 54 unsigned int socket_id, 55 const struct rte_eth_rxconf *rx_conf, 56 struct rte_mempool *pool); 57 58 static int avp_dev_tx_queue_setup(struct rte_eth_dev *dev, 59 uint16_t tx_queue_id, 60 uint16_t nb_tx_desc, 61 unsigned int socket_id, 62 const struct rte_eth_txconf *tx_conf); 63 64 static uint16_t avp_recv_scattered_pkts(void *rx_queue, 65 struct rte_mbuf **rx_pkts, 66 uint16_t nb_pkts); 67 68 static uint16_t avp_recv_pkts(void *rx_queue, 69 struct rte_mbuf **rx_pkts, 70 uint16_t nb_pkts); 71 72 static uint16_t avp_xmit_scattered_pkts(void *tx_queue, 73 struct rte_mbuf **tx_pkts, 74 uint16_t nb_pkts); 75 76 static uint16_t avp_xmit_pkts(void *tx_queue, 77 struct rte_mbuf **tx_pkts, 78 uint16_t nb_pkts); 79 80 static void avp_dev_rx_queue_release(void *rxq); 81 static void avp_dev_tx_queue_release(void *txq); 82 83 static int avp_dev_stats_get(struct rte_eth_dev *dev, 84 struct rte_eth_stats *stats); 85 static void avp_dev_stats_reset(struct rte_eth_dev *dev); 86 87 88 #define AVP_MAX_RX_BURST 64 89 #define AVP_MAX_TX_BURST 64 90 #define AVP_MAX_MAC_ADDRS 1 91 #define AVP_MIN_RX_BUFSIZE ETHER_MIN_LEN 92 93 94 /* 95 * Defines the number of microseconds to wait before checking the response 96 * queue for completion. 97 */ 98 #define AVP_REQUEST_DELAY_USECS (5000) 99 100 /* 101 * Defines the number times to check the response queue for completion before 102 * declaring a timeout. 103 */ 104 #define AVP_MAX_REQUEST_RETRY (100) 105 106 /* Defines the current PCI driver version number */ 107 #define AVP_DPDK_DRIVER_VERSION RTE_AVP_CURRENT_GUEST_VERSION 108 109 /* 110 * The set of PCI devices this driver supports 111 */ 112 static const struct rte_pci_id pci_id_avp_map[] = { 113 { .vendor_id = RTE_AVP_PCI_VENDOR_ID, 114 .device_id = RTE_AVP_PCI_DEVICE_ID, 115 .subsystem_vendor_id = RTE_AVP_PCI_SUB_VENDOR_ID, 116 .subsystem_device_id = RTE_AVP_PCI_SUB_DEVICE_ID, 117 .class_id = RTE_CLASS_ANY_ID, 118 }, 119 120 { .vendor_id = 0, /* sentinel */ 121 }, 122 }; 123 124 /* 125 * dev_ops for avp, bare necessities for basic operation 126 */ 127 static const struct eth_dev_ops avp_eth_dev_ops = { 128 .dev_configure = avp_dev_configure, 129 .dev_start = avp_dev_start, 130 .dev_stop = avp_dev_stop, 131 .dev_close = avp_dev_close, 132 .dev_infos_get = avp_dev_info_get, 133 .vlan_offload_set = avp_vlan_offload_set, 134 .stats_get = avp_dev_stats_get, 135 .stats_reset = avp_dev_stats_reset, 136 .link_update = avp_dev_link_update, 137 .promiscuous_enable = avp_dev_promiscuous_enable, 138 .promiscuous_disable = avp_dev_promiscuous_disable, 139 .rx_queue_setup = avp_dev_rx_queue_setup, 140 .rx_queue_release = avp_dev_rx_queue_release, 141 .tx_queue_setup = avp_dev_tx_queue_setup, 142 .tx_queue_release = avp_dev_tx_queue_release, 143 }; 144 145 /**@{ AVP device flags */ 146 #define AVP_F_PROMISC (1 << 1) 147 #define AVP_F_CONFIGURED (1 << 2) 148 #define AVP_F_LINKUP (1 << 3) 149 #define AVP_F_DETACHED (1 << 4) 150 /**@} */ 151 152 /* Ethernet device validation marker */ 153 #define AVP_ETHDEV_MAGIC 0x92972862 154 155 /* 156 * Defines the AVP device attributes which are attached to an RTE ethernet 157 * device 158 */ 159 struct avp_dev { 160 uint32_t magic; /**< Memory validation marker */ 161 uint64_t device_id; /**< Unique system identifier */ 162 struct ether_addr ethaddr; /**< Host specified MAC address */ 163 struct rte_eth_dev_data *dev_data; 164 /**< Back pointer to ethernet device data */ 165 volatile uint32_t flags; /**< Device operational flags */ 166 uint16_t port_id; /**< Ethernet port identifier */ 167 struct rte_mempool *pool; /**< pkt mbuf mempool */ 168 unsigned int guest_mbuf_size; /**< local pool mbuf size */ 169 unsigned int host_mbuf_size; /**< host mbuf size */ 170 unsigned int max_rx_pkt_len; /**< maximum receive unit */ 171 uint32_t host_features; /**< Supported feature bitmap */ 172 uint32_t features; /**< Enabled feature bitmap */ 173 unsigned int num_tx_queues; /**< Negotiated number of transmit queues */ 174 unsigned int max_tx_queues; /**< Maximum number of transmit queues */ 175 unsigned int num_rx_queues; /**< Negotiated number of receive queues */ 176 unsigned int max_rx_queues; /**< Maximum number of receive queues */ 177 178 struct rte_avp_fifo *tx_q[RTE_AVP_MAX_QUEUES]; /**< TX queue */ 179 struct rte_avp_fifo *rx_q[RTE_AVP_MAX_QUEUES]; /**< RX queue */ 180 struct rte_avp_fifo *alloc_q[RTE_AVP_MAX_QUEUES]; 181 /**< Allocated mbufs queue */ 182 struct rte_avp_fifo *free_q[RTE_AVP_MAX_QUEUES]; 183 /**< To be freed mbufs queue */ 184 185 /* mutual exclusion over the 'flag' and 'resp_q/req_q' fields */ 186 rte_spinlock_t lock; 187 188 /* For request & response */ 189 struct rte_avp_fifo *req_q; /**< Request queue */ 190 struct rte_avp_fifo *resp_q; /**< Response queue */ 191 void *host_sync_addr; /**< (host) Req/Resp Mem address */ 192 void *sync_addr; /**< Req/Resp Mem address */ 193 void *host_mbuf_addr; /**< (host) MBUF pool start address */ 194 void *mbuf_addr; /**< MBUF pool start address */ 195 } __rte_cache_aligned; 196 197 /* RTE ethernet private data */ 198 struct avp_adapter { 199 struct avp_dev avp; 200 } __rte_cache_aligned; 201 202 203 /* 32-bit MMIO register write */ 204 #define AVP_WRITE32(_value, _addr) rte_write32_relaxed((_value), (_addr)) 205 206 /* 32-bit MMIO register read */ 207 #define AVP_READ32(_addr) rte_read32_relaxed((_addr)) 208 209 /* Macro to cast the ethernet device private data to a AVP object */ 210 #define AVP_DEV_PRIVATE_TO_HW(adapter) \ 211 (&((struct avp_adapter *)adapter)->avp) 212 213 /* 214 * Defines the structure of a AVP device queue for the purpose of handling the 215 * receive and transmit burst callback functions 216 */ 217 struct avp_queue { 218 struct rte_eth_dev_data *dev_data; 219 /**< Backpointer to ethernet device data */ 220 struct avp_dev *avp; /**< Backpointer to AVP device */ 221 uint16_t queue_id; 222 /**< Queue identifier used for indexing current queue */ 223 uint16_t queue_base; 224 /**< Base queue identifier for queue servicing */ 225 uint16_t queue_limit; 226 /**< Maximum queue identifier for queue servicing */ 227 228 uint64_t packets; 229 uint64_t bytes; 230 uint64_t errors; 231 }; 232 233 /* send a request and wait for a response 234 * 235 * @warning must be called while holding the avp->lock spinlock. 236 */ 237 static int 238 avp_dev_process_request(struct avp_dev *avp, struct rte_avp_request *request) 239 { 240 unsigned int retry = AVP_MAX_REQUEST_RETRY; 241 void *resp_addr = NULL; 242 unsigned int count; 243 int ret; 244 245 PMD_DRV_LOG(DEBUG, "Sending request %u to host\n", request->req_id); 246 247 request->result = -ENOTSUP; 248 249 /* Discard any stale responses before starting a new request */ 250 while (avp_fifo_get(avp->resp_q, (void **)&resp_addr, 1)) 251 PMD_DRV_LOG(DEBUG, "Discarding stale response\n"); 252 253 rte_memcpy(avp->sync_addr, request, sizeof(*request)); 254 count = avp_fifo_put(avp->req_q, &avp->host_sync_addr, 1); 255 if (count < 1) { 256 PMD_DRV_LOG(ERR, "Cannot send request %u to host\n", 257 request->req_id); 258 ret = -EBUSY; 259 goto done; 260 } 261 262 while (retry--) { 263 /* wait for a response */ 264 usleep(AVP_REQUEST_DELAY_USECS); 265 266 count = avp_fifo_count(avp->resp_q); 267 if (count >= 1) { 268 /* response received */ 269 break; 270 } 271 272 if ((count < 1) && (retry == 0)) { 273 PMD_DRV_LOG(ERR, "Timeout while waiting for a response for %u\n", 274 request->req_id); 275 ret = -ETIME; 276 goto done; 277 } 278 } 279 280 /* retrieve the response */ 281 count = avp_fifo_get(avp->resp_q, (void **)&resp_addr, 1); 282 if ((count != 1) || (resp_addr != avp->host_sync_addr)) { 283 PMD_DRV_LOG(ERR, "Invalid response from host, count=%u resp=%p host_sync_addr=%p\n", 284 count, resp_addr, avp->host_sync_addr); 285 ret = -ENODATA; 286 goto done; 287 } 288 289 /* copy to user buffer */ 290 rte_memcpy(request, avp->sync_addr, sizeof(*request)); 291 ret = 0; 292 293 PMD_DRV_LOG(DEBUG, "Result %d received for request %u\n", 294 request->result, request->req_id); 295 296 done: 297 return ret; 298 } 299 300 static int 301 avp_dev_ctrl_set_link_state(struct rte_eth_dev *eth_dev, unsigned int state) 302 { 303 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 304 struct rte_avp_request request; 305 int ret; 306 307 /* setup a link state change request */ 308 memset(&request, 0, sizeof(request)); 309 request.req_id = RTE_AVP_REQ_CFG_NETWORK_IF; 310 request.if_up = state; 311 312 ret = avp_dev_process_request(avp, &request); 313 314 return ret == 0 ? request.result : ret; 315 } 316 317 static int 318 avp_dev_ctrl_set_config(struct rte_eth_dev *eth_dev, 319 struct rte_avp_device_config *config) 320 { 321 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 322 struct rte_avp_request request; 323 int ret; 324 325 /* setup a configure request */ 326 memset(&request, 0, sizeof(request)); 327 request.req_id = RTE_AVP_REQ_CFG_DEVICE; 328 memcpy(&request.config, config, sizeof(request.config)); 329 330 ret = avp_dev_process_request(avp, &request); 331 332 return ret == 0 ? request.result : ret; 333 } 334 335 static int 336 avp_dev_ctrl_shutdown(struct rte_eth_dev *eth_dev) 337 { 338 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 339 struct rte_avp_request request; 340 int ret; 341 342 /* setup a shutdown request */ 343 memset(&request, 0, sizeof(request)); 344 request.req_id = RTE_AVP_REQ_SHUTDOWN_DEVICE; 345 346 ret = avp_dev_process_request(avp, &request); 347 348 return ret == 0 ? request.result : ret; 349 } 350 351 /* translate from host mbuf virtual address to guest virtual address */ 352 static inline void * 353 avp_dev_translate_buffer(struct avp_dev *avp, void *host_mbuf_address) 354 { 355 return RTE_PTR_ADD(RTE_PTR_SUB(host_mbuf_address, 356 (uintptr_t)avp->host_mbuf_addr), 357 (uintptr_t)avp->mbuf_addr); 358 } 359 360 /* translate from host physical address to guest virtual address */ 361 static void * 362 avp_dev_translate_address(struct rte_eth_dev *eth_dev, 363 rte_iova_t host_phys_addr) 364 { 365 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 366 struct rte_mem_resource *resource; 367 struct rte_avp_memmap_info *info; 368 struct rte_avp_memmap *map; 369 off_t offset; 370 void *addr; 371 unsigned int i; 372 373 addr = pci_dev->mem_resource[RTE_AVP_PCI_MEMORY_BAR].addr; 374 resource = &pci_dev->mem_resource[RTE_AVP_PCI_MEMMAP_BAR]; 375 info = (struct rte_avp_memmap_info *)resource->addr; 376 377 offset = 0; 378 for (i = 0; i < info->nb_maps; i++) { 379 /* search all segments looking for a matching address */ 380 map = &info->maps[i]; 381 382 if ((host_phys_addr >= map->phys_addr) && 383 (host_phys_addr < (map->phys_addr + map->length))) { 384 /* address is within this segment */ 385 offset += (host_phys_addr - map->phys_addr); 386 addr = RTE_PTR_ADD(addr, offset); 387 388 PMD_DRV_LOG(DEBUG, "Translating host physical 0x%" PRIx64 " to guest virtual 0x%p\n", 389 host_phys_addr, addr); 390 391 return addr; 392 } 393 offset += map->length; 394 } 395 396 return NULL; 397 } 398 399 /* verify that the incoming device version is compatible with our version */ 400 static int 401 avp_dev_version_check(uint32_t version) 402 { 403 uint32_t driver = RTE_AVP_STRIP_MINOR_VERSION(AVP_DPDK_DRIVER_VERSION); 404 uint32_t device = RTE_AVP_STRIP_MINOR_VERSION(version); 405 406 if (device <= driver) { 407 /* the host driver version is less than or equal to ours */ 408 return 0; 409 } 410 411 return 1; 412 } 413 414 /* verify that memory regions have expected version and validation markers */ 415 static int 416 avp_dev_check_regions(struct rte_eth_dev *eth_dev) 417 { 418 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 419 struct rte_avp_memmap_info *memmap; 420 struct rte_avp_device_info *info; 421 struct rte_mem_resource *resource; 422 unsigned int i; 423 424 /* Dump resource info for debug */ 425 for (i = 0; i < PCI_MAX_RESOURCE; i++) { 426 resource = &pci_dev->mem_resource[i]; 427 if ((resource->phys_addr == 0) || (resource->len == 0)) 428 continue; 429 430 PMD_DRV_LOG(DEBUG, "resource[%u]: phys=0x%" PRIx64 " len=%" PRIu64 " addr=%p\n", 431 i, resource->phys_addr, 432 resource->len, resource->addr); 433 434 switch (i) { 435 case RTE_AVP_PCI_MEMMAP_BAR: 436 memmap = (struct rte_avp_memmap_info *)resource->addr; 437 if ((memmap->magic != RTE_AVP_MEMMAP_MAGIC) || 438 (memmap->version != RTE_AVP_MEMMAP_VERSION)) { 439 PMD_DRV_LOG(ERR, "Invalid memmap magic 0x%08x and version %u\n", 440 memmap->magic, memmap->version); 441 return -EINVAL; 442 } 443 break; 444 445 case RTE_AVP_PCI_DEVICE_BAR: 446 info = (struct rte_avp_device_info *)resource->addr; 447 if ((info->magic != RTE_AVP_DEVICE_MAGIC) || 448 avp_dev_version_check(info->version)) { 449 PMD_DRV_LOG(ERR, "Invalid device info magic 0x%08x or version 0x%08x > 0x%08x\n", 450 info->magic, info->version, 451 AVP_DPDK_DRIVER_VERSION); 452 return -EINVAL; 453 } 454 break; 455 456 case RTE_AVP_PCI_MEMORY_BAR: 457 case RTE_AVP_PCI_MMIO_BAR: 458 if (resource->addr == NULL) { 459 PMD_DRV_LOG(ERR, "Missing address space for BAR%u\n", 460 i); 461 return -EINVAL; 462 } 463 break; 464 465 case RTE_AVP_PCI_MSIX_BAR: 466 default: 467 /* no validation required */ 468 break; 469 } 470 } 471 472 return 0; 473 } 474 475 static int 476 avp_dev_detach(struct rte_eth_dev *eth_dev) 477 { 478 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 479 int ret; 480 481 PMD_DRV_LOG(NOTICE, "Detaching port %u from AVP device 0x%" PRIx64 "\n", 482 eth_dev->data->port_id, avp->device_id); 483 484 rte_spinlock_lock(&avp->lock); 485 486 if (avp->flags & AVP_F_DETACHED) { 487 PMD_DRV_LOG(NOTICE, "port %u already detached\n", 488 eth_dev->data->port_id); 489 ret = 0; 490 goto unlock; 491 } 492 493 /* shutdown the device first so the host stops sending us packets. */ 494 ret = avp_dev_ctrl_shutdown(eth_dev); 495 if (ret < 0) { 496 PMD_DRV_LOG(ERR, "Failed to send/recv shutdown to host, ret=%d\n", 497 ret); 498 avp->flags &= ~AVP_F_DETACHED; 499 goto unlock; 500 } 501 502 avp->flags |= AVP_F_DETACHED; 503 rte_wmb(); 504 505 /* wait for queues to acknowledge the presence of the detach flag */ 506 rte_delay_ms(1); 507 508 ret = 0; 509 510 unlock: 511 rte_spinlock_unlock(&avp->lock); 512 return ret; 513 } 514 515 static void 516 _avp_set_rx_queue_mappings(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id) 517 { 518 struct avp_dev *avp = 519 AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 520 struct avp_queue *rxq; 521 uint16_t queue_count; 522 uint16_t remainder; 523 524 rxq = (struct avp_queue *)eth_dev->data->rx_queues[rx_queue_id]; 525 526 /* 527 * Must map all AVP fifos as evenly as possible between the configured 528 * device queues. Each device queue will service a subset of the AVP 529 * fifos. If there is an odd number of device queues the first set of 530 * device queues will get the extra AVP fifos. 531 */ 532 queue_count = avp->num_rx_queues / eth_dev->data->nb_rx_queues; 533 remainder = avp->num_rx_queues % eth_dev->data->nb_rx_queues; 534 if (rx_queue_id < remainder) { 535 /* these queues must service one extra FIFO */ 536 rxq->queue_base = rx_queue_id * (queue_count + 1); 537 rxq->queue_limit = rxq->queue_base + (queue_count + 1) - 1; 538 } else { 539 /* these queues service the regular number of FIFO */ 540 rxq->queue_base = ((remainder * (queue_count + 1)) + 541 ((rx_queue_id - remainder) * queue_count)); 542 rxq->queue_limit = rxq->queue_base + queue_count - 1; 543 } 544 545 PMD_DRV_LOG(DEBUG, "rxq %u at %p base %u limit %u\n", 546 rx_queue_id, rxq, rxq->queue_base, rxq->queue_limit); 547 548 rxq->queue_id = rxq->queue_base; 549 } 550 551 static void 552 _avp_set_queue_counts(struct rte_eth_dev *eth_dev) 553 { 554 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 555 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 556 struct rte_avp_device_info *host_info; 557 void *addr; 558 559 addr = pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR].addr; 560 host_info = (struct rte_avp_device_info *)addr; 561 562 /* 563 * the transmit direction is not negotiated beyond respecting the max 564 * number of queues because the host can handle arbitrary guest tx 565 * queues (host rx queues). 566 */ 567 avp->num_tx_queues = eth_dev->data->nb_tx_queues; 568 569 /* 570 * the receive direction is more restrictive. The host requires a 571 * minimum number of guest rx queues (host tx queues) therefore 572 * negotiate a value that is at least as large as the host minimum 573 * requirement. If the host and guest values are not identical then a 574 * mapping will be established in the receive_queue_setup function. 575 */ 576 avp->num_rx_queues = RTE_MAX(host_info->min_rx_queues, 577 eth_dev->data->nb_rx_queues); 578 579 PMD_DRV_LOG(DEBUG, "Requesting %u Tx and %u Rx queues from host\n", 580 avp->num_tx_queues, avp->num_rx_queues); 581 } 582 583 static int 584 avp_dev_attach(struct rte_eth_dev *eth_dev) 585 { 586 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 587 struct rte_avp_device_config config; 588 unsigned int i; 589 int ret; 590 591 PMD_DRV_LOG(NOTICE, "Attaching port %u to AVP device 0x%" PRIx64 "\n", 592 eth_dev->data->port_id, avp->device_id); 593 594 rte_spinlock_lock(&avp->lock); 595 596 if (!(avp->flags & AVP_F_DETACHED)) { 597 PMD_DRV_LOG(NOTICE, "port %u already attached\n", 598 eth_dev->data->port_id); 599 ret = 0; 600 goto unlock; 601 } 602 603 /* 604 * make sure that the detached flag is set prior to reconfiguring the 605 * queues. 606 */ 607 avp->flags |= AVP_F_DETACHED; 608 rte_wmb(); 609 610 /* 611 * re-run the device create utility which will parse the new host info 612 * and setup the AVP device queue pointers. 613 */ 614 ret = avp_dev_create(RTE_ETH_DEV_TO_PCI(eth_dev), eth_dev); 615 if (ret < 0) { 616 PMD_DRV_LOG(ERR, "Failed to re-create AVP device, ret=%d\n", 617 ret); 618 goto unlock; 619 } 620 621 if (avp->flags & AVP_F_CONFIGURED) { 622 /* 623 * Update the receive queue mapping to handle cases where the 624 * source and destination hosts have different queue 625 * requirements. As long as the DETACHED flag is asserted the 626 * queue table should not be referenced so it should be safe to 627 * update it. 628 */ 629 _avp_set_queue_counts(eth_dev); 630 for (i = 0; i < eth_dev->data->nb_rx_queues; i++) 631 _avp_set_rx_queue_mappings(eth_dev, i); 632 633 /* 634 * Update the host with our config details so that it knows the 635 * device is active. 636 */ 637 memset(&config, 0, sizeof(config)); 638 config.device_id = avp->device_id; 639 config.driver_type = RTE_AVP_DRIVER_TYPE_DPDK; 640 config.driver_version = AVP_DPDK_DRIVER_VERSION; 641 config.features = avp->features; 642 config.num_tx_queues = avp->num_tx_queues; 643 config.num_rx_queues = avp->num_rx_queues; 644 config.if_up = !!(avp->flags & AVP_F_LINKUP); 645 646 ret = avp_dev_ctrl_set_config(eth_dev, &config); 647 if (ret < 0) { 648 PMD_DRV_LOG(ERR, "Config request failed by host, ret=%d\n", 649 ret); 650 goto unlock; 651 } 652 } 653 654 rte_wmb(); 655 avp->flags &= ~AVP_F_DETACHED; 656 657 ret = 0; 658 659 unlock: 660 rte_spinlock_unlock(&avp->lock); 661 return ret; 662 } 663 664 static void 665 avp_dev_interrupt_handler(void *data) 666 { 667 struct rte_eth_dev *eth_dev = data; 668 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 669 void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr; 670 uint32_t status, value; 671 int ret; 672 673 if (registers == NULL) 674 rte_panic("no mapped MMIO register space\n"); 675 676 /* read the interrupt status register 677 * note: this register clears on read so all raised interrupts must be 678 * handled or remembered for later processing 679 */ 680 status = AVP_READ32( 681 RTE_PTR_ADD(registers, 682 RTE_AVP_INTERRUPT_STATUS_OFFSET)); 683 684 if (status & RTE_AVP_MIGRATION_INTERRUPT_MASK) { 685 /* handle interrupt based on current status */ 686 value = AVP_READ32( 687 RTE_PTR_ADD(registers, 688 RTE_AVP_MIGRATION_STATUS_OFFSET)); 689 switch (value) { 690 case RTE_AVP_MIGRATION_DETACHED: 691 ret = avp_dev_detach(eth_dev); 692 break; 693 case RTE_AVP_MIGRATION_ATTACHED: 694 ret = avp_dev_attach(eth_dev); 695 break; 696 default: 697 PMD_DRV_LOG(ERR, "unexpected migration status, status=%u\n", 698 value); 699 ret = -EINVAL; 700 } 701 702 /* acknowledge the request by writing out our current status */ 703 value = (ret == 0 ? value : RTE_AVP_MIGRATION_ERROR); 704 AVP_WRITE32(value, 705 RTE_PTR_ADD(registers, 706 RTE_AVP_MIGRATION_ACK_OFFSET)); 707 708 PMD_DRV_LOG(NOTICE, "AVP migration interrupt handled\n"); 709 } 710 711 if (status & ~RTE_AVP_MIGRATION_INTERRUPT_MASK) 712 PMD_DRV_LOG(WARNING, "AVP unexpected interrupt, status=0x%08x\n", 713 status); 714 715 /* re-enable UIO interrupt handling */ 716 ret = rte_intr_enable(&pci_dev->intr_handle); 717 if (ret < 0) { 718 PMD_DRV_LOG(ERR, "Failed to re-enable UIO interrupts, ret=%d\n", 719 ret); 720 /* continue */ 721 } 722 } 723 724 static int 725 avp_dev_enable_interrupts(struct rte_eth_dev *eth_dev) 726 { 727 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 728 void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr; 729 int ret; 730 731 if (registers == NULL) 732 return -EINVAL; 733 734 /* enable UIO interrupt handling */ 735 ret = rte_intr_enable(&pci_dev->intr_handle); 736 if (ret < 0) { 737 PMD_DRV_LOG(ERR, "Failed to enable UIO interrupts, ret=%d\n", 738 ret); 739 return ret; 740 } 741 742 /* inform the device that all interrupts are enabled */ 743 AVP_WRITE32(RTE_AVP_APP_INTERRUPTS_MASK, 744 RTE_PTR_ADD(registers, RTE_AVP_INTERRUPT_MASK_OFFSET)); 745 746 return 0; 747 } 748 749 static int 750 avp_dev_disable_interrupts(struct rte_eth_dev *eth_dev) 751 { 752 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 753 void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr; 754 int ret; 755 756 if (registers == NULL) 757 return 0; 758 759 /* inform the device that all interrupts are disabled */ 760 AVP_WRITE32(RTE_AVP_NO_INTERRUPTS_MASK, 761 RTE_PTR_ADD(registers, RTE_AVP_INTERRUPT_MASK_OFFSET)); 762 763 /* enable UIO interrupt handling */ 764 ret = rte_intr_disable(&pci_dev->intr_handle); 765 if (ret < 0) { 766 PMD_DRV_LOG(ERR, "Failed to disable UIO interrupts, ret=%d\n", 767 ret); 768 return ret; 769 } 770 771 return 0; 772 } 773 774 static int 775 avp_dev_setup_interrupts(struct rte_eth_dev *eth_dev) 776 { 777 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 778 int ret; 779 780 /* register a callback handler with UIO for interrupt notifications */ 781 ret = rte_intr_callback_register(&pci_dev->intr_handle, 782 avp_dev_interrupt_handler, 783 (void *)eth_dev); 784 if (ret < 0) { 785 PMD_DRV_LOG(ERR, "Failed to register UIO interrupt callback, ret=%d\n", 786 ret); 787 return ret; 788 } 789 790 /* enable interrupt processing */ 791 return avp_dev_enable_interrupts(eth_dev); 792 } 793 794 static int 795 avp_dev_migration_pending(struct rte_eth_dev *eth_dev) 796 { 797 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 798 void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr; 799 uint32_t value; 800 801 if (registers == NULL) 802 return 0; 803 804 value = AVP_READ32(RTE_PTR_ADD(registers, 805 RTE_AVP_MIGRATION_STATUS_OFFSET)); 806 if (value == RTE_AVP_MIGRATION_DETACHED) { 807 /* migration is in progress; ack it if we have not already */ 808 AVP_WRITE32(value, 809 RTE_PTR_ADD(registers, 810 RTE_AVP_MIGRATION_ACK_OFFSET)); 811 return 1; 812 } 813 return 0; 814 } 815 816 /* 817 * create a AVP device using the supplied device info by first translating it 818 * to guest address space(s). 819 */ 820 static int 821 avp_dev_create(struct rte_pci_device *pci_dev, 822 struct rte_eth_dev *eth_dev) 823 { 824 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 825 struct rte_avp_device_info *host_info; 826 struct rte_mem_resource *resource; 827 unsigned int i; 828 829 resource = &pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR]; 830 if (resource->addr == NULL) { 831 PMD_DRV_LOG(ERR, "BAR%u is not mapped\n", 832 RTE_AVP_PCI_DEVICE_BAR); 833 return -EFAULT; 834 } 835 host_info = (struct rte_avp_device_info *)resource->addr; 836 837 if ((host_info->magic != RTE_AVP_DEVICE_MAGIC) || 838 avp_dev_version_check(host_info->version)) { 839 PMD_DRV_LOG(ERR, "Invalid AVP PCI device, magic 0x%08x version 0x%08x > 0x%08x\n", 840 host_info->magic, host_info->version, 841 AVP_DPDK_DRIVER_VERSION); 842 return -EINVAL; 843 } 844 845 PMD_DRV_LOG(DEBUG, "AVP host device is v%u.%u.%u\n", 846 RTE_AVP_GET_RELEASE_VERSION(host_info->version), 847 RTE_AVP_GET_MAJOR_VERSION(host_info->version), 848 RTE_AVP_GET_MINOR_VERSION(host_info->version)); 849 850 PMD_DRV_LOG(DEBUG, "AVP host supports %u to %u TX queue(s)\n", 851 host_info->min_tx_queues, host_info->max_tx_queues); 852 PMD_DRV_LOG(DEBUG, "AVP host supports %u to %u RX queue(s)\n", 853 host_info->min_rx_queues, host_info->max_rx_queues); 854 PMD_DRV_LOG(DEBUG, "AVP host supports features 0x%08x\n", 855 host_info->features); 856 857 if (avp->magic != AVP_ETHDEV_MAGIC) { 858 /* 859 * First time initialization (i.e., not during a VM 860 * migration) 861 */ 862 memset(avp, 0, sizeof(*avp)); 863 avp->magic = AVP_ETHDEV_MAGIC; 864 avp->dev_data = eth_dev->data; 865 avp->port_id = eth_dev->data->port_id; 866 avp->host_mbuf_size = host_info->mbuf_size; 867 avp->host_features = host_info->features; 868 rte_spinlock_init(&avp->lock); 869 memcpy(&avp->ethaddr.addr_bytes[0], 870 host_info->ethaddr, ETHER_ADDR_LEN); 871 /* adjust max values to not exceed our max */ 872 avp->max_tx_queues = 873 RTE_MIN(host_info->max_tx_queues, RTE_AVP_MAX_QUEUES); 874 avp->max_rx_queues = 875 RTE_MIN(host_info->max_rx_queues, RTE_AVP_MAX_QUEUES); 876 } else { 877 /* Re-attaching during migration */ 878 879 /* TODO... requires validation of host values */ 880 if ((host_info->features & avp->features) != avp->features) { 881 PMD_DRV_LOG(ERR, "AVP host features mismatched; 0x%08x, host=0x%08x\n", 882 avp->features, host_info->features); 883 /* this should not be possible; continue for now */ 884 } 885 } 886 887 /* the device id is allowed to change over migrations */ 888 avp->device_id = host_info->device_id; 889 890 /* translate incoming host addresses to guest address space */ 891 PMD_DRV_LOG(DEBUG, "AVP first host tx queue at 0x%" PRIx64 "\n", 892 host_info->tx_phys); 893 PMD_DRV_LOG(DEBUG, "AVP first host alloc queue at 0x%" PRIx64 "\n", 894 host_info->alloc_phys); 895 for (i = 0; i < avp->max_tx_queues; i++) { 896 avp->tx_q[i] = avp_dev_translate_address(eth_dev, 897 host_info->tx_phys + (i * host_info->tx_size)); 898 899 avp->alloc_q[i] = avp_dev_translate_address(eth_dev, 900 host_info->alloc_phys + (i * host_info->alloc_size)); 901 } 902 903 PMD_DRV_LOG(DEBUG, "AVP first host rx queue at 0x%" PRIx64 "\n", 904 host_info->rx_phys); 905 PMD_DRV_LOG(DEBUG, "AVP first host free queue at 0x%" PRIx64 "\n", 906 host_info->free_phys); 907 for (i = 0; i < avp->max_rx_queues; i++) { 908 avp->rx_q[i] = avp_dev_translate_address(eth_dev, 909 host_info->rx_phys + (i * host_info->rx_size)); 910 avp->free_q[i] = avp_dev_translate_address(eth_dev, 911 host_info->free_phys + (i * host_info->free_size)); 912 } 913 914 PMD_DRV_LOG(DEBUG, "AVP host request queue at 0x%" PRIx64 "\n", 915 host_info->req_phys); 916 PMD_DRV_LOG(DEBUG, "AVP host response queue at 0x%" PRIx64 "\n", 917 host_info->resp_phys); 918 PMD_DRV_LOG(DEBUG, "AVP host sync address at 0x%" PRIx64 "\n", 919 host_info->sync_phys); 920 PMD_DRV_LOG(DEBUG, "AVP host mbuf address at 0x%" PRIx64 "\n", 921 host_info->mbuf_phys); 922 avp->req_q = avp_dev_translate_address(eth_dev, host_info->req_phys); 923 avp->resp_q = avp_dev_translate_address(eth_dev, host_info->resp_phys); 924 avp->sync_addr = 925 avp_dev_translate_address(eth_dev, host_info->sync_phys); 926 avp->mbuf_addr = 927 avp_dev_translate_address(eth_dev, host_info->mbuf_phys); 928 929 /* 930 * store the host mbuf virtual address so that we can calculate 931 * relative offsets for each mbuf as they are processed 932 */ 933 avp->host_mbuf_addr = host_info->mbuf_va; 934 avp->host_sync_addr = host_info->sync_va; 935 936 /* 937 * store the maximum packet length that is supported by the host. 938 */ 939 avp->max_rx_pkt_len = host_info->max_rx_pkt_len; 940 PMD_DRV_LOG(DEBUG, "AVP host max receive packet length is %u\n", 941 host_info->max_rx_pkt_len); 942 943 return 0; 944 } 945 946 /* 947 * This function is based on probe() function in avp_pci.c 948 * It returns 0 on success. 949 */ 950 static int 951 eth_avp_dev_init(struct rte_eth_dev *eth_dev) 952 { 953 struct avp_dev *avp = 954 AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 955 struct rte_pci_device *pci_dev; 956 int ret; 957 958 pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 959 eth_dev->dev_ops = &avp_eth_dev_ops; 960 eth_dev->rx_pkt_burst = &avp_recv_pkts; 961 eth_dev->tx_pkt_burst = &avp_xmit_pkts; 962 963 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 964 /* 965 * no setup required on secondary processes. All data is saved 966 * in dev_private by the primary process. All resource should 967 * be mapped to the same virtual address so all pointers should 968 * be valid. 969 */ 970 if (eth_dev->data->scattered_rx) { 971 PMD_DRV_LOG(NOTICE, "AVP device configured for chained mbufs\n"); 972 eth_dev->rx_pkt_burst = avp_recv_scattered_pkts; 973 eth_dev->tx_pkt_burst = avp_xmit_scattered_pkts; 974 } 975 return 0; 976 } 977 978 rte_eth_copy_pci_info(eth_dev, pci_dev); 979 980 /* Check current migration status */ 981 if (avp_dev_migration_pending(eth_dev)) { 982 PMD_DRV_LOG(ERR, "VM live migration operation in progress\n"); 983 return -EBUSY; 984 } 985 986 /* Check BAR resources */ 987 ret = avp_dev_check_regions(eth_dev); 988 if (ret < 0) { 989 PMD_DRV_LOG(ERR, "Failed to validate BAR resources, ret=%d\n", 990 ret); 991 return ret; 992 } 993 994 /* Enable interrupts */ 995 ret = avp_dev_setup_interrupts(eth_dev); 996 if (ret < 0) { 997 PMD_DRV_LOG(ERR, "Failed to enable interrupts, ret=%d\n", ret); 998 return ret; 999 } 1000 1001 /* Handle each subtype */ 1002 ret = avp_dev_create(pci_dev, eth_dev); 1003 if (ret < 0) { 1004 PMD_DRV_LOG(ERR, "Failed to create device, ret=%d\n", ret); 1005 return ret; 1006 } 1007 1008 /* Allocate memory for storing MAC addresses */ 1009 eth_dev->data->mac_addrs = rte_zmalloc("avp_ethdev", ETHER_ADDR_LEN, 0); 1010 if (eth_dev->data->mac_addrs == NULL) { 1011 PMD_DRV_LOG(ERR, "Failed to allocate %d bytes needed to store MAC addresses\n", 1012 ETHER_ADDR_LEN); 1013 return -ENOMEM; 1014 } 1015 1016 /* Get a mac from device config */ 1017 ether_addr_copy(&avp->ethaddr, ð_dev->data->mac_addrs[0]); 1018 1019 return 0; 1020 } 1021 1022 static int 1023 eth_avp_dev_uninit(struct rte_eth_dev *eth_dev) 1024 { 1025 int ret; 1026 1027 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 1028 return -EPERM; 1029 1030 if (eth_dev->data == NULL) 1031 return 0; 1032 1033 ret = avp_dev_disable_interrupts(eth_dev); 1034 if (ret != 0) { 1035 PMD_DRV_LOG(ERR, "Failed to disable interrupts, ret=%d\n", ret); 1036 return ret; 1037 } 1038 1039 if (eth_dev->data->mac_addrs != NULL) { 1040 rte_free(eth_dev->data->mac_addrs); 1041 eth_dev->data->mac_addrs = NULL; 1042 } 1043 1044 return 0; 1045 } 1046 1047 static int 1048 eth_avp_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 1049 struct rte_pci_device *pci_dev) 1050 { 1051 struct rte_eth_dev *eth_dev; 1052 int ret; 1053 1054 eth_dev = rte_eth_dev_pci_allocate(pci_dev, 1055 sizeof(struct avp_adapter)); 1056 if (eth_dev == NULL) 1057 return -ENOMEM; 1058 1059 ret = eth_avp_dev_init(eth_dev); 1060 if (ret) 1061 rte_eth_dev_pci_release(eth_dev); 1062 1063 return ret; 1064 } 1065 1066 static int 1067 eth_avp_pci_remove(struct rte_pci_device *pci_dev) 1068 { 1069 return rte_eth_dev_pci_generic_remove(pci_dev, 1070 eth_avp_dev_uninit); 1071 } 1072 1073 static struct rte_pci_driver rte_avp_pmd = { 1074 .id_table = pci_id_avp_map, 1075 .drv_flags = RTE_PCI_DRV_NEED_MAPPING, 1076 .probe = eth_avp_pci_probe, 1077 .remove = eth_avp_pci_remove, 1078 }; 1079 1080 static int 1081 avp_dev_enable_scattered(struct rte_eth_dev *eth_dev, 1082 struct avp_dev *avp) 1083 { 1084 unsigned int max_rx_pkt_len; 1085 1086 max_rx_pkt_len = eth_dev->data->dev_conf.rxmode.max_rx_pkt_len; 1087 1088 if ((max_rx_pkt_len > avp->guest_mbuf_size) || 1089 (max_rx_pkt_len > avp->host_mbuf_size)) { 1090 /* 1091 * If the guest MTU is greater than either the host or guest 1092 * buffers then chained mbufs have to be enabled in the TX 1093 * direction. It is assumed that the application will not need 1094 * to send packets larger than their max_rx_pkt_len (MRU). 1095 */ 1096 return 1; 1097 } 1098 1099 if ((avp->max_rx_pkt_len > avp->guest_mbuf_size) || 1100 (avp->max_rx_pkt_len > avp->host_mbuf_size)) { 1101 /* 1102 * If the host MRU is greater than its own mbuf size or the 1103 * guest mbuf size then chained mbufs have to be enabled in the 1104 * RX direction. 1105 */ 1106 return 1; 1107 } 1108 1109 return 0; 1110 } 1111 1112 static int 1113 avp_dev_rx_queue_setup(struct rte_eth_dev *eth_dev, 1114 uint16_t rx_queue_id, 1115 uint16_t nb_rx_desc, 1116 unsigned int socket_id, 1117 const struct rte_eth_rxconf *rx_conf, 1118 struct rte_mempool *pool) 1119 { 1120 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 1121 struct rte_pktmbuf_pool_private *mbp_priv; 1122 struct avp_queue *rxq; 1123 1124 if (rx_queue_id >= eth_dev->data->nb_rx_queues) { 1125 PMD_DRV_LOG(ERR, "RX queue id is out of range: rx_queue_id=%u, nb_rx_queues=%u\n", 1126 rx_queue_id, eth_dev->data->nb_rx_queues); 1127 return -EINVAL; 1128 } 1129 1130 /* Save mbuf pool pointer */ 1131 avp->pool = pool; 1132 1133 /* Save the local mbuf size */ 1134 mbp_priv = rte_mempool_get_priv(pool); 1135 avp->guest_mbuf_size = (uint16_t)(mbp_priv->mbuf_data_room_size); 1136 avp->guest_mbuf_size -= RTE_PKTMBUF_HEADROOM; 1137 1138 if (avp_dev_enable_scattered(eth_dev, avp)) { 1139 if (!eth_dev->data->scattered_rx) { 1140 PMD_DRV_LOG(NOTICE, "AVP device configured for chained mbufs\n"); 1141 eth_dev->data->scattered_rx = 1; 1142 eth_dev->rx_pkt_burst = avp_recv_scattered_pkts; 1143 eth_dev->tx_pkt_burst = avp_xmit_scattered_pkts; 1144 } 1145 } 1146 1147 PMD_DRV_LOG(DEBUG, "AVP max_rx_pkt_len=(%u,%u) mbuf_size=(%u,%u)\n", 1148 avp->max_rx_pkt_len, 1149 eth_dev->data->dev_conf.rxmode.max_rx_pkt_len, 1150 avp->host_mbuf_size, 1151 avp->guest_mbuf_size); 1152 1153 /* allocate a queue object */ 1154 rxq = rte_zmalloc_socket("ethdev RX queue", sizeof(struct avp_queue), 1155 RTE_CACHE_LINE_SIZE, socket_id); 1156 if (rxq == NULL) { 1157 PMD_DRV_LOG(ERR, "Failed to allocate new Rx queue object\n"); 1158 return -ENOMEM; 1159 } 1160 1161 /* save back pointers to AVP and Ethernet devices */ 1162 rxq->avp = avp; 1163 rxq->dev_data = eth_dev->data; 1164 eth_dev->data->rx_queues[rx_queue_id] = (void *)rxq; 1165 1166 /* setup the queue receive mapping for the current queue. */ 1167 _avp_set_rx_queue_mappings(eth_dev, rx_queue_id); 1168 1169 PMD_DRV_LOG(DEBUG, "Rx queue %u setup at %p\n", rx_queue_id, rxq); 1170 1171 (void)nb_rx_desc; 1172 (void)rx_conf; 1173 return 0; 1174 } 1175 1176 static int 1177 avp_dev_tx_queue_setup(struct rte_eth_dev *eth_dev, 1178 uint16_t tx_queue_id, 1179 uint16_t nb_tx_desc, 1180 unsigned int socket_id, 1181 const struct rte_eth_txconf *tx_conf) 1182 { 1183 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 1184 struct avp_queue *txq; 1185 1186 if (tx_queue_id >= eth_dev->data->nb_tx_queues) { 1187 PMD_DRV_LOG(ERR, "TX queue id is out of range: tx_queue_id=%u, nb_tx_queues=%u\n", 1188 tx_queue_id, eth_dev->data->nb_tx_queues); 1189 return -EINVAL; 1190 } 1191 1192 /* allocate a queue object */ 1193 txq = rte_zmalloc_socket("ethdev TX queue", sizeof(struct avp_queue), 1194 RTE_CACHE_LINE_SIZE, socket_id); 1195 if (txq == NULL) { 1196 PMD_DRV_LOG(ERR, "Failed to allocate new Tx queue object\n"); 1197 return -ENOMEM; 1198 } 1199 1200 /* only the configured set of transmit queues are used */ 1201 txq->queue_id = tx_queue_id; 1202 txq->queue_base = tx_queue_id; 1203 txq->queue_limit = tx_queue_id; 1204 1205 /* save back pointers to AVP and Ethernet devices */ 1206 txq->avp = avp; 1207 txq->dev_data = eth_dev->data; 1208 eth_dev->data->tx_queues[tx_queue_id] = (void *)txq; 1209 1210 PMD_DRV_LOG(DEBUG, "Tx queue %u setup at %p\n", tx_queue_id, txq); 1211 1212 (void)nb_tx_desc; 1213 (void)tx_conf; 1214 return 0; 1215 } 1216 1217 static inline int 1218 _avp_cmp_ether_addr(struct ether_addr *a, struct ether_addr *b) 1219 { 1220 uint16_t *_a = (uint16_t *)&a->addr_bytes[0]; 1221 uint16_t *_b = (uint16_t *)&b->addr_bytes[0]; 1222 return (_a[0] ^ _b[0]) | (_a[1] ^ _b[1]) | (_a[2] ^ _b[2]); 1223 } 1224 1225 static inline int 1226 _avp_mac_filter(struct avp_dev *avp, struct rte_mbuf *m) 1227 { 1228 struct ether_hdr *eth = rte_pktmbuf_mtod(m, struct ether_hdr *); 1229 1230 if (likely(_avp_cmp_ether_addr(&avp->ethaddr, ð->d_addr) == 0)) { 1231 /* allow all packets destined to our address */ 1232 return 0; 1233 } 1234 1235 if (likely(is_broadcast_ether_addr(ð->d_addr))) { 1236 /* allow all broadcast packets */ 1237 return 0; 1238 } 1239 1240 if (likely(is_multicast_ether_addr(ð->d_addr))) { 1241 /* allow all multicast packets */ 1242 return 0; 1243 } 1244 1245 if (avp->flags & AVP_F_PROMISC) { 1246 /* allow all packets when in promiscuous mode */ 1247 return 0; 1248 } 1249 1250 return -1; 1251 } 1252 1253 #ifdef RTE_LIBRTE_AVP_DEBUG_BUFFERS 1254 static inline void 1255 __avp_dev_buffer_sanity_check(struct avp_dev *avp, struct rte_avp_desc *buf) 1256 { 1257 struct rte_avp_desc *first_buf; 1258 struct rte_avp_desc *pkt_buf; 1259 unsigned int pkt_len; 1260 unsigned int nb_segs; 1261 void *pkt_data; 1262 unsigned int i; 1263 1264 first_buf = avp_dev_translate_buffer(avp, buf); 1265 1266 i = 0; 1267 pkt_len = 0; 1268 nb_segs = first_buf->nb_segs; 1269 do { 1270 /* Adjust pointers for guest addressing */ 1271 pkt_buf = avp_dev_translate_buffer(avp, buf); 1272 if (pkt_buf == NULL) 1273 rte_panic("bad buffer: segment %u has an invalid address %p\n", 1274 i, buf); 1275 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data); 1276 if (pkt_data == NULL) 1277 rte_panic("bad buffer: segment %u has a NULL data pointer\n", 1278 i); 1279 if (pkt_buf->data_len == 0) 1280 rte_panic("bad buffer: segment %u has 0 data length\n", 1281 i); 1282 pkt_len += pkt_buf->data_len; 1283 nb_segs--; 1284 i++; 1285 1286 } while (nb_segs && (buf = pkt_buf->next) != NULL); 1287 1288 if (nb_segs != 0) 1289 rte_panic("bad buffer: expected %u segments found %u\n", 1290 first_buf->nb_segs, (first_buf->nb_segs - nb_segs)); 1291 if (pkt_len != first_buf->pkt_len) 1292 rte_panic("bad buffer: expected length %u found %u\n", 1293 first_buf->pkt_len, pkt_len); 1294 } 1295 1296 #define avp_dev_buffer_sanity_check(a, b) \ 1297 __avp_dev_buffer_sanity_check((a), (b)) 1298 1299 #else /* RTE_LIBRTE_AVP_DEBUG_BUFFERS */ 1300 1301 #define avp_dev_buffer_sanity_check(a, b) do {} while (0) 1302 1303 #endif 1304 1305 /* 1306 * Copy a host buffer chain to a set of mbufs. This function assumes that 1307 * there exactly the required number of mbufs to copy all source bytes. 1308 */ 1309 static inline struct rte_mbuf * 1310 avp_dev_copy_from_buffers(struct avp_dev *avp, 1311 struct rte_avp_desc *buf, 1312 struct rte_mbuf **mbufs, 1313 unsigned int count) 1314 { 1315 struct rte_mbuf *m_previous = NULL; 1316 struct rte_avp_desc *pkt_buf; 1317 unsigned int total_length = 0; 1318 unsigned int copy_length; 1319 unsigned int src_offset; 1320 struct rte_mbuf *m; 1321 uint16_t ol_flags; 1322 uint16_t vlan_tci; 1323 void *pkt_data; 1324 unsigned int i; 1325 1326 avp_dev_buffer_sanity_check(avp, buf); 1327 1328 /* setup the first source buffer */ 1329 pkt_buf = avp_dev_translate_buffer(avp, buf); 1330 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data); 1331 total_length = pkt_buf->pkt_len; 1332 src_offset = 0; 1333 1334 if (pkt_buf->ol_flags & RTE_AVP_RX_VLAN_PKT) { 1335 ol_flags = PKT_RX_VLAN; 1336 vlan_tci = pkt_buf->vlan_tci; 1337 } else { 1338 ol_flags = 0; 1339 vlan_tci = 0; 1340 } 1341 1342 for (i = 0; (i < count) && (buf != NULL); i++) { 1343 /* fill each destination buffer */ 1344 m = mbufs[i]; 1345 1346 if (m_previous != NULL) 1347 m_previous->next = m; 1348 1349 m_previous = m; 1350 1351 do { 1352 /* 1353 * Copy as many source buffers as will fit in the 1354 * destination buffer. 1355 */ 1356 copy_length = RTE_MIN((avp->guest_mbuf_size - 1357 rte_pktmbuf_data_len(m)), 1358 (pkt_buf->data_len - 1359 src_offset)); 1360 rte_memcpy(RTE_PTR_ADD(rte_pktmbuf_mtod(m, void *), 1361 rte_pktmbuf_data_len(m)), 1362 RTE_PTR_ADD(pkt_data, src_offset), 1363 copy_length); 1364 rte_pktmbuf_data_len(m) += copy_length; 1365 src_offset += copy_length; 1366 1367 if (likely(src_offset == pkt_buf->data_len)) { 1368 /* need a new source buffer */ 1369 buf = pkt_buf->next; 1370 if (buf != NULL) { 1371 pkt_buf = avp_dev_translate_buffer( 1372 avp, buf); 1373 pkt_data = avp_dev_translate_buffer( 1374 avp, pkt_buf->data); 1375 src_offset = 0; 1376 } 1377 } 1378 1379 if (unlikely(rte_pktmbuf_data_len(m) == 1380 avp->guest_mbuf_size)) { 1381 /* need a new destination mbuf */ 1382 break; 1383 } 1384 1385 } while (buf != NULL); 1386 } 1387 1388 m = mbufs[0]; 1389 m->ol_flags = ol_flags; 1390 m->nb_segs = count; 1391 rte_pktmbuf_pkt_len(m) = total_length; 1392 m->vlan_tci = vlan_tci; 1393 1394 __rte_mbuf_sanity_check(m, 1); 1395 1396 return m; 1397 } 1398 1399 static uint16_t 1400 avp_recv_scattered_pkts(void *rx_queue, 1401 struct rte_mbuf **rx_pkts, 1402 uint16_t nb_pkts) 1403 { 1404 struct avp_queue *rxq = (struct avp_queue *)rx_queue; 1405 struct rte_avp_desc *avp_bufs[AVP_MAX_RX_BURST]; 1406 struct rte_mbuf *mbufs[RTE_AVP_MAX_MBUF_SEGMENTS]; 1407 struct avp_dev *avp = rxq->avp; 1408 struct rte_avp_desc *pkt_buf; 1409 struct rte_avp_fifo *free_q; 1410 struct rte_avp_fifo *rx_q; 1411 struct rte_avp_desc *buf; 1412 unsigned int count, avail, n; 1413 unsigned int guest_mbuf_size; 1414 struct rte_mbuf *m; 1415 unsigned int required; 1416 unsigned int buf_len; 1417 unsigned int port_id; 1418 unsigned int i; 1419 1420 if (unlikely(avp->flags & AVP_F_DETACHED)) { 1421 /* VM live migration in progress */ 1422 return 0; 1423 } 1424 1425 guest_mbuf_size = avp->guest_mbuf_size; 1426 port_id = avp->port_id; 1427 rx_q = avp->rx_q[rxq->queue_id]; 1428 free_q = avp->free_q[rxq->queue_id]; 1429 1430 /* setup next queue to service */ 1431 rxq->queue_id = (rxq->queue_id < rxq->queue_limit) ? 1432 (rxq->queue_id + 1) : rxq->queue_base; 1433 1434 /* determine how many slots are available in the free queue */ 1435 count = avp_fifo_free_count(free_q); 1436 1437 /* determine how many packets are available in the rx queue */ 1438 avail = avp_fifo_count(rx_q); 1439 1440 /* determine how many packets can be received */ 1441 count = RTE_MIN(count, avail); 1442 count = RTE_MIN(count, nb_pkts); 1443 count = RTE_MIN(count, (unsigned int)AVP_MAX_RX_BURST); 1444 1445 if (unlikely(count == 0)) { 1446 /* no free buffers, or no buffers on the rx queue */ 1447 return 0; 1448 } 1449 1450 /* retrieve pending packets */ 1451 n = avp_fifo_get(rx_q, (void **)&avp_bufs, count); 1452 PMD_RX_LOG(DEBUG, "Receiving %u packets from Rx queue at %p\n", 1453 count, rx_q); 1454 1455 count = 0; 1456 for (i = 0; i < n; i++) { 1457 /* prefetch next entry while processing current one */ 1458 if (i + 1 < n) { 1459 pkt_buf = avp_dev_translate_buffer(avp, 1460 avp_bufs[i + 1]); 1461 rte_prefetch0(pkt_buf); 1462 } 1463 buf = avp_bufs[i]; 1464 1465 /* Peek into the first buffer to determine the total length */ 1466 pkt_buf = avp_dev_translate_buffer(avp, buf); 1467 buf_len = pkt_buf->pkt_len; 1468 1469 /* Allocate enough mbufs to receive the entire packet */ 1470 required = (buf_len + guest_mbuf_size - 1) / guest_mbuf_size; 1471 if (rte_pktmbuf_alloc_bulk(avp->pool, mbufs, required)) { 1472 rxq->dev_data->rx_mbuf_alloc_failed++; 1473 continue; 1474 } 1475 1476 /* Copy the data from the buffers to our mbufs */ 1477 m = avp_dev_copy_from_buffers(avp, buf, mbufs, required); 1478 1479 /* finalize mbuf */ 1480 m->port = port_id; 1481 1482 if (_avp_mac_filter(avp, m) != 0) { 1483 /* silently discard packets not destined to our MAC */ 1484 rte_pktmbuf_free(m); 1485 continue; 1486 } 1487 1488 /* return new mbuf to caller */ 1489 rx_pkts[count++] = m; 1490 rxq->bytes += buf_len; 1491 } 1492 1493 rxq->packets += count; 1494 1495 /* return the buffers to the free queue */ 1496 avp_fifo_put(free_q, (void **)&avp_bufs[0], n); 1497 1498 return count; 1499 } 1500 1501 1502 static uint16_t 1503 avp_recv_pkts(void *rx_queue, 1504 struct rte_mbuf **rx_pkts, 1505 uint16_t nb_pkts) 1506 { 1507 struct avp_queue *rxq = (struct avp_queue *)rx_queue; 1508 struct rte_avp_desc *avp_bufs[AVP_MAX_RX_BURST]; 1509 struct avp_dev *avp = rxq->avp; 1510 struct rte_avp_desc *pkt_buf; 1511 struct rte_avp_fifo *free_q; 1512 struct rte_avp_fifo *rx_q; 1513 unsigned int count, avail, n; 1514 unsigned int pkt_len; 1515 struct rte_mbuf *m; 1516 char *pkt_data; 1517 unsigned int i; 1518 1519 if (unlikely(avp->flags & AVP_F_DETACHED)) { 1520 /* VM live migration in progress */ 1521 return 0; 1522 } 1523 1524 rx_q = avp->rx_q[rxq->queue_id]; 1525 free_q = avp->free_q[rxq->queue_id]; 1526 1527 /* setup next queue to service */ 1528 rxq->queue_id = (rxq->queue_id < rxq->queue_limit) ? 1529 (rxq->queue_id + 1) : rxq->queue_base; 1530 1531 /* determine how many slots are available in the free queue */ 1532 count = avp_fifo_free_count(free_q); 1533 1534 /* determine how many packets are available in the rx queue */ 1535 avail = avp_fifo_count(rx_q); 1536 1537 /* determine how many packets can be received */ 1538 count = RTE_MIN(count, avail); 1539 count = RTE_MIN(count, nb_pkts); 1540 count = RTE_MIN(count, (unsigned int)AVP_MAX_RX_BURST); 1541 1542 if (unlikely(count == 0)) { 1543 /* no free buffers, or no buffers on the rx queue */ 1544 return 0; 1545 } 1546 1547 /* retrieve pending packets */ 1548 n = avp_fifo_get(rx_q, (void **)&avp_bufs, count); 1549 PMD_RX_LOG(DEBUG, "Receiving %u packets from Rx queue at %p\n", 1550 count, rx_q); 1551 1552 count = 0; 1553 for (i = 0; i < n; i++) { 1554 /* prefetch next entry while processing current one */ 1555 if (i < n - 1) { 1556 pkt_buf = avp_dev_translate_buffer(avp, 1557 avp_bufs[i + 1]); 1558 rte_prefetch0(pkt_buf); 1559 } 1560 1561 /* Adjust host pointers for guest addressing */ 1562 pkt_buf = avp_dev_translate_buffer(avp, avp_bufs[i]); 1563 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data); 1564 pkt_len = pkt_buf->pkt_len; 1565 1566 if (unlikely((pkt_len > avp->guest_mbuf_size) || 1567 (pkt_buf->nb_segs > 1))) { 1568 /* 1569 * application should be using the scattered receive 1570 * function 1571 */ 1572 rxq->errors++; 1573 continue; 1574 } 1575 1576 /* process each packet to be transmitted */ 1577 m = rte_pktmbuf_alloc(avp->pool); 1578 if (unlikely(m == NULL)) { 1579 rxq->dev_data->rx_mbuf_alloc_failed++; 1580 continue; 1581 } 1582 1583 /* copy data out of the host buffer to our buffer */ 1584 m->data_off = RTE_PKTMBUF_HEADROOM; 1585 rte_memcpy(rte_pktmbuf_mtod(m, void *), pkt_data, pkt_len); 1586 1587 /* initialize the local mbuf */ 1588 rte_pktmbuf_data_len(m) = pkt_len; 1589 rte_pktmbuf_pkt_len(m) = pkt_len; 1590 m->port = avp->port_id; 1591 1592 if (pkt_buf->ol_flags & RTE_AVP_RX_VLAN_PKT) { 1593 m->ol_flags = PKT_RX_VLAN; 1594 m->vlan_tci = pkt_buf->vlan_tci; 1595 } 1596 1597 if (_avp_mac_filter(avp, m) != 0) { 1598 /* silently discard packets not destined to our MAC */ 1599 rte_pktmbuf_free(m); 1600 continue; 1601 } 1602 1603 /* return new mbuf to caller */ 1604 rx_pkts[count++] = m; 1605 rxq->bytes += pkt_len; 1606 } 1607 1608 rxq->packets += count; 1609 1610 /* return the buffers to the free queue */ 1611 avp_fifo_put(free_q, (void **)&avp_bufs[0], n); 1612 1613 return count; 1614 } 1615 1616 /* 1617 * Copy a chained mbuf to a set of host buffers. This function assumes that 1618 * there are sufficient destination buffers to contain the entire source 1619 * packet. 1620 */ 1621 static inline uint16_t 1622 avp_dev_copy_to_buffers(struct avp_dev *avp, 1623 struct rte_mbuf *mbuf, 1624 struct rte_avp_desc **buffers, 1625 unsigned int count) 1626 { 1627 struct rte_avp_desc *previous_buf = NULL; 1628 struct rte_avp_desc *first_buf = NULL; 1629 struct rte_avp_desc *pkt_buf; 1630 struct rte_avp_desc *buf; 1631 size_t total_length; 1632 struct rte_mbuf *m; 1633 size_t copy_length; 1634 size_t src_offset; 1635 char *pkt_data; 1636 unsigned int i; 1637 1638 __rte_mbuf_sanity_check(mbuf, 1); 1639 1640 m = mbuf; 1641 src_offset = 0; 1642 total_length = rte_pktmbuf_pkt_len(m); 1643 for (i = 0; (i < count) && (m != NULL); i++) { 1644 /* fill each destination buffer */ 1645 buf = buffers[i]; 1646 1647 if (i < count - 1) { 1648 /* prefetch next entry while processing this one */ 1649 pkt_buf = avp_dev_translate_buffer(avp, buffers[i + 1]); 1650 rte_prefetch0(pkt_buf); 1651 } 1652 1653 /* Adjust pointers for guest addressing */ 1654 pkt_buf = avp_dev_translate_buffer(avp, buf); 1655 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data); 1656 1657 /* setup the buffer chain */ 1658 if (previous_buf != NULL) 1659 previous_buf->next = buf; 1660 else 1661 first_buf = pkt_buf; 1662 1663 previous_buf = pkt_buf; 1664 1665 do { 1666 /* 1667 * copy as many source mbuf segments as will fit in the 1668 * destination buffer. 1669 */ 1670 copy_length = RTE_MIN((avp->host_mbuf_size - 1671 pkt_buf->data_len), 1672 (rte_pktmbuf_data_len(m) - 1673 src_offset)); 1674 rte_memcpy(RTE_PTR_ADD(pkt_data, pkt_buf->data_len), 1675 RTE_PTR_ADD(rte_pktmbuf_mtod(m, void *), 1676 src_offset), 1677 copy_length); 1678 pkt_buf->data_len += copy_length; 1679 src_offset += copy_length; 1680 1681 if (likely(src_offset == rte_pktmbuf_data_len(m))) { 1682 /* need a new source buffer */ 1683 m = m->next; 1684 src_offset = 0; 1685 } 1686 1687 if (unlikely(pkt_buf->data_len == 1688 avp->host_mbuf_size)) { 1689 /* need a new destination buffer */ 1690 break; 1691 } 1692 1693 } while (m != NULL); 1694 } 1695 1696 first_buf->nb_segs = count; 1697 first_buf->pkt_len = total_length; 1698 1699 if (mbuf->ol_flags & PKT_TX_VLAN_PKT) { 1700 first_buf->ol_flags |= RTE_AVP_TX_VLAN_PKT; 1701 first_buf->vlan_tci = mbuf->vlan_tci; 1702 } 1703 1704 avp_dev_buffer_sanity_check(avp, buffers[0]); 1705 1706 return total_length; 1707 } 1708 1709 1710 static uint16_t 1711 avp_xmit_scattered_pkts(void *tx_queue, 1712 struct rte_mbuf **tx_pkts, 1713 uint16_t nb_pkts) 1714 { 1715 struct rte_avp_desc *avp_bufs[(AVP_MAX_TX_BURST * 1716 RTE_AVP_MAX_MBUF_SEGMENTS)]; 1717 struct avp_queue *txq = (struct avp_queue *)tx_queue; 1718 struct rte_avp_desc *tx_bufs[AVP_MAX_TX_BURST]; 1719 struct avp_dev *avp = txq->avp; 1720 struct rte_avp_fifo *alloc_q; 1721 struct rte_avp_fifo *tx_q; 1722 unsigned int count, avail, n; 1723 unsigned int orig_nb_pkts; 1724 struct rte_mbuf *m; 1725 unsigned int required; 1726 unsigned int segments; 1727 unsigned int tx_bytes; 1728 unsigned int i; 1729 1730 orig_nb_pkts = nb_pkts; 1731 if (unlikely(avp->flags & AVP_F_DETACHED)) { 1732 /* VM live migration in progress */ 1733 /* TODO ... buffer for X packets then drop? */ 1734 txq->errors += nb_pkts; 1735 return 0; 1736 } 1737 1738 tx_q = avp->tx_q[txq->queue_id]; 1739 alloc_q = avp->alloc_q[txq->queue_id]; 1740 1741 /* limit the number of transmitted packets to the max burst size */ 1742 if (unlikely(nb_pkts > AVP_MAX_TX_BURST)) 1743 nb_pkts = AVP_MAX_TX_BURST; 1744 1745 /* determine how many buffers are available to copy into */ 1746 avail = avp_fifo_count(alloc_q); 1747 if (unlikely(avail > (AVP_MAX_TX_BURST * 1748 RTE_AVP_MAX_MBUF_SEGMENTS))) 1749 avail = AVP_MAX_TX_BURST * RTE_AVP_MAX_MBUF_SEGMENTS; 1750 1751 /* determine how many slots are available in the transmit queue */ 1752 count = avp_fifo_free_count(tx_q); 1753 1754 /* determine how many packets can be sent */ 1755 nb_pkts = RTE_MIN(count, nb_pkts); 1756 1757 /* determine how many packets will fit in the available buffers */ 1758 count = 0; 1759 segments = 0; 1760 for (i = 0; i < nb_pkts; i++) { 1761 m = tx_pkts[i]; 1762 if (likely(i < (unsigned int)nb_pkts - 1)) { 1763 /* prefetch next entry while processing this one */ 1764 rte_prefetch0(tx_pkts[i + 1]); 1765 } 1766 required = (rte_pktmbuf_pkt_len(m) + avp->host_mbuf_size - 1) / 1767 avp->host_mbuf_size; 1768 1769 if (unlikely((required == 0) || 1770 (required > RTE_AVP_MAX_MBUF_SEGMENTS))) 1771 break; 1772 else if (unlikely(required + segments > avail)) 1773 break; 1774 segments += required; 1775 count++; 1776 } 1777 nb_pkts = count; 1778 1779 if (unlikely(nb_pkts == 0)) { 1780 /* no available buffers, or no space on the tx queue */ 1781 txq->errors += orig_nb_pkts; 1782 return 0; 1783 } 1784 1785 PMD_TX_LOG(DEBUG, "Sending %u packets on Tx queue at %p\n", 1786 nb_pkts, tx_q); 1787 1788 /* retrieve sufficient send buffers */ 1789 n = avp_fifo_get(alloc_q, (void **)&avp_bufs, segments); 1790 if (unlikely(n != segments)) { 1791 PMD_TX_LOG(DEBUG, "Failed to allocate buffers " 1792 "n=%u, segments=%u, orig=%u\n", 1793 n, segments, orig_nb_pkts); 1794 txq->errors += orig_nb_pkts; 1795 return 0; 1796 } 1797 1798 tx_bytes = 0; 1799 count = 0; 1800 for (i = 0; i < nb_pkts; i++) { 1801 /* process each packet to be transmitted */ 1802 m = tx_pkts[i]; 1803 1804 /* determine how many buffers are required for this packet */ 1805 required = (rte_pktmbuf_pkt_len(m) + avp->host_mbuf_size - 1) / 1806 avp->host_mbuf_size; 1807 1808 tx_bytes += avp_dev_copy_to_buffers(avp, m, 1809 &avp_bufs[count], required); 1810 tx_bufs[i] = avp_bufs[count]; 1811 count += required; 1812 1813 /* free the original mbuf */ 1814 rte_pktmbuf_free(m); 1815 } 1816 1817 txq->packets += nb_pkts; 1818 txq->bytes += tx_bytes; 1819 1820 #ifdef RTE_LIBRTE_AVP_DEBUG_BUFFERS 1821 for (i = 0; i < nb_pkts; i++) 1822 avp_dev_buffer_sanity_check(avp, tx_bufs[i]); 1823 #endif 1824 1825 /* send the packets */ 1826 n = avp_fifo_put(tx_q, (void **)&tx_bufs[0], nb_pkts); 1827 if (unlikely(n != orig_nb_pkts)) 1828 txq->errors += (orig_nb_pkts - n); 1829 1830 return n; 1831 } 1832 1833 1834 static uint16_t 1835 avp_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) 1836 { 1837 struct avp_queue *txq = (struct avp_queue *)tx_queue; 1838 struct rte_avp_desc *avp_bufs[AVP_MAX_TX_BURST]; 1839 struct avp_dev *avp = txq->avp; 1840 struct rte_avp_desc *pkt_buf; 1841 struct rte_avp_fifo *alloc_q; 1842 struct rte_avp_fifo *tx_q; 1843 unsigned int count, avail, n; 1844 struct rte_mbuf *m; 1845 unsigned int pkt_len; 1846 unsigned int tx_bytes; 1847 char *pkt_data; 1848 unsigned int i; 1849 1850 if (unlikely(avp->flags & AVP_F_DETACHED)) { 1851 /* VM live migration in progress */ 1852 /* TODO ... buffer for X packets then drop?! */ 1853 txq->errors++; 1854 return 0; 1855 } 1856 1857 tx_q = avp->tx_q[txq->queue_id]; 1858 alloc_q = avp->alloc_q[txq->queue_id]; 1859 1860 /* limit the number of transmitted packets to the max burst size */ 1861 if (unlikely(nb_pkts > AVP_MAX_TX_BURST)) 1862 nb_pkts = AVP_MAX_TX_BURST; 1863 1864 /* determine how many buffers are available to copy into */ 1865 avail = avp_fifo_count(alloc_q); 1866 1867 /* determine how many slots are available in the transmit queue */ 1868 count = avp_fifo_free_count(tx_q); 1869 1870 /* determine how many packets can be sent */ 1871 count = RTE_MIN(count, avail); 1872 count = RTE_MIN(count, nb_pkts); 1873 1874 if (unlikely(count == 0)) { 1875 /* no available buffers, or no space on the tx queue */ 1876 txq->errors += nb_pkts; 1877 return 0; 1878 } 1879 1880 PMD_TX_LOG(DEBUG, "Sending %u packets on Tx queue at %p\n", 1881 count, tx_q); 1882 1883 /* retrieve sufficient send buffers */ 1884 n = avp_fifo_get(alloc_q, (void **)&avp_bufs, count); 1885 if (unlikely(n != count)) { 1886 txq->errors++; 1887 return 0; 1888 } 1889 1890 tx_bytes = 0; 1891 for (i = 0; i < count; i++) { 1892 /* prefetch next entry while processing the current one */ 1893 if (i < count - 1) { 1894 pkt_buf = avp_dev_translate_buffer(avp, 1895 avp_bufs[i + 1]); 1896 rte_prefetch0(pkt_buf); 1897 } 1898 1899 /* process each packet to be transmitted */ 1900 m = tx_pkts[i]; 1901 1902 /* Adjust pointers for guest addressing */ 1903 pkt_buf = avp_dev_translate_buffer(avp, avp_bufs[i]); 1904 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data); 1905 pkt_len = rte_pktmbuf_pkt_len(m); 1906 1907 if (unlikely((pkt_len > avp->guest_mbuf_size) || 1908 (pkt_len > avp->host_mbuf_size))) { 1909 /* 1910 * application should be using the scattered transmit 1911 * function; send it truncated to avoid the performance 1912 * hit of having to manage returning the already 1913 * allocated buffer to the free list. This should not 1914 * happen since the application should have set the 1915 * max_rx_pkt_len based on its MTU and it should be 1916 * policing its own packet sizes. 1917 */ 1918 txq->errors++; 1919 pkt_len = RTE_MIN(avp->guest_mbuf_size, 1920 avp->host_mbuf_size); 1921 } 1922 1923 /* copy data out of our mbuf and into the AVP buffer */ 1924 rte_memcpy(pkt_data, rte_pktmbuf_mtod(m, void *), pkt_len); 1925 pkt_buf->pkt_len = pkt_len; 1926 pkt_buf->data_len = pkt_len; 1927 pkt_buf->nb_segs = 1; 1928 pkt_buf->next = NULL; 1929 1930 if (m->ol_flags & PKT_TX_VLAN_PKT) { 1931 pkt_buf->ol_flags |= RTE_AVP_TX_VLAN_PKT; 1932 pkt_buf->vlan_tci = m->vlan_tci; 1933 } 1934 1935 tx_bytes += pkt_len; 1936 1937 /* free the original mbuf */ 1938 rte_pktmbuf_free(m); 1939 } 1940 1941 txq->packets += count; 1942 txq->bytes += tx_bytes; 1943 1944 /* send the packets */ 1945 n = avp_fifo_put(tx_q, (void **)&avp_bufs[0], count); 1946 1947 return n; 1948 } 1949 1950 static void 1951 avp_dev_rx_queue_release(void *rx_queue) 1952 { 1953 struct avp_queue *rxq = (struct avp_queue *)rx_queue; 1954 struct avp_dev *avp = rxq->avp; 1955 struct rte_eth_dev_data *data = avp->dev_data; 1956 unsigned int i; 1957 1958 for (i = 0; i < avp->num_rx_queues; i++) { 1959 if (data->rx_queues[i] == rxq) 1960 data->rx_queues[i] = NULL; 1961 } 1962 } 1963 1964 static void 1965 avp_dev_tx_queue_release(void *tx_queue) 1966 { 1967 struct avp_queue *txq = (struct avp_queue *)tx_queue; 1968 struct avp_dev *avp = txq->avp; 1969 struct rte_eth_dev_data *data = avp->dev_data; 1970 unsigned int i; 1971 1972 for (i = 0; i < avp->num_tx_queues; i++) { 1973 if (data->tx_queues[i] == txq) 1974 data->tx_queues[i] = NULL; 1975 } 1976 } 1977 1978 static int 1979 avp_dev_configure(struct rte_eth_dev *eth_dev) 1980 { 1981 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 1982 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 1983 struct rte_avp_device_info *host_info; 1984 struct rte_avp_device_config config; 1985 int mask = 0; 1986 void *addr; 1987 int ret; 1988 1989 rte_spinlock_lock(&avp->lock); 1990 if (avp->flags & AVP_F_DETACHED) { 1991 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n"); 1992 ret = -ENOTSUP; 1993 goto unlock; 1994 } 1995 1996 addr = pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR].addr; 1997 host_info = (struct rte_avp_device_info *)addr; 1998 1999 /* Setup required number of queues */ 2000 _avp_set_queue_counts(eth_dev); 2001 2002 mask = (ETH_VLAN_STRIP_MASK | 2003 ETH_VLAN_FILTER_MASK | 2004 ETH_VLAN_EXTEND_MASK); 2005 ret = avp_vlan_offload_set(eth_dev, mask); 2006 if (ret < 0) { 2007 PMD_DRV_LOG(ERR, "VLAN offload set failed by host, ret=%d\n", 2008 ret); 2009 goto unlock; 2010 } 2011 2012 /* update device config */ 2013 memset(&config, 0, sizeof(config)); 2014 config.device_id = host_info->device_id; 2015 config.driver_type = RTE_AVP_DRIVER_TYPE_DPDK; 2016 config.driver_version = AVP_DPDK_DRIVER_VERSION; 2017 config.features = avp->features; 2018 config.num_tx_queues = avp->num_tx_queues; 2019 config.num_rx_queues = avp->num_rx_queues; 2020 2021 ret = avp_dev_ctrl_set_config(eth_dev, &config); 2022 if (ret < 0) { 2023 PMD_DRV_LOG(ERR, "Config request failed by host, ret=%d\n", 2024 ret); 2025 goto unlock; 2026 } 2027 2028 avp->flags |= AVP_F_CONFIGURED; 2029 ret = 0; 2030 2031 unlock: 2032 rte_spinlock_unlock(&avp->lock); 2033 return ret; 2034 } 2035 2036 static int 2037 avp_dev_start(struct rte_eth_dev *eth_dev) 2038 { 2039 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2040 int ret; 2041 2042 rte_spinlock_lock(&avp->lock); 2043 if (avp->flags & AVP_F_DETACHED) { 2044 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n"); 2045 ret = -ENOTSUP; 2046 goto unlock; 2047 } 2048 2049 /* update link state */ 2050 ret = avp_dev_ctrl_set_link_state(eth_dev, 1); 2051 if (ret < 0) { 2052 PMD_DRV_LOG(ERR, "Link state change failed by host, ret=%d\n", 2053 ret); 2054 goto unlock; 2055 } 2056 2057 /* remember current link state */ 2058 avp->flags |= AVP_F_LINKUP; 2059 2060 ret = 0; 2061 2062 unlock: 2063 rte_spinlock_unlock(&avp->lock); 2064 return ret; 2065 } 2066 2067 static void 2068 avp_dev_stop(struct rte_eth_dev *eth_dev) 2069 { 2070 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2071 int ret; 2072 2073 rte_spinlock_lock(&avp->lock); 2074 if (avp->flags & AVP_F_DETACHED) { 2075 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n"); 2076 goto unlock; 2077 } 2078 2079 /* remember current link state */ 2080 avp->flags &= ~AVP_F_LINKUP; 2081 2082 /* update link state */ 2083 ret = avp_dev_ctrl_set_link_state(eth_dev, 0); 2084 if (ret < 0) { 2085 PMD_DRV_LOG(ERR, "Link state change failed by host, ret=%d\n", 2086 ret); 2087 } 2088 2089 unlock: 2090 rte_spinlock_unlock(&avp->lock); 2091 } 2092 2093 static void 2094 avp_dev_close(struct rte_eth_dev *eth_dev) 2095 { 2096 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2097 int ret; 2098 2099 rte_spinlock_lock(&avp->lock); 2100 if (avp->flags & AVP_F_DETACHED) { 2101 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n"); 2102 goto unlock; 2103 } 2104 2105 /* remember current link state */ 2106 avp->flags &= ~AVP_F_LINKUP; 2107 avp->flags &= ~AVP_F_CONFIGURED; 2108 2109 ret = avp_dev_disable_interrupts(eth_dev); 2110 if (ret < 0) { 2111 PMD_DRV_LOG(ERR, "Failed to disable interrupts\n"); 2112 /* continue */ 2113 } 2114 2115 /* update device state */ 2116 ret = avp_dev_ctrl_shutdown(eth_dev); 2117 if (ret < 0) { 2118 PMD_DRV_LOG(ERR, "Device shutdown failed by host, ret=%d\n", 2119 ret); 2120 /* continue */ 2121 } 2122 2123 unlock: 2124 rte_spinlock_unlock(&avp->lock); 2125 } 2126 2127 static int 2128 avp_dev_link_update(struct rte_eth_dev *eth_dev, 2129 __rte_unused int wait_to_complete) 2130 { 2131 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2132 struct rte_eth_link *link = ð_dev->data->dev_link; 2133 2134 link->link_speed = ETH_SPEED_NUM_10G; 2135 link->link_duplex = ETH_LINK_FULL_DUPLEX; 2136 link->link_status = !!(avp->flags & AVP_F_LINKUP); 2137 2138 return -1; 2139 } 2140 2141 static void 2142 avp_dev_promiscuous_enable(struct rte_eth_dev *eth_dev) 2143 { 2144 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2145 2146 rte_spinlock_lock(&avp->lock); 2147 if ((avp->flags & AVP_F_PROMISC) == 0) { 2148 avp->flags |= AVP_F_PROMISC; 2149 PMD_DRV_LOG(DEBUG, "Promiscuous mode enabled on %u\n", 2150 eth_dev->data->port_id); 2151 } 2152 rte_spinlock_unlock(&avp->lock); 2153 } 2154 2155 static void 2156 avp_dev_promiscuous_disable(struct rte_eth_dev *eth_dev) 2157 { 2158 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2159 2160 rte_spinlock_lock(&avp->lock); 2161 if ((avp->flags & AVP_F_PROMISC) != 0) { 2162 avp->flags &= ~AVP_F_PROMISC; 2163 PMD_DRV_LOG(DEBUG, "Promiscuous mode disabled on %u\n", 2164 eth_dev->data->port_id); 2165 } 2166 rte_spinlock_unlock(&avp->lock); 2167 } 2168 2169 static void 2170 avp_dev_info_get(struct rte_eth_dev *eth_dev, 2171 struct rte_eth_dev_info *dev_info) 2172 { 2173 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2174 2175 dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 2176 dev_info->max_rx_queues = avp->max_rx_queues; 2177 dev_info->max_tx_queues = avp->max_tx_queues; 2178 dev_info->min_rx_bufsize = AVP_MIN_RX_BUFSIZE; 2179 dev_info->max_rx_pktlen = avp->max_rx_pkt_len; 2180 dev_info->max_mac_addrs = AVP_MAX_MAC_ADDRS; 2181 if (avp->host_features & RTE_AVP_FEATURE_VLAN_OFFLOAD) { 2182 dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP; 2183 dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT; 2184 } 2185 } 2186 2187 static int 2188 avp_vlan_offload_set(struct rte_eth_dev *eth_dev, int mask) 2189 { 2190 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2191 struct rte_eth_conf *dev_conf = ð_dev->data->dev_conf; 2192 uint64_t offloads = dev_conf->rxmode.offloads; 2193 2194 if (mask & ETH_VLAN_STRIP_MASK) { 2195 if (avp->host_features & RTE_AVP_FEATURE_VLAN_OFFLOAD) { 2196 if (offloads & DEV_RX_OFFLOAD_VLAN_STRIP) 2197 avp->features |= RTE_AVP_FEATURE_VLAN_OFFLOAD; 2198 else 2199 avp->features &= ~RTE_AVP_FEATURE_VLAN_OFFLOAD; 2200 } else { 2201 PMD_DRV_LOG(ERR, "VLAN strip offload not supported\n"); 2202 } 2203 } 2204 2205 if (mask & ETH_VLAN_FILTER_MASK) { 2206 if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) 2207 PMD_DRV_LOG(ERR, "VLAN filter offload not supported\n"); 2208 } 2209 2210 if (mask & ETH_VLAN_EXTEND_MASK) { 2211 if (offloads & DEV_RX_OFFLOAD_VLAN_EXTEND) 2212 PMD_DRV_LOG(ERR, "VLAN extend offload not supported\n"); 2213 } 2214 2215 return 0; 2216 } 2217 2218 static int 2219 avp_dev_stats_get(struct rte_eth_dev *eth_dev, struct rte_eth_stats *stats) 2220 { 2221 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2222 unsigned int i; 2223 2224 for (i = 0; i < avp->num_rx_queues; i++) { 2225 struct avp_queue *rxq = avp->dev_data->rx_queues[i]; 2226 2227 if (rxq) { 2228 stats->ipackets += rxq->packets; 2229 stats->ibytes += rxq->bytes; 2230 stats->ierrors += rxq->errors; 2231 2232 stats->q_ipackets[i] += rxq->packets; 2233 stats->q_ibytes[i] += rxq->bytes; 2234 stats->q_errors[i] += rxq->errors; 2235 } 2236 } 2237 2238 for (i = 0; i < avp->num_tx_queues; i++) { 2239 struct avp_queue *txq = avp->dev_data->tx_queues[i]; 2240 2241 if (txq) { 2242 stats->opackets += txq->packets; 2243 stats->obytes += txq->bytes; 2244 stats->oerrors += txq->errors; 2245 2246 stats->q_opackets[i] += txq->packets; 2247 stats->q_obytes[i] += txq->bytes; 2248 stats->q_errors[i] += txq->errors; 2249 } 2250 } 2251 2252 return 0; 2253 } 2254 2255 static void 2256 avp_dev_stats_reset(struct rte_eth_dev *eth_dev) 2257 { 2258 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2259 unsigned int i; 2260 2261 for (i = 0; i < avp->num_rx_queues; i++) { 2262 struct avp_queue *rxq = avp->dev_data->rx_queues[i]; 2263 2264 if (rxq) { 2265 rxq->bytes = 0; 2266 rxq->packets = 0; 2267 rxq->errors = 0; 2268 } 2269 } 2270 2271 for (i = 0; i < avp->num_tx_queues; i++) { 2272 struct avp_queue *txq = avp->dev_data->tx_queues[i]; 2273 2274 if (txq) { 2275 txq->bytes = 0; 2276 txq->packets = 0; 2277 txq->errors = 0; 2278 } 2279 } 2280 } 2281 2282 RTE_PMD_REGISTER_PCI(net_avp, rte_avp_pmd); 2283 RTE_PMD_REGISTER_PCI_TABLE(net_avp, pci_id_avp_map); 2284 2285 RTE_INIT(avp_init_log); 2286 static void 2287 avp_init_log(void) 2288 { 2289 avp_logtype_driver = rte_log_register("pmd.net.avp.driver"); 2290 if (avp_logtype_driver >= 0) 2291 rte_log_set_level(avp_logtype_driver, RTE_LOG_NOTICE); 2292 } 2293