1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2013-2017 Wind River Systems, Inc. 3 */ 4 5 #include <stdint.h> 6 #include <string.h> 7 #include <stdio.h> 8 #include <errno.h> 9 #include <unistd.h> 10 11 #include <rte_ethdev_driver.h> 12 #include <rte_ethdev_pci.h> 13 #include <rte_memcpy.h> 14 #include <rte_string_fns.h> 15 #include <rte_malloc.h> 16 #include <rte_atomic.h> 17 #include <rte_branch_prediction.h> 18 #include <rte_pci.h> 19 #include <rte_bus_pci.h> 20 #include <rte_ether.h> 21 #include <rte_common.h> 22 #include <rte_cycles.h> 23 #include <rte_spinlock.h> 24 #include <rte_byteorder.h> 25 #include <rte_dev.h> 26 #include <rte_memory.h> 27 #include <rte_eal.h> 28 #include <rte_io.h> 29 30 #include "rte_avp_common.h" 31 #include "rte_avp_fifo.h" 32 33 #include "avp_logs.h" 34 35 int avp_logtype_driver; 36 37 static int avp_dev_create(struct rte_pci_device *pci_dev, 38 struct rte_eth_dev *eth_dev); 39 40 static int avp_dev_configure(struct rte_eth_dev *dev); 41 static int avp_dev_start(struct rte_eth_dev *dev); 42 static void avp_dev_stop(struct rte_eth_dev *dev); 43 static void avp_dev_close(struct rte_eth_dev *dev); 44 static void avp_dev_info_get(struct rte_eth_dev *dev, 45 struct rte_eth_dev_info *dev_info); 46 static int avp_vlan_offload_set(struct rte_eth_dev *dev, int mask); 47 static int avp_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete); 48 static void avp_dev_promiscuous_enable(struct rte_eth_dev *dev); 49 static void avp_dev_promiscuous_disable(struct rte_eth_dev *dev); 50 51 static int avp_dev_rx_queue_setup(struct rte_eth_dev *dev, 52 uint16_t rx_queue_id, 53 uint16_t nb_rx_desc, 54 unsigned int socket_id, 55 const struct rte_eth_rxconf *rx_conf, 56 struct rte_mempool *pool); 57 58 static int avp_dev_tx_queue_setup(struct rte_eth_dev *dev, 59 uint16_t tx_queue_id, 60 uint16_t nb_tx_desc, 61 unsigned int socket_id, 62 const struct rte_eth_txconf *tx_conf); 63 64 static uint16_t avp_recv_scattered_pkts(void *rx_queue, 65 struct rte_mbuf **rx_pkts, 66 uint16_t nb_pkts); 67 68 static uint16_t avp_recv_pkts(void *rx_queue, 69 struct rte_mbuf **rx_pkts, 70 uint16_t nb_pkts); 71 72 static uint16_t avp_xmit_scattered_pkts(void *tx_queue, 73 struct rte_mbuf **tx_pkts, 74 uint16_t nb_pkts); 75 76 static uint16_t avp_xmit_pkts(void *tx_queue, 77 struct rte_mbuf **tx_pkts, 78 uint16_t nb_pkts); 79 80 static void avp_dev_rx_queue_release(void *rxq); 81 static void avp_dev_tx_queue_release(void *txq); 82 83 static int avp_dev_stats_get(struct rte_eth_dev *dev, 84 struct rte_eth_stats *stats); 85 static void avp_dev_stats_reset(struct rte_eth_dev *dev); 86 87 88 #define AVP_MAX_RX_BURST 64 89 #define AVP_MAX_TX_BURST 64 90 #define AVP_MAX_MAC_ADDRS 1 91 #define AVP_MIN_RX_BUFSIZE ETHER_MIN_LEN 92 93 94 /* 95 * Defines the number of microseconds to wait before checking the response 96 * queue for completion. 97 */ 98 #define AVP_REQUEST_DELAY_USECS (5000) 99 100 /* 101 * Defines the number times to check the response queue for completion before 102 * declaring a timeout. 103 */ 104 #define AVP_MAX_REQUEST_RETRY (100) 105 106 /* Defines the current PCI driver version number */ 107 #define AVP_DPDK_DRIVER_VERSION RTE_AVP_CURRENT_GUEST_VERSION 108 109 /* 110 * The set of PCI devices this driver supports 111 */ 112 static const struct rte_pci_id pci_id_avp_map[] = { 113 { .vendor_id = RTE_AVP_PCI_VENDOR_ID, 114 .device_id = RTE_AVP_PCI_DEVICE_ID, 115 .subsystem_vendor_id = RTE_AVP_PCI_SUB_VENDOR_ID, 116 .subsystem_device_id = RTE_AVP_PCI_SUB_DEVICE_ID, 117 .class_id = RTE_CLASS_ANY_ID, 118 }, 119 120 { .vendor_id = 0, /* sentinel */ 121 }, 122 }; 123 124 /* 125 * dev_ops for avp, bare necessities for basic operation 126 */ 127 static const struct eth_dev_ops avp_eth_dev_ops = { 128 .dev_configure = avp_dev_configure, 129 .dev_start = avp_dev_start, 130 .dev_stop = avp_dev_stop, 131 .dev_close = avp_dev_close, 132 .dev_infos_get = avp_dev_info_get, 133 .vlan_offload_set = avp_vlan_offload_set, 134 .stats_get = avp_dev_stats_get, 135 .stats_reset = avp_dev_stats_reset, 136 .link_update = avp_dev_link_update, 137 .promiscuous_enable = avp_dev_promiscuous_enable, 138 .promiscuous_disable = avp_dev_promiscuous_disable, 139 .rx_queue_setup = avp_dev_rx_queue_setup, 140 .rx_queue_release = avp_dev_rx_queue_release, 141 .tx_queue_setup = avp_dev_tx_queue_setup, 142 .tx_queue_release = avp_dev_tx_queue_release, 143 }; 144 145 /**@{ AVP device flags */ 146 #define AVP_F_PROMISC (1 << 1) 147 #define AVP_F_CONFIGURED (1 << 2) 148 #define AVP_F_LINKUP (1 << 3) 149 #define AVP_F_DETACHED (1 << 4) 150 /**@} */ 151 152 /* Ethernet device validation marker */ 153 #define AVP_ETHDEV_MAGIC 0x92972862 154 155 /* 156 * Defines the AVP device attributes which are attached to an RTE ethernet 157 * device 158 */ 159 struct avp_dev { 160 uint32_t magic; /**< Memory validation marker */ 161 uint64_t device_id; /**< Unique system identifier */ 162 struct ether_addr ethaddr; /**< Host specified MAC address */ 163 struct rte_eth_dev_data *dev_data; 164 /**< Back pointer to ethernet device data */ 165 volatile uint32_t flags; /**< Device operational flags */ 166 uint16_t port_id; /**< Ethernet port identifier */ 167 struct rte_mempool *pool; /**< pkt mbuf mempool */ 168 unsigned int guest_mbuf_size; /**< local pool mbuf size */ 169 unsigned int host_mbuf_size; /**< host mbuf size */ 170 unsigned int max_rx_pkt_len; /**< maximum receive unit */ 171 uint32_t host_features; /**< Supported feature bitmap */ 172 uint32_t features; /**< Enabled feature bitmap */ 173 unsigned int num_tx_queues; /**< Negotiated number of transmit queues */ 174 unsigned int max_tx_queues; /**< Maximum number of transmit queues */ 175 unsigned int num_rx_queues; /**< Negotiated number of receive queues */ 176 unsigned int max_rx_queues; /**< Maximum number of receive queues */ 177 178 struct rte_avp_fifo *tx_q[RTE_AVP_MAX_QUEUES]; /**< TX queue */ 179 struct rte_avp_fifo *rx_q[RTE_AVP_MAX_QUEUES]; /**< RX queue */ 180 struct rte_avp_fifo *alloc_q[RTE_AVP_MAX_QUEUES]; 181 /**< Allocated mbufs queue */ 182 struct rte_avp_fifo *free_q[RTE_AVP_MAX_QUEUES]; 183 /**< To be freed mbufs queue */ 184 185 /* mutual exclusion over the 'flag' and 'resp_q/req_q' fields */ 186 rte_spinlock_t lock; 187 188 /* For request & response */ 189 struct rte_avp_fifo *req_q; /**< Request queue */ 190 struct rte_avp_fifo *resp_q; /**< Response queue */ 191 void *host_sync_addr; /**< (host) Req/Resp Mem address */ 192 void *sync_addr; /**< Req/Resp Mem address */ 193 void *host_mbuf_addr; /**< (host) MBUF pool start address */ 194 void *mbuf_addr; /**< MBUF pool start address */ 195 } __rte_cache_aligned; 196 197 /* RTE ethernet private data */ 198 struct avp_adapter { 199 struct avp_dev avp; 200 } __rte_cache_aligned; 201 202 203 /* 32-bit MMIO register write */ 204 #define AVP_WRITE32(_value, _addr) rte_write32_relaxed((_value), (_addr)) 205 206 /* 32-bit MMIO register read */ 207 #define AVP_READ32(_addr) rte_read32_relaxed((_addr)) 208 209 /* Macro to cast the ethernet device private data to a AVP object */ 210 #define AVP_DEV_PRIVATE_TO_HW(adapter) \ 211 (&((struct avp_adapter *)adapter)->avp) 212 213 /* 214 * Defines the structure of a AVP device queue for the purpose of handling the 215 * receive and transmit burst callback functions 216 */ 217 struct avp_queue { 218 struct rte_eth_dev_data *dev_data; 219 /**< Backpointer to ethernet device data */ 220 struct avp_dev *avp; /**< Backpointer to AVP device */ 221 uint16_t queue_id; 222 /**< Queue identifier used for indexing current queue */ 223 uint16_t queue_base; 224 /**< Base queue identifier for queue servicing */ 225 uint16_t queue_limit; 226 /**< Maximum queue identifier for queue servicing */ 227 228 uint64_t packets; 229 uint64_t bytes; 230 uint64_t errors; 231 }; 232 233 /* send a request and wait for a response 234 * 235 * @warning must be called while holding the avp->lock spinlock. 236 */ 237 static int 238 avp_dev_process_request(struct avp_dev *avp, struct rte_avp_request *request) 239 { 240 unsigned int retry = AVP_MAX_REQUEST_RETRY; 241 void *resp_addr = NULL; 242 unsigned int count; 243 int ret; 244 245 PMD_DRV_LOG(DEBUG, "Sending request %u to host\n", request->req_id); 246 247 request->result = -ENOTSUP; 248 249 /* Discard any stale responses before starting a new request */ 250 while (avp_fifo_get(avp->resp_q, (void **)&resp_addr, 1)) 251 PMD_DRV_LOG(DEBUG, "Discarding stale response\n"); 252 253 rte_memcpy(avp->sync_addr, request, sizeof(*request)); 254 count = avp_fifo_put(avp->req_q, &avp->host_sync_addr, 1); 255 if (count < 1) { 256 PMD_DRV_LOG(ERR, "Cannot send request %u to host\n", 257 request->req_id); 258 ret = -EBUSY; 259 goto done; 260 } 261 262 while (retry--) { 263 /* wait for a response */ 264 usleep(AVP_REQUEST_DELAY_USECS); 265 266 count = avp_fifo_count(avp->resp_q); 267 if (count >= 1) { 268 /* response received */ 269 break; 270 } 271 272 if ((count < 1) && (retry == 0)) { 273 PMD_DRV_LOG(ERR, "Timeout while waiting for a response for %u\n", 274 request->req_id); 275 ret = -ETIME; 276 goto done; 277 } 278 } 279 280 /* retrieve the response */ 281 count = avp_fifo_get(avp->resp_q, (void **)&resp_addr, 1); 282 if ((count != 1) || (resp_addr != avp->host_sync_addr)) { 283 PMD_DRV_LOG(ERR, "Invalid response from host, count=%u resp=%p host_sync_addr=%p\n", 284 count, resp_addr, avp->host_sync_addr); 285 ret = -ENODATA; 286 goto done; 287 } 288 289 /* copy to user buffer */ 290 rte_memcpy(request, avp->sync_addr, sizeof(*request)); 291 ret = 0; 292 293 PMD_DRV_LOG(DEBUG, "Result %d received for request %u\n", 294 request->result, request->req_id); 295 296 done: 297 return ret; 298 } 299 300 static int 301 avp_dev_ctrl_set_link_state(struct rte_eth_dev *eth_dev, unsigned int state) 302 { 303 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 304 struct rte_avp_request request; 305 int ret; 306 307 /* setup a link state change request */ 308 memset(&request, 0, sizeof(request)); 309 request.req_id = RTE_AVP_REQ_CFG_NETWORK_IF; 310 request.if_up = state; 311 312 ret = avp_dev_process_request(avp, &request); 313 314 return ret == 0 ? request.result : ret; 315 } 316 317 static int 318 avp_dev_ctrl_set_config(struct rte_eth_dev *eth_dev, 319 struct rte_avp_device_config *config) 320 { 321 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 322 struct rte_avp_request request; 323 int ret; 324 325 /* setup a configure request */ 326 memset(&request, 0, sizeof(request)); 327 request.req_id = RTE_AVP_REQ_CFG_DEVICE; 328 memcpy(&request.config, config, sizeof(request.config)); 329 330 ret = avp_dev_process_request(avp, &request); 331 332 return ret == 0 ? request.result : ret; 333 } 334 335 static int 336 avp_dev_ctrl_shutdown(struct rte_eth_dev *eth_dev) 337 { 338 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 339 struct rte_avp_request request; 340 int ret; 341 342 /* setup a shutdown request */ 343 memset(&request, 0, sizeof(request)); 344 request.req_id = RTE_AVP_REQ_SHUTDOWN_DEVICE; 345 346 ret = avp_dev_process_request(avp, &request); 347 348 return ret == 0 ? request.result : ret; 349 } 350 351 /* translate from host mbuf virtual address to guest virtual address */ 352 static inline void * 353 avp_dev_translate_buffer(struct avp_dev *avp, void *host_mbuf_address) 354 { 355 return RTE_PTR_ADD(RTE_PTR_SUB(host_mbuf_address, 356 (uintptr_t)avp->host_mbuf_addr), 357 (uintptr_t)avp->mbuf_addr); 358 } 359 360 /* translate from host physical address to guest virtual address */ 361 static void * 362 avp_dev_translate_address(struct rte_eth_dev *eth_dev, 363 rte_iova_t host_phys_addr) 364 { 365 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 366 struct rte_mem_resource *resource; 367 struct rte_avp_memmap_info *info; 368 struct rte_avp_memmap *map; 369 off_t offset; 370 void *addr; 371 unsigned int i; 372 373 addr = pci_dev->mem_resource[RTE_AVP_PCI_MEMORY_BAR].addr; 374 resource = &pci_dev->mem_resource[RTE_AVP_PCI_MEMMAP_BAR]; 375 info = (struct rte_avp_memmap_info *)resource->addr; 376 377 offset = 0; 378 for (i = 0; i < info->nb_maps; i++) { 379 /* search all segments looking for a matching address */ 380 map = &info->maps[i]; 381 382 if ((host_phys_addr >= map->phys_addr) && 383 (host_phys_addr < (map->phys_addr + map->length))) { 384 /* address is within this segment */ 385 offset += (host_phys_addr - map->phys_addr); 386 addr = RTE_PTR_ADD(addr, (uintptr_t)offset); 387 388 PMD_DRV_LOG(DEBUG, "Translating host physical 0x%" PRIx64 " to guest virtual 0x%p\n", 389 host_phys_addr, addr); 390 391 return addr; 392 } 393 offset += map->length; 394 } 395 396 return NULL; 397 } 398 399 /* verify that the incoming device version is compatible with our version */ 400 static int 401 avp_dev_version_check(uint32_t version) 402 { 403 uint32_t driver = RTE_AVP_STRIP_MINOR_VERSION(AVP_DPDK_DRIVER_VERSION); 404 uint32_t device = RTE_AVP_STRIP_MINOR_VERSION(version); 405 406 if (device <= driver) { 407 /* the host driver version is less than or equal to ours */ 408 return 0; 409 } 410 411 return 1; 412 } 413 414 /* verify that memory regions have expected version and validation markers */ 415 static int 416 avp_dev_check_regions(struct rte_eth_dev *eth_dev) 417 { 418 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 419 struct rte_avp_memmap_info *memmap; 420 struct rte_avp_device_info *info; 421 struct rte_mem_resource *resource; 422 unsigned int i; 423 424 /* Dump resource info for debug */ 425 for (i = 0; i < PCI_MAX_RESOURCE; i++) { 426 resource = &pci_dev->mem_resource[i]; 427 if ((resource->phys_addr == 0) || (resource->len == 0)) 428 continue; 429 430 PMD_DRV_LOG(DEBUG, "resource[%u]: phys=0x%" PRIx64 " len=%" PRIu64 " addr=%p\n", 431 i, resource->phys_addr, 432 resource->len, resource->addr); 433 434 switch (i) { 435 case RTE_AVP_PCI_MEMMAP_BAR: 436 memmap = (struct rte_avp_memmap_info *)resource->addr; 437 if ((memmap->magic != RTE_AVP_MEMMAP_MAGIC) || 438 (memmap->version != RTE_AVP_MEMMAP_VERSION)) { 439 PMD_DRV_LOG(ERR, "Invalid memmap magic 0x%08x and version %u\n", 440 memmap->magic, memmap->version); 441 return -EINVAL; 442 } 443 break; 444 445 case RTE_AVP_PCI_DEVICE_BAR: 446 info = (struct rte_avp_device_info *)resource->addr; 447 if ((info->magic != RTE_AVP_DEVICE_MAGIC) || 448 avp_dev_version_check(info->version)) { 449 PMD_DRV_LOG(ERR, "Invalid device info magic 0x%08x or version 0x%08x > 0x%08x\n", 450 info->magic, info->version, 451 AVP_DPDK_DRIVER_VERSION); 452 return -EINVAL; 453 } 454 break; 455 456 case RTE_AVP_PCI_MEMORY_BAR: 457 case RTE_AVP_PCI_MMIO_BAR: 458 if (resource->addr == NULL) { 459 PMD_DRV_LOG(ERR, "Missing address space for BAR%u\n", 460 i); 461 return -EINVAL; 462 } 463 break; 464 465 case RTE_AVP_PCI_MSIX_BAR: 466 default: 467 /* no validation required */ 468 break; 469 } 470 } 471 472 return 0; 473 } 474 475 static int 476 avp_dev_detach(struct rte_eth_dev *eth_dev) 477 { 478 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 479 int ret; 480 481 PMD_DRV_LOG(NOTICE, "Detaching port %u from AVP device 0x%" PRIx64 "\n", 482 eth_dev->data->port_id, avp->device_id); 483 484 rte_spinlock_lock(&avp->lock); 485 486 if (avp->flags & AVP_F_DETACHED) { 487 PMD_DRV_LOG(NOTICE, "port %u already detached\n", 488 eth_dev->data->port_id); 489 ret = 0; 490 goto unlock; 491 } 492 493 /* shutdown the device first so the host stops sending us packets. */ 494 ret = avp_dev_ctrl_shutdown(eth_dev); 495 if (ret < 0) { 496 PMD_DRV_LOG(ERR, "Failed to send/recv shutdown to host, ret=%d\n", 497 ret); 498 avp->flags &= ~AVP_F_DETACHED; 499 goto unlock; 500 } 501 502 avp->flags |= AVP_F_DETACHED; 503 rte_wmb(); 504 505 /* wait for queues to acknowledge the presence of the detach flag */ 506 rte_delay_ms(1); 507 508 ret = 0; 509 510 unlock: 511 rte_spinlock_unlock(&avp->lock); 512 return ret; 513 } 514 515 static void 516 _avp_set_rx_queue_mappings(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id) 517 { 518 struct avp_dev *avp = 519 AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 520 struct avp_queue *rxq; 521 uint16_t queue_count; 522 uint16_t remainder; 523 524 rxq = (struct avp_queue *)eth_dev->data->rx_queues[rx_queue_id]; 525 526 /* 527 * Must map all AVP fifos as evenly as possible between the configured 528 * device queues. Each device queue will service a subset of the AVP 529 * fifos. If there is an odd number of device queues the first set of 530 * device queues will get the extra AVP fifos. 531 */ 532 queue_count = avp->num_rx_queues / eth_dev->data->nb_rx_queues; 533 remainder = avp->num_rx_queues % eth_dev->data->nb_rx_queues; 534 if (rx_queue_id < remainder) { 535 /* these queues must service one extra FIFO */ 536 rxq->queue_base = rx_queue_id * (queue_count + 1); 537 rxq->queue_limit = rxq->queue_base + (queue_count + 1) - 1; 538 } else { 539 /* these queues service the regular number of FIFO */ 540 rxq->queue_base = ((remainder * (queue_count + 1)) + 541 ((rx_queue_id - remainder) * queue_count)); 542 rxq->queue_limit = rxq->queue_base + queue_count - 1; 543 } 544 545 PMD_DRV_LOG(DEBUG, "rxq %u at %p base %u limit %u\n", 546 rx_queue_id, rxq, rxq->queue_base, rxq->queue_limit); 547 548 rxq->queue_id = rxq->queue_base; 549 } 550 551 static void 552 _avp_set_queue_counts(struct rte_eth_dev *eth_dev) 553 { 554 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 555 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 556 struct rte_avp_device_info *host_info; 557 void *addr; 558 559 addr = pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR].addr; 560 host_info = (struct rte_avp_device_info *)addr; 561 562 /* 563 * the transmit direction is not negotiated beyond respecting the max 564 * number of queues because the host can handle arbitrary guest tx 565 * queues (host rx queues). 566 */ 567 avp->num_tx_queues = eth_dev->data->nb_tx_queues; 568 569 /* 570 * the receive direction is more restrictive. The host requires a 571 * minimum number of guest rx queues (host tx queues) therefore 572 * negotiate a value that is at least as large as the host minimum 573 * requirement. If the host and guest values are not identical then a 574 * mapping will be established in the receive_queue_setup function. 575 */ 576 avp->num_rx_queues = RTE_MAX(host_info->min_rx_queues, 577 eth_dev->data->nb_rx_queues); 578 579 PMD_DRV_LOG(DEBUG, "Requesting %u Tx and %u Rx queues from host\n", 580 avp->num_tx_queues, avp->num_rx_queues); 581 } 582 583 static int 584 avp_dev_attach(struct rte_eth_dev *eth_dev) 585 { 586 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 587 struct rte_avp_device_config config; 588 unsigned int i; 589 int ret; 590 591 PMD_DRV_LOG(NOTICE, "Attaching port %u to AVP device 0x%" PRIx64 "\n", 592 eth_dev->data->port_id, avp->device_id); 593 594 rte_spinlock_lock(&avp->lock); 595 596 if (!(avp->flags & AVP_F_DETACHED)) { 597 PMD_DRV_LOG(NOTICE, "port %u already attached\n", 598 eth_dev->data->port_id); 599 ret = 0; 600 goto unlock; 601 } 602 603 /* 604 * make sure that the detached flag is set prior to reconfiguring the 605 * queues. 606 */ 607 avp->flags |= AVP_F_DETACHED; 608 rte_wmb(); 609 610 /* 611 * re-run the device create utility which will parse the new host info 612 * and setup the AVP device queue pointers. 613 */ 614 ret = avp_dev_create(RTE_ETH_DEV_TO_PCI(eth_dev), eth_dev); 615 if (ret < 0) { 616 PMD_DRV_LOG(ERR, "Failed to re-create AVP device, ret=%d\n", 617 ret); 618 goto unlock; 619 } 620 621 if (avp->flags & AVP_F_CONFIGURED) { 622 /* 623 * Update the receive queue mapping to handle cases where the 624 * source and destination hosts have different queue 625 * requirements. As long as the DETACHED flag is asserted the 626 * queue table should not be referenced so it should be safe to 627 * update it. 628 */ 629 _avp_set_queue_counts(eth_dev); 630 for (i = 0; i < eth_dev->data->nb_rx_queues; i++) 631 _avp_set_rx_queue_mappings(eth_dev, i); 632 633 /* 634 * Update the host with our config details so that it knows the 635 * device is active. 636 */ 637 memset(&config, 0, sizeof(config)); 638 config.device_id = avp->device_id; 639 config.driver_type = RTE_AVP_DRIVER_TYPE_DPDK; 640 config.driver_version = AVP_DPDK_DRIVER_VERSION; 641 config.features = avp->features; 642 config.num_tx_queues = avp->num_tx_queues; 643 config.num_rx_queues = avp->num_rx_queues; 644 config.if_up = !!(avp->flags & AVP_F_LINKUP); 645 646 ret = avp_dev_ctrl_set_config(eth_dev, &config); 647 if (ret < 0) { 648 PMD_DRV_LOG(ERR, "Config request failed by host, ret=%d\n", 649 ret); 650 goto unlock; 651 } 652 } 653 654 rte_wmb(); 655 avp->flags &= ~AVP_F_DETACHED; 656 657 ret = 0; 658 659 unlock: 660 rte_spinlock_unlock(&avp->lock); 661 return ret; 662 } 663 664 static void 665 avp_dev_interrupt_handler(void *data) 666 { 667 struct rte_eth_dev *eth_dev = data; 668 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 669 void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr; 670 uint32_t status, value; 671 int ret; 672 673 if (registers == NULL) 674 rte_panic("no mapped MMIO register space\n"); 675 676 /* read the interrupt status register 677 * note: this register clears on read so all raised interrupts must be 678 * handled or remembered for later processing 679 */ 680 status = AVP_READ32( 681 RTE_PTR_ADD(registers, 682 RTE_AVP_INTERRUPT_STATUS_OFFSET)); 683 684 if (status & RTE_AVP_MIGRATION_INTERRUPT_MASK) { 685 /* handle interrupt based on current status */ 686 value = AVP_READ32( 687 RTE_PTR_ADD(registers, 688 RTE_AVP_MIGRATION_STATUS_OFFSET)); 689 switch (value) { 690 case RTE_AVP_MIGRATION_DETACHED: 691 ret = avp_dev_detach(eth_dev); 692 break; 693 case RTE_AVP_MIGRATION_ATTACHED: 694 ret = avp_dev_attach(eth_dev); 695 break; 696 default: 697 PMD_DRV_LOG(ERR, "unexpected migration status, status=%u\n", 698 value); 699 ret = -EINVAL; 700 } 701 702 /* acknowledge the request by writing out our current status */ 703 value = (ret == 0 ? value : RTE_AVP_MIGRATION_ERROR); 704 AVP_WRITE32(value, 705 RTE_PTR_ADD(registers, 706 RTE_AVP_MIGRATION_ACK_OFFSET)); 707 708 PMD_DRV_LOG(NOTICE, "AVP migration interrupt handled\n"); 709 } 710 711 if (status & ~RTE_AVP_MIGRATION_INTERRUPT_MASK) 712 PMD_DRV_LOG(WARNING, "AVP unexpected interrupt, status=0x%08x\n", 713 status); 714 715 /* re-enable UIO interrupt handling */ 716 ret = rte_intr_enable(&pci_dev->intr_handle); 717 if (ret < 0) { 718 PMD_DRV_LOG(ERR, "Failed to re-enable UIO interrupts, ret=%d\n", 719 ret); 720 /* continue */ 721 } 722 } 723 724 static int 725 avp_dev_enable_interrupts(struct rte_eth_dev *eth_dev) 726 { 727 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 728 void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr; 729 int ret; 730 731 if (registers == NULL) 732 return -EINVAL; 733 734 /* enable UIO interrupt handling */ 735 ret = rte_intr_enable(&pci_dev->intr_handle); 736 if (ret < 0) { 737 PMD_DRV_LOG(ERR, "Failed to enable UIO interrupts, ret=%d\n", 738 ret); 739 return ret; 740 } 741 742 /* inform the device that all interrupts are enabled */ 743 AVP_WRITE32(RTE_AVP_APP_INTERRUPTS_MASK, 744 RTE_PTR_ADD(registers, RTE_AVP_INTERRUPT_MASK_OFFSET)); 745 746 return 0; 747 } 748 749 static int 750 avp_dev_disable_interrupts(struct rte_eth_dev *eth_dev) 751 { 752 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 753 void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr; 754 int ret; 755 756 if (registers == NULL) 757 return 0; 758 759 /* inform the device that all interrupts are disabled */ 760 AVP_WRITE32(RTE_AVP_NO_INTERRUPTS_MASK, 761 RTE_PTR_ADD(registers, RTE_AVP_INTERRUPT_MASK_OFFSET)); 762 763 /* enable UIO interrupt handling */ 764 ret = rte_intr_disable(&pci_dev->intr_handle); 765 if (ret < 0) { 766 PMD_DRV_LOG(ERR, "Failed to disable UIO interrupts, ret=%d\n", 767 ret); 768 return ret; 769 } 770 771 return 0; 772 } 773 774 static int 775 avp_dev_setup_interrupts(struct rte_eth_dev *eth_dev) 776 { 777 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 778 int ret; 779 780 /* register a callback handler with UIO for interrupt notifications */ 781 ret = rte_intr_callback_register(&pci_dev->intr_handle, 782 avp_dev_interrupt_handler, 783 (void *)eth_dev); 784 if (ret < 0) { 785 PMD_DRV_LOG(ERR, "Failed to register UIO interrupt callback, ret=%d\n", 786 ret); 787 return ret; 788 } 789 790 /* enable interrupt processing */ 791 return avp_dev_enable_interrupts(eth_dev); 792 } 793 794 static int 795 avp_dev_migration_pending(struct rte_eth_dev *eth_dev) 796 { 797 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 798 void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr; 799 uint32_t value; 800 801 if (registers == NULL) 802 return 0; 803 804 value = AVP_READ32(RTE_PTR_ADD(registers, 805 RTE_AVP_MIGRATION_STATUS_OFFSET)); 806 if (value == RTE_AVP_MIGRATION_DETACHED) { 807 /* migration is in progress; ack it if we have not already */ 808 AVP_WRITE32(value, 809 RTE_PTR_ADD(registers, 810 RTE_AVP_MIGRATION_ACK_OFFSET)); 811 return 1; 812 } 813 return 0; 814 } 815 816 /* 817 * create a AVP device using the supplied device info by first translating it 818 * to guest address space(s). 819 */ 820 static int 821 avp_dev_create(struct rte_pci_device *pci_dev, 822 struct rte_eth_dev *eth_dev) 823 { 824 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 825 struct rte_avp_device_info *host_info; 826 struct rte_mem_resource *resource; 827 unsigned int i; 828 829 resource = &pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR]; 830 if (resource->addr == NULL) { 831 PMD_DRV_LOG(ERR, "BAR%u is not mapped\n", 832 RTE_AVP_PCI_DEVICE_BAR); 833 return -EFAULT; 834 } 835 host_info = (struct rte_avp_device_info *)resource->addr; 836 837 if ((host_info->magic != RTE_AVP_DEVICE_MAGIC) || 838 avp_dev_version_check(host_info->version)) { 839 PMD_DRV_LOG(ERR, "Invalid AVP PCI device, magic 0x%08x version 0x%08x > 0x%08x\n", 840 host_info->magic, host_info->version, 841 AVP_DPDK_DRIVER_VERSION); 842 return -EINVAL; 843 } 844 845 PMD_DRV_LOG(DEBUG, "AVP host device is v%u.%u.%u\n", 846 RTE_AVP_GET_RELEASE_VERSION(host_info->version), 847 RTE_AVP_GET_MAJOR_VERSION(host_info->version), 848 RTE_AVP_GET_MINOR_VERSION(host_info->version)); 849 850 PMD_DRV_LOG(DEBUG, "AVP host supports %u to %u TX queue(s)\n", 851 host_info->min_tx_queues, host_info->max_tx_queues); 852 PMD_DRV_LOG(DEBUG, "AVP host supports %u to %u RX queue(s)\n", 853 host_info->min_rx_queues, host_info->max_rx_queues); 854 PMD_DRV_LOG(DEBUG, "AVP host supports features 0x%08x\n", 855 host_info->features); 856 857 if (avp->magic != AVP_ETHDEV_MAGIC) { 858 /* 859 * First time initialization (i.e., not during a VM 860 * migration) 861 */ 862 memset(avp, 0, sizeof(*avp)); 863 avp->magic = AVP_ETHDEV_MAGIC; 864 avp->dev_data = eth_dev->data; 865 avp->port_id = eth_dev->data->port_id; 866 avp->host_mbuf_size = host_info->mbuf_size; 867 avp->host_features = host_info->features; 868 rte_spinlock_init(&avp->lock); 869 memcpy(&avp->ethaddr.addr_bytes[0], 870 host_info->ethaddr, ETHER_ADDR_LEN); 871 /* adjust max values to not exceed our max */ 872 avp->max_tx_queues = 873 RTE_MIN(host_info->max_tx_queues, RTE_AVP_MAX_QUEUES); 874 avp->max_rx_queues = 875 RTE_MIN(host_info->max_rx_queues, RTE_AVP_MAX_QUEUES); 876 } else { 877 /* Re-attaching during migration */ 878 879 /* TODO... requires validation of host values */ 880 if ((host_info->features & avp->features) != avp->features) { 881 PMD_DRV_LOG(ERR, "AVP host features mismatched; 0x%08x, host=0x%08x\n", 882 avp->features, host_info->features); 883 /* this should not be possible; continue for now */ 884 } 885 } 886 887 /* the device id is allowed to change over migrations */ 888 avp->device_id = host_info->device_id; 889 890 /* translate incoming host addresses to guest address space */ 891 PMD_DRV_LOG(DEBUG, "AVP first host tx queue at 0x%" PRIx64 "\n", 892 host_info->tx_phys); 893 PMD_DRV_LOG(DEBUG, "AVP first host alloc queue at 0x%" PRIx64 "\n", 894 host_info->alloc_phys); 895 for (i = 0; i < avp->max_tx_queues; i++) { 896 avp->tx_q[i] = avp_dev_translate_address(eth_dev, 897 host_info->tx_phys + (i * host_info->tx_size)); 898 899 avp->alloc_q[i] = avp_dev_translate_address(eth_dev, 900 host_info->alloc_phys + (i * host_info->alloc_size)); 901 } 902 903 PMD_DRV_LOG(DEBUG, "AVP first host rx queue at 0x%" PRIx64 "\n", 904 host_info->rx_phys); 905 PMD_DRV_LOG(DEBUG, "AVP first host free queue at 0x%" PRIx64 "\n", 906 host_info->free_phys); 907 for (i = 0; i < avp->max_rx_queues; i++) { 908 avp->rx_q[i] = avp_dev_translate_address(eth_dev, 909 host_info->rx_phys + (i * host_info->rx_size)); 910 avp->free_q[i] = avp_dev_translate_address(eth_dev, 911 host_info->free_phys + (i * host_info->free_size)); 912 } 913 914 PMD_DRV_LOG(DEBUG, "AVP host request queue at 0x%" PRIx64 "\n", 915 host_info->req_phys); 916 PMD_DRV_LOG(DEBUG, "AVP host response queue at 0x%" PRIx64 "\n", 917 host_info->resp_phys); 918 PMD_DRV_LOG(DEBUG, "AVP host sync address at 0x%" PRIx64 "\n", 919 host_info->sync_phys); 920 PMD_DRV_LOG(DEBUG, "AVP host mbuf address at 0x%" PRIx64 "\n", 921 host_info->mbuf_phys); 922 avp->req_q = avp_dev_translate_address(eth_dev, host_info->req_phys); 923 avp->resp_q = avp_dev_translate_address(eth_dev, host_info->resp_phys); 924 avp->sync_addr = 925 avp_dev_translate_address(eth_dev, host_info->sync_phys); 926 avp->mbuf_addr = 927 avp_dev_translate_address(eth_dev, host_info->mbuf_phys); 928 929 /* 930 * store the host mbuf virtual address so that we can calculate 931 * relative offsets for each mbuf as they are processed 932 */ 933 avp->host_mbuf_addr = host_info->mbuf_va; 934 avp->host_sync_addr = host_info->sync_va; 935 936 /* 937 * store the maximum packet length that is supported by the host. 938 */ 939 avp->max_rx_pkt_len = host_info->max_rx_pkt_len; 940 PMD_DRV_LOG(DEBUG, "AVP host max receive packet length is %u\n", 941 host_info->max_rx_pkt_len); 942 943 return 0; 944 } 945 946 /* 947 * This function is based on probe() function in avp_pci.c 948 * It returns 0 on success. 949 */ 950 static int 951 eth_avp_dev_init(struct rte_eth_dev *eth_dev) 952 { 953 struct avp_dev *avp = 954 AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 955 struct rte_pci_device *pci_dev; 956 int ret; 957 958 pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 959 eth_dev->dev_ops = &avp_eth_dev_ops; 960 eth_dev->rx_pkt_burst = &avp_recv_pkts; 961 eth_dev->tx_pkt_burst = &avp_xmit_pkts; 962 963 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 964 /* 965 * no setup required on secondary processes. All data is saved 966 * in dev_private by the primary process. All resource should 967 * be mapped to the same virtual address so all pointers should 968 * be valid. 969 */ 970 if (eth_dev->data->scattered_rx) { 971 PMD_DRV_LOG(NOTICE, "AVP device configured for chained mbufs\n"); 972 eth_dev->rx_pkt_burst = avp_recv_scattered_pkts; 973 eth_dev->tx_pkt_burst = avp_xmit_scattered_pkts; 974 } 975 return 0; 976 } 977 978 rte_eth_copy_pci_info(eth_dev, pci_dev); 979 980 /* Check current migration status */ 981 if (avp_dev_migration_pending(eth_dev)) { 982 PMD_DRV_LOG(ERR, "VM live migration operation in progress\n"); 983 return -EBUSY; 984 } 985 986 /* Check BAR resources */ 987 ret = avp_dev_check_regions(eth_dev); 988 if (ret < 0) { 989 PMD_DRV_LOG(ERR, "Failed to validate BAR resources, ret=%d\n", 990 ret); 991 return ret; 992 } 993 994 /* Enable interrupts */ 995 ret = avp_dev_setup_interrupts(eth_dev); 996 if (ret < 0) { 997 PMD_DRV_LOG(ERR, "Failed to enable interrupts, ret=%d\n", ret); 998 return ret; 999 } 1000 1001 /* Handle each subtype */ 1002 ret = avp_dev_create(pci_dev, eth_dev); 1003 if (ret < 0) { 1004 PMD_DRV_LOG(ERR, "Failed to create device, ret=%d\n", ret); 1005 return ret; 1006 } 1007 1008 /* Allocate memory for storing MAC addresses */ 1009 eth_dev->data->mac_addrs = rte_zmalloc("avp_ethdev", ETHER_ADDR_LEN, 0); 1010 if (eth_dev->data->mac_addrs == NULL) { 1011 PMD_DRV_LOG(ERR, "Failed to allocate %d bytes needed to store MAC addresses\n", 1012 ETHER_ADDR_LEN); 1013 return -ENOMEM; 1014 } 1015 1016 /* Get a mac from device config */ 1017 ether_addr_copy(&avp->ethaddr, ð_dev->data->mac_addrs[0]); 1018 1019 return 0; 1020 } 1021 1022 static int 1023 eth_avp_dev_uninit(struct rte_eth_dev *eth_dev) 1024 { 1025 int ret; 1026 1027 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 1028 return -EPERM; 1029 1030 if (eth_dev->data == NULL) 1031 return 0; 1032 1033 ret = avp_dev_disable_interrupts(eth_dev); 1034 if (ret != 0) { 1035 PMD_DRV_LOG(ERR, "Failed to disable interrupts, ret=%d\n", ret); 1036 return ret; 1037 } 1038 1039 return 0; 1040 } 1041 1042 static int 1043 eth_avp_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 1044 struct rte_pci_device *pci_dev) 1045 { 1046 return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct avp_adapter), 1047 eth_avp_dev_init); 1048 } 1049 1050 static int 1051 eth_avp_pci_remove(struct rte_pci_device *pci_dev) 1052 { 1053 return rte_eth_dev_pci_generic_remove(pci_dev, 1054 eth_avp_dev_uninit); 1055 } 1056 1057 static struct rte_pci_driver rte_avp_pmd = { 1058 .id_table = pci_id_avp_map, 1059 .drv_flags = RTE_PCI_DRV_NEED_MAPPING, 1060 .probe = eth_avp_pci_probe, 1061 .remove = eth_avp_pci_remove, 1062 }; 1063 1064 static int 1065 avp_dev_enable_scattered(struct rte_eth_dev *eth_dev, 1066 struct avp_dev *avp) 1067 { 1068 unsigned int max_rx_pkt_len; 1069 1070 max_rx_pkt_len = eth_dev->data->dev_conf.rxmode.max_rx_pkt_len; 1071 1072 if ((max_rx_pkt_len > avp->guest_mbuf_size) || 1073 (max_rx_pkt_len > avp->host_mbuf_size)) { 1074 /* 1075 * If the guest MTU is greater than either the host or guest 1076 * buffers then chained mbufs have to be enabled in the TX 1077 * direction. It is assumed that the application will not need 1078 * to send packets larger than their max_rx_pkt_len (MRU). 1079 */ 1080 return 1; 1081 } 1082 1083 if ((avp->max_rx_pkt_len > avp->guest_mbuf_size) || 1084 (avp->max_rx_pkt_len > avp->host_mbuf_size)) { 1085 /* 1086 * If the host MRU is greater than its own mbuf size or the 1087 * guest mbuf size then chained mbufs have to be enabled in the 1088 * RX direction. 1089 */ 1090 return 1; 1091 } 1092 1093 return 0; 1094 } 1095 1096 static int 1097 avp_dev_rx_queue_setup(struct rte_eth_dev *eth_dev, 1098 uint16_t rx_queue_id, 1099 uint16_t nb_rx_desc, 1100 unsigned int socket_id, 1101 const struct rte_eth_rxconf *rx_conf, 1102 struct rte_mempool *pool) 1103 { 1104 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 1105 struct rte_pktmbuf_pool_private *mbp_priv; 1106 struct avp_queue *rxq; 1107 1108 if (rx_queue_id >= eth_dev->data->nb_rx_queues) { 1109 PMD_DRV_LOG(ERR, "RX queue id is out of range: rx_queue_id=%u, nb_rx_queues=%u\n", 1110 rx_queue_id, eth_dev->data->nb_rx_queues); 1111 return -EINVAL; 1112 } 1113 1114 /* Save mbuf pool pointer */ 1115 avp->pool = pool; 1116 1117 /* Save the local mbuf size */ 1118 mbp_priv = rte_mempool_get_priv(pool); 1119 avp->guest_mbuf_size = (uint16_t)(mbp_priv->mbuf_data_room_size); 1120 avp->guest_mbuf_size -= RTE_PKTMBUF_HEADROOM; 1121 1122 if (avp_dev_enable_scattered(eth_dev, avp)) { 1123 if (!eth_dev->data->scattered_rx) { 1124 PMD_DRV_LOG(NOTICE, "AVP device configured for chained mbufs\n"); 1125 eth_dev->data->scattered_rx = 1; 1126 eth_dev->rx_pkt_burst = avp_recv_scattered_pkts; 1127 eth_dev->tx_pkt_burst = avp_xmit_scattered_pkts; 1128 } 1129 } 1130 1131 PMD_DRV_LOG(DEBUG, "AVP max_rx_pkt_len=(%u,%u) mbuf_size=(%u,%u)\n", 1132 avp->max_rx_pkt_len, 1133 eth_dev->data->dev_conf.rxmode.max_rx_pkt_len, 1134 avp->host_mbuf_size, 1135 avp->guest_mbuf_size); 1136 1137 /* allocate a queue object */ 1138 rxq = rte_zmalloc_socket("ethdev RX queue", sizeof(struct avp_queue), 1139 RTE_CACHE_LINE_SIZE, socket_id); 1140 if (rxq == NULL) { 1141 PMD_DRV_LOG(ERR, "Failed to allocate new Rx queue object\n"); 1142 return -ENOMEM; 1143 } 1144 1145 /* save back pointers to AVP and Ethernet devices */ 1146 rxq->avp = avp; 1147 rxq->dev_data = eth_dev->data; 1148 eth_dev->data->rx_queues[rx_queue_id] = (void *)rxq; 1149 1150 /* setup the queue receive mapping for the current queue. */ 1151 _avp_set_rx_queue_mappings(eth_dev, rx_queue_id); 1152 1153 PMD_DRV_LOG(DEBUG, "Rx queue %u setup at %p\n", rx_queue_id, rxq); 1154 1155 (void)nb_rx_desc; 1156 (void)rx_conf; 1157 return 0; 1158 } 1159 1160 static int 1161 avp_dev_tx_queue_setup(struct rte_eth_dev *eth_dev, 1162 uint16_t tx_queue_id, 1163 uint16_t nb_tx_desc, 1164 unsigned int socket_id, 1165 const struct rte_eth_txconf *tx_conf) 1166 { 1167 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 1168 struct avp_queue *txq; 1169 1170 if (tx_queue_id >= eth_dev->data->nb_tx_queues) { 1171 PMD_DRV_LOG(ERR, "TX queue id is out of range: tx_queue_id=%u, nb_tx_queues=%u\n", 1172 tx_queue_id, eth_dev->data->nb_tx_queues); 1173 return -EINVAL; 1174 } 1175 1176 /* allocate a queue object */ 1177 txq = rte_zmalloc_socket("ethdev TX queue", sizeof(struct avp_queue), 1178 RTE_CACHE_LINE_SIZE, socket_id); 1179 if (txq == NULL) { 1180 PMD_DRV_LOG(ERR, "Failed to allocate new Tx queue object\n"); 1181 return -ENOMEM; 1182 } 1183 1184 /* only the configured set of transmit queues are used */ 1185 txq->queue_id = tx_queue_id; 1186 txq->queue_base = tx_queue_id; 1187 txq->queue_limit = tx_queue_id; 1188 1189 /* save back pointers to AVP and Ethernet devices */ 1190 txq->avp = avp; 1191 txq->dev_data = eth_dev->data; 1192 eth_dev->data->tx_queues[tx_queue_id] = (void *)txq; 1193 1194 PMD_DRV_LOG(DEBUG, "Tx queue %u setup at %p\n", tx_queue_id, txq); 1195 1196 (void)nb_tx_desc; 1197 (void)tx_conf; 1198 return 0; 1199 } 1200 1201 static inline int 1202 _avp_cmp_ether_addr(struct ether_addr *a, struct ether_addr *b) 1203 { 1204 uint16_t *_a = (uint16_t *)&a->addr_bytes[0]; 1205 uint16_t *_b = (uint16_t *)&b->addr_bytes[0]; 1206 return (_a[0] ^ _b[0]) | (_a[1] ^ _b[1]) | (_a[2] ^ _b[2]); 1207 } 1208 1209 static inline int 1210 _avp_mac_filter(struct avp_dev *avp, struct rte_mbuf *m) 1211 { 1212 struct ether_hdr *eth = rte_pktmbuf_mtod(m, struct ether_hdr *); 1213 1214 if (likely(_avp_cmp_ether_addr(&avp->ethaddr, ð->d_addr) == 0)) { 1215 /* allow all packets destined to our address */ 1216 return 0; 1217 } 1218 1219 if (likely(is_broadcast_ether_addr(ð->d_addr))) { 1220 /* allow all broadcast packets */ 1221 return 0; 1222 } 1223 1224 if (likely(is_multicast_ether_addr(ð->d_addr))) { 1225 /* allow all multicast packets */ 1226 return 0; 1227 } 1228 1229 if (avp->flags & AVP_F_PROMISC) { 1230 /* allow all packets when in promiscuous mode */ 1231 return 0; 1232 } 1233 1234 return -1; 1235 } 1236 1237 #ifdef RTE_LIBRTE_AVP_DEBUG_BUFFERS 1238 static inline void 1239 __avp_dev_buffer_sanity_check(struct avp_dev *avp, struct rte_avp_desc *buf) 1240 { 1241 struct rte_avp_desc *first_buf; 1242 struct rte_avp_desc *pkt_buf; 1243 unsigned int pkt_len; 1244 unsigned int nb_segs; 1245 void *pkt_data; 1246 unsigned int i; 1247 1248 first_buf = avp_dev_translate_buffer(avp, buf); 1249 1250 i = 0; 1251 pkt_len = 0; 1252 nb_segs = first_buf->nb_segs; 1253 do { 1254 /* Adjust pointers for guest addressing */ 1255 pkt_buf = avp_dev_translate_buffer(avp, buf); 1256 if (pkt_buf == NULL) 1257 rte_panic("bad buffer: segment %u has an invalid address %p\n", 1258 i, buf); 1259 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data); 1260 if (pkt_data == NULL) 1261 rte_panic("bad buffer: segment %u has a NULL data pointer\n", 1262 i); 1263 if (pkt_buf->data_len == 0) 1264 rte_panic("bad buffer: segment %u has 0 data length\n", 1265 i); 1266 pkt_len += pkt_buf->data_len; 1267 nb_segs--; 1268 i++; 1269 1270 } while (nb_segs && (buf = pkt_buf->next) != NULL); 1271 1272 if (nb_segs != 0) 1273 rte_panic("bad buffer: expected %u segments found %u\n", 1274 first_buf->nb_segs, (first_buf->nb_segs - nb_segs)); 1275 if (pkt_len != first_buf->pkt_len) 1276 rte_panic("bad buffer: expected length %u found %u\n", 1277 first_buf->pkt_len, pkt_len); 1278 } 1279 1280 #define avp_dev_buffer_sanity_check(a, b) \ 1281 __avp_dev_buffer_sanity_check((a), (b)) 1282 1283 #else /* RTE_LIBRTE_AVP_DEBUG_BUFFERS */ 1284 1285 #define avp_dev_buffer_sanity_check(a, b) do {} while (0) 1286 1287 #endif 1288 1289 /* 1290 * Copy a host buffer chain to a set of mbufs. This function assumes that 1291 * there exactly the required number of mbufs to copy all source bytes. 1292 */ 1293 static inline struct rte_mbuf * 1294 avp_dev_copy_from_buffers(struct avp_dev *avp, 1295 struct rte_avp_desc *buf, 1296 struct rte_mbuf **mbufs, 1297 unsigned int count) 1298 { 1299 struct rte_mbuf *m_previous = NULL; 1300 struct rte_avp_desc *pkt_buf; 1301 unsigned int total_length = 0; 1302 unsigned int copy_length; 1303 unsigned int src_offset; 1304 struct rte_mbuf *m; 1305 uint16_t ol_flags; 1306 uint16_t vlan_tci; 1307 void *pkt_data; 1308 unsigned int i; 1309 1310 avp_dev_buffer_sanity_check(avp, buf); 1311 1312 /* setup the first source buffer */ 1313 pkt_buf = avp_dev_translate_buffer(avp, buf); 1314 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data); 1315 total_length = pkt_buf->pkt_len; 1316 src_offset = 0; 1317 1318 if (pkt_buf->ol_flags & RTE_AVP_RX_VLAN_PKT) { 1319 ol_flags = PKT_RX_VLAN; 1320 vlan_tci = pkt_buf->vlan_tci; 1321 } else { 1322 ol_flags = 0; 1323 vlan_tci = 0; 1324 } 1325 1326 for (i = 0; (i < count) && (buf != NULL); i++) { 1327 /* fill each destination buffer */ 1328 m = mbufs[i]; 1329 1330 if (m_previous != NULL) 1331 m_previous->next = m; 1332 1333 m_previous = m; 1334 1335 do { 1336 /* 1337 * Copy as many source buffers as will fit in the 1338 * destination buffer. 1339 */ 1340 copy_length = RTE_MIN((avp->guest_mbuf_size - 1341 rte_pktmbuf_data_len(m)), 1342 (pkt_buf->data_len - 1343 src_offset)); 1344 rte_memcpy(RTE_PTR_ADD(rte_pktmbuf_mtod(m, void *), 1345 rte_pktmbuf_data_len(m)), 1346 RTE_PTR_ADD(pkt_data, src_offset), 1347 copy_length); 1348 rte_pktmbuf_data_len(m) += copy_length; 1349 src_offset += copy_length; 1350 1351 if (likely(src_offset == pkt_buf->data_len)) { 1352 /* need a new source buffer */ 1353 buf = pkt_buf->next; 1354 if (buf != NULL) { 1355 pkt_buf = avp_dev_translate_buffer( 1356 avp, buf); 1357 pkt_data = avp_dev_translate_buffer( 1358 avp, pkt_buf->data); 1359 src_offset = 0; 1360 } 1361 } 1362 1363 if (unlikely(rte_pktmbuf_data_len(m) == 1364 avp->guest_mbuf_size)) { 1365 /* need a new destination mbuf */ 1366 break; 1367 } 1368 1369 } while (buf != NULL); 1370 } 1371 1372 m = mbufs[0]; 1373 m->ol_flags = ol_flags; 1374 m->nb_segs = count; 1375 rte_pktmbuf_pkt_len(m) = total_length; 1376 m->vlan_tci = vlan_tci; 1377 1378 __rte_mbuf_sanity_check(m, 1); 1379 1380 return m; 1381 } 1382 1383 static uint16_t 1384 avp_recv_scattered_pkts(void *rx_queue, 1385 struct rte_mbuf **rx_pkts, 1386 uint16_t nb_pkts) 1387 { 1388 struct avp_queue *rxq = (struct avp_queue *)rx_queue; 1389 struct rte_avp_desc *avp_bufs[AVP_MAX_RX_BURST]; 1390 struct rte_mbuf *mbufs[RTE_AVP_MAX_MBUF_SEGMENTS]; 1391 struct avp_dev *avp = rxq->avp; 1392 struct rte_avp_desc *pkt_buf; 1393 struct rte_avp_fifo *free_q; 1394 struct rte_avp_fifo *rx_q; 1395 struct rte_avp_desc *buf; 1396 unsigned int count, avail, n; 1397 unsigned int guest_mbuf_size; 1398 struct rte_mbuf *m; 1399 unsigned int required; 1400 unsigned int buf_len; 1401 unsigned int port_id; 1402 unsigned int i; 1403 1404 if (unlikely(avp->flags & AVP_F_DETACHED)) { 1405 /* VM live migration in progress */ 1406 return 0; 1407 } 1408 1409 guest_mbuf_size = avp->guest_mbuf_size; 1410 port_id = avp->port_id; 1411 rx_q = avp->rx_q[rxq->queue_id]; 1412 free_q = avp->free_q[rxq->queue_id]; 1413 1414 /* setup next queue to service */ 1415 rxq->queue_id = (rxq->queue_id < rxq->queue_limit) ? 1416 (rxq->queue_id + 1) : rxq->queue_base; 1417 1418 /* determine how many slots are available in the free queue */ 1419 count = avp_fifo_free_count(free_q); 1420 1421 /* determine how many packets are available in the rx queue */ 1422 avail = avp_fifo_count(rx_q); 1423 1424 /* determine how many packets can be received */ 1425 count = RTE_MIN(count, avail); 1426 count = RTE_MIN(count, nb_pkts); 1427 count = RTE_MIN(count, (unsigned int)AVP_MAX_RX_BURST); 1428 1429 if (unlikely(count == 0)) { 1430 /* no free buffers, or no buffers on the rx queue */ 1431 return 0; 1432 } 1433 1434 /* retrieve pending packets */ 1435 n = avp_fifo_get(rx_q, (void **)&avp_bufs, count); 1436 PMD_RX_LOG(DEBUG, "Receiving %u packets from Rx queue at %p\n", 1437 count, rx_q); 1438 1439 count = 0; 1440 for (i = 0; i < n; i++) { 1441 /* prefetch next entry while processing current one */ 1442 if (i + 1 < n) { 1443 pkt_buf = avp_dev_translate_buffer(avp, 1444 avp_bufs[i + 1]); 1445 rte_prefetch0(pkt_buf); 1446 } 1447 buf = avp_bufs[i]; 1448 1449 /* Peek into the first buffer to determine the total length */ 1450 pkt_buf = avp_dev_translate_buffer(avp, buf); 1451 buf_len = pkt_buf->pkt_len; 1452 1453 /* Allocate enough mbufs to receive the entire packet */ 1454 required = (buf_len + guest_mbuf_size - 1) / guest_mbuf_size; 1455 if (rte_pktmbuf_alloc_bulk(avp->pool, mbufs, required)) { 1456 rxq->dev_data->rx_mbuf_alloc_failed++; 1457 continue; 1458 } 1459 1460 /* Copy the data from the buffers to our mbufs */ 1461 m = avp_dev_copy_from_buffers(avp, buf, mbufs, required); 1462 1463 /* finalize mbuf */ 1464 m->port = port_id; 1465 1466 if (_avp_mac_filter(avp, m) != 0) { 1467 /* silently discard packets not destined to our MAC */ 1468 rte_pktmbuf_free(m); 1469 continue; 1470 } 1471 1472 /* return new mbuf to caller */ 1473 rx_pkts[count++] = m; 1474 rxq->bytes += buf_len; 1475 } 1476 1477 rxq->packets += count; 1478 1479 /* return the buffers to the free queue */ 1480 avp_fifo_put(free_q, (void **)&avp_bufs[0], n); 1481 1482 return count; 1483 } 1484 1485 1486 static uint16_t 1487 avp_recv_pkts(void *rx_queue, 1488 struct rte_mbuf **rx_pkts, 1489 uint16_t nb_pkts) 1490 { 1491 struct avp_queue *rxq = (struct avp_queue *)rx_queue; 1492 struct rte_avp_desc *avp_bufs[AVP_MAX_RX_BURST]; 1493 struct avp_dev *avp = rxq->avp; 1494 struct rte_avp_desc *pkt_buf; 1495 struct rte_avp_fifo *free_q; 1496 struct rte_avp_fifo *rx_q; 1497 unsigned int count, avail, n; 1498 unsigned int pkt_len; 1499 struct rte_mbuf *m; 1500 char *pkt_data; 1501 unsigned int i; 1502 1503 if (unlikely(avp->flags & AVP_F_DETACHED)) { 1504 /* VM live migration in progress */ 1505 return 0; 1506 } 1507 1508 rx_q = avp->rx_q[rxq->queue_id]; 1509 free_q = avp->free_q[rxq->queue_id]; 1510 1511 /* setup next queue to service */ 1512 rxq->queue_id = (rxq->queue_id < rxq->queue_limit) ? 1513 (rxq->queue_id + 1) : rxq->queue_base; 1514 1515 /* determine how many slots are available in the free queue */ 1516 count = avp_fifo_free_count(free_q); 1517 1518 /* determine how many packets are available in the rx queue */ 1519 avail = avp_fifo_count(rx_q); 1520 1521 /* determine how many packets can be received */ 1522 count = RTE_MIN(count, avail); 1523 count = RTE_MIN(count, nb_pkts); 1524 count = RTE_MIN(count, (unsigned int)AVP_MAX_RX_BURST); 1525 1526 if (unlikely(count == 0)) { 1527 /* no free buffers, or no buffers on the rx queue */ 1528 return 0; 1529 } 1530 1531 /* retrieve pending packets */ 1532 n = avp_fifo_get(rx_q, (void **)&avp_bufs, count); 1533 PMD_RX_LOG(DEBUG, "Receiving %u packets from Rx queue at %p\n", 1534 count, rx_q); 1535 1536 count = 0; 1537 for (i = 0; i < n; i++) { 1538 /* prefetch next entry while processing current one */ 1539 if (i < n - 1) { 1540 pkt_buf = avp_dev_translate_buffer(avp, 1541 avp_bufs[i + 1]); 1542 rte_prefetch0(pkt_buf); 1543 } 1544 1545 /* Adjust host pointers for guest addressing */ 1546 pkt_buf = avp_dev_translate_buffer(avp, avp_bufs[i]); 1547 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data); 1548 pkt_len = pkt_buf->pkt_len; 1549 1550 if (unlikely((pkt_len > avp->guest_mbuf_size) || 1551 (pkt_buf->nb_segs > 1))) { 1552 /* 1553 * application should be using the scattered receive 1554 * function 1555 */ 1556 rxq->errors++; 1557 continue; 1558 } 1559 1560 /* process each packet to be transmitted */ 1561 m = rte_pktmbuf_alloc(avp->pool); 1562 if (unlikely(m == NULL)) { 1563 rxq->dev_data->rx_mbuf_alloc_failed++; 1564 continue; 1565 } 1566 1567 /* copy data out of the host buffer to our buffer */ 1568 m->data_off = RTE_PKTMBUF_HEADROOM; 1569 rte_memcpy(rte_pktmbuf_mtod(m, void *), pkt_data, pkt_len); 1570 1571 /* initialize the local mbuf */ 1572 rte_pktmbuf_data_len(m) = pkt_len; 1573 rte_pktmbuf_pkt_len(m) = pkt_len; 1574 m->port = avp->port_id; 1575 1576 if (pkt_buf->ol_flags & RTE_AVP_RX_VLAN_PKT) { 1577 m->ol_flags = PKT_RX_VLAN; 1578 m->vlan_tci = pkt_buf->vlan_tci; 1579 } 1580 1581 if (_avp_mac_filter(avp, m) != 0) { 1582 /* silently discard packets not destined to our MAC */ 1583 rte_pktmbuf_free(m); 1584 continue; 1585 } 1586 1587 /* return new mbuf to caller */ 1588 rx_pkts[count++] = m; 1589 rxq->bytes += pkt_len; 1590 } 1591 1592 rxq->packets += count; 1593 1594 /* return the buffers to the free queue */ 1595 avp_fifo_put(free_q, (void **)&avp_bufs[0], n); 1596 1597 return count; 1598 } 1599 1600 /* 1601 * Copy a chained mbuf to a set of host buffers. This function assumes that 1602 * there are sufficient destination buffers to contain the entire source 1603 * packet. 1604 */ 1605 static inline uint16_t 1606 avp_dev_copy_to_buffers(struct avp_dev *avp, 1607 struct rte_mbuf *mbuf, 1608 struct rte_avp_desc **buffers, 1609 unsigned int count) 1610 { 1611 struct rte_avp_desc *previous_buf = NULL; 1612 struct rte_avp_desc *first_buf = NULL; 1613 struct rte_avp_desc *pkt_buf; 1614 struct rte_avp_desc *buf; 1615 size_t total_length; 1616 struct rte_mbuf *m; 1617 size_t copy_length; 1618 size_t src_offset; 1619 char *pkt_data; 1620 unsigned int i; 1621 1622 __rte_mbuf_sanity_check(mbuf, 1); 1623 1624 m = mbuf; 1625 src_offset = 0; 1626 total_length = rte_pktmbuf_pkt_len(m); 1627 for (i = 0; (i < count) && (m != NULL); i++) { 1628 /* fill each destination buffer */ 1629 buf = buffers[i]; 1630 1631 if (i < count - 1) { 1632 /* prefetch next entry while processing this one */ 1633 pkt_buf = avp_dev_translate_buffer(avp, buffers[i + 1]); 1634 rte_prefetch0(pkt_buf); 1635 } 1636 1637 /* Adjust pointers for guest addressing */ 1638 pkt_buf = avp_dev_translate_buffer(avp, buf); 1639 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data); 1640 1641 /* setup the buffer chain */ 1642 if (previous_buf != NULL) 1643 previous_buf->next = buf; 1644 else 1645 first_buf = pkt_buf; 1646 1647 previous_buf = pkt_buf; 1648 1649 do { 1650 /* 1651 * copy as many source mbuf segments as will fit in the 1652 * destination buffer. 1653 */ 1654 copy_length = RTE_MIN((avp->host_mbuf_size - 1655 pkt_buf->data_len), 1656 (rte_pktmbuf_data_len(m) - 1657 src_offset)); 1658 rte_memcpy(RTE_PTR_ADD(pkt_data, pkt_buf->data_len), 1659 RTE_PTR_ADD(rte_pktmbuf_mtod(m, void *), 1660 src_offset), 1661 copy_length); 1662 pkt_buf->data_len += copy_length; 1663 src_offset += copy_length; 1664 1665 if (likely(src_offset == rte_pktmbuf_data_len(m))) { 1666 /* need a new source buffer */ 1667 m = m->next; 1668 src_offset = 0; 1669 } 1670 1671 if (unlikely(pkt_buf->data_len == 1672 avp->host_mbuf_size)) { 1673 /* need a new destination buffer */ 1674 break; 1675 } 1676 1677 } while (m != NULL); 1678 } 1679 1680 first_buf->nb_segs = count; 1681 first_buf->pkt_len = total_length; 1682 1683 if (mbuf->ol_flags & PKT_TX_VLAN_PKT) { 1684 first_buf->ol_flags |= RTE_AVP_TX_VLAN_PKT; 1685 first_buf->vlan_tci = mbuf->vlan_tci; 1686 } 1687 1688 avp_dev_buffer_sanity_check(avp, buffers[0]); 1689 1690 return total_length; 1691 } 1692 1693 1694 static uint16_t 1695 avp_xmit_scattered_pkts(void *tx_queue, 1696 struct rte_mbuf **tx_pkts, 1697 uint16_t nb_pkts) 1698 { 1699 struct rte_avp_desc *avp_bufs[(AVP_MAX_TX_BURST * 1700 RTE_AVP_MAX_MBUF_SEGMENTS)]; 1701 struct avp_queue *txq = (struct avp_queue *)tx_queue; 1702 struct rte_avp_desc *tx_bufs[AVP_MAX_TX_BURST]; 1703 struct avp_dev *avp = txq->avp; 1704 struct rte_avp_fifo *alloc_q; 1705 struct rte_avp_fifo *tx_q; 1706 unsigned int count, avail, n; 1707 unsigned int orig_nb_pkts; 1708 struct rte_mbuf *m; 1709 unsigned int required; 1710 unsigned int segments; 1711 unsigned int tx_bytes; 1712 unsigned int i; 1713 1714 orig_nb_pkts = nb_pkts; 1715 if (unlikely(avp->flags & AVP_F_DETACHED)) { 1716 /* VM live migration in progress */ 1717 /* TODO ... buffer for X packets then drop? */ 1718 txq->errors += nb_pkts; 1719 return 0; 1720 } 1721 1722 tx_q = avp->tx_q[txq->queue_id]; 1723 alloc_q = avp->alloc_q[txq->queue_id]; 1724 1725 /* limit the number of transmitted packets to the max burst size */ 1726 if (unlikely(nb_pkts > AVP_MAX_TX_BURST)) 1727 nb_pkts = AVP_MAX_TX_BURST; 1728 1729 /* determine how many buffers are available to copy into */ 1730 avail = avp_fifo_count(alloc_q); 1731 if (unlikely(avail > (AVP_MAX_TX_BURST * 1732 RTE_AVP_MAX_MBUF_SEGMENTS))) 1733 avail = AVP_MAX_TX_BURST * RTE_AVP_MAX_MBUF_SEGMENTS; 1734 1735 /* determine how many slots are available in the transmit queue */ 1736 count = avp_fifo_free_count(tx_q); 1737 1738 /* determine how many packets can be sent */ 1739 nb_pkts = RTE_MIN(count, nb_pkts); 1740 1741 /* determine how many packets will fit in the available buffers */ 1742 count = 0; 1743 segments = 0; 1744 for (i = 0; i < nb_pkts; i++) { 1745 m = tx_pkts[i]; 1746 if (likely(i < (unsigned int)nb_pkts - 1)) { 1747 /* prefetch next entry while processing this one */ 1748 rte_prefetch0(tx_pkts[i + 1]); 1749 } 1750 required = (rte_pktmbuf_pkt_len(m) + avp->host_mbuf_size - 1) / 1751 avp->host_mbuf_size; 1752 1753 if (unlikely((required == 0) || 1754 (required > RTE_AVP_MAX_MBUF_SEGMENTS))) 1755 break; 1756 else if (unlikely(required + segments > avail)) 1757 break; 1758 segments += required; 1759 count++; 1760 } 1761 nb_pkts = count; 1762 1763 if (unlikely(nb_pkts == 0)) { 1764 /* no available buffers, or no space on the tx queue */ 1765 txq->errors += orig_nb_pkts; 1766 return 0; 1767 } 1768 1769 PMD_TX_LOG(DEBUG, "Sending %u packets on Tx queue at %p\n", 1770 nb_pkts, tx_q); 1771 1772 /* retrieve sufficient send buffers */ 1773 n = avp_fifo_get(alloc_q, (void **)&avp_bufs, segments); 1774 if (unlikely(n != segments)) { 1775 PMD_TX_LOG(DEBUG, "Failed to allocate buffers " 1776 "n=%u, segments=%u, orig=%u\n", 1777 n, segments, orig_nb_pkts); 1778 txq->errors += orig_nb_pkts; 1779 return 0; 1780 } 1781 1782 tx_bytes = 0; 1783 count = 0; 1784 for (i = 0; i < nb_pkts; i++) { 1785 /* process each packet to be transmitted */ 1786 m = tx_pkts[i]; 1787 1788 /* determine how many buffers are required for this packet */ 1789 required = (rte_pktmbuf_pkt_len(m) + avp->host_mbuf_size - 1) / 1790 avp->host_mbuf_size; 1791 1792 tx_bytes += avp_dev_copy_to_buffers(avp, m, 1793 &avp_bufs[count], required); 1794 tx_bufs[i] = avp_bufs[count]; 1795 count += required; 1796 1797 /* free the original mbuf */ 1798 rte_pktmbuf_free(m); 1799 } 1800 1801 txq->packets += nb_pkts; 1802 txq->bytes += tx_bytes; 1803 1804 #ifdef RTE_LIBRTE_AVP_DEBUG_BUFFERS 1805 for (i = 0; i < nb_pkts; i++) 1806 avp_dev_buffer_sanity_check(avp, tx_bufs[i]); 1807 #endif 1808 1809 /* send the packets */ 1810 n = avp_fifo_put(tx_q, (void **)&tx_bufs[0], nb_pkts); 1811 if (unlikely(n != orig_nb_pkts)) 1812 txq->errors += (orig_nb_pkts - n); 1813 1814 return n; 1815 } 1816 1817 1818 static uint16_t 1819 avp_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) 1820 { 1821 struct avp_queue *txq = (struct avp_queue *)tx_queue; 1822 struct rte_avp_desc *avp_bufs[AVP_MAX_TX_BURST]; 1823 struct avp_dev *avp = txq->avp; 1824 struct rte_avp_desc *pkt_buf; 1825 struct rte_avp_fifo *alloc_q; 1826 struct rte_avp_fifo *tx_q; 1827 unsigned int count, avail, n; 1828 struct rte_mbuf *m; 1829 unsigned int pkt_len; 1830 unsigned int tx_bytes; 1831 char *pkt_data; 1832 unsigned int i; 1833 1834 if (unlikely(avp->flags & AVP_F_DETACHED)) { 1835 /* VM live migration in progress */ 1836 /* TODO ... buffer for X packets then drop?! */ 1837 txq->errors++; 1838 return 0; 1839 } 1840 1841 tx_q = avp->tx_q[txq->queue_id]; 1842 alloc_q = avp->alloc_q[txq->queue_id]; 1843 1844 /* limit the number of transmitted packets to the max burst size */ 1845 if (unlikely(nb_pkts > AVP_MAX_TX_BURST)) 1846 nb_pkts = AVP_MAX_TX_BURST; 1847 1848 /* determine how many buffers are available to copy into */ 1849 avail = avp_fifo_count(alloc_q); 1850 1851 /* determine how many slots are available in the transmit queue */ 1852 count = avp_fifo_free_count(tx_q); 1853 1854 /* determine how many packets can be sent */ 1855 count = RTE_MIN(count, avail); 1856 count = RTE_MIN(count, nb_pkts); 1857 1858 if (unlikely(count == 0)) { 1859 /* no available buffers, or no space on the tx queue */ 1860 txq->errors += nb_pkts; 1861 return 0; 1862 } 1863 1864 PMD_TX_LOG(DEBUG, "Sending %u packets on Tx queue at %p\n", 1865 count, tx_q); 1866 1867 /* retrieve sufficient send buffers */ 1868 n = avp_fifo_get(alloc_q, (void **)&avp_bufs, count); 1869 if (unlikely(n != count)) { 1870 txq->errors++; 1871 return 0; 1872 } 1873 1874 tx_bytes = 0; 1875 for (i = 0; i < count; i++) { 1876 /* prefetch next entry while processing the current one */ 1877 if (i < count - 1) { 1878 pkt_buf = avp_dev_translate_buffer(avp, 1879 avp_bufs[i + 1]); 1880 rte_prefetch0(pkt_buf); 1881 } 1882 1883 /* process each packet to be transmitted */ 1884 m = tx_pkts[i]; 1885 1886 /* Adjust pointers for guest addressing */ 1887 pkt_buf = avp_dev_translate_buffer(avp, avp_bufs[i]); 1888 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data); 1889 pkt_len = rte_pktmbuf_pkt_len(m); 1890 1891 if (unlikely((pkt_len > avp->guest_mbuf_size) || 1892 (pkt_len > avp->host_mbuf_size))) { 1893 /* 1894 * application should be using the scattered transmit 1895 * function; send it truncated to avoid the performance 1896 * hit of having to manage returning the already 1897 * allocated buffer to the free list. This should not 1898 * happen since the application should have set the 1899 * max_rx_pkt_len based on its MTU and it should be 1900 * policing its own packet sizes. 1901 */ 1902 txq->errors++; 1903 pkt_len = RTE_MIN(avp->guest_mbuf_size, 1904 avp->host_mbuf_size); 1905 } 1906 1907 /* copy data out of our mbuf and into the AVP buffer */ 1908 rte_memcpy(pkt_data, rte_pktmbuf_mtod(m, void *), pkt_len); 1909 pkt_buf->pkt_len = pkt_len; 1910 pkt_buf->data_len = pkt_len; 1911 pkt_buf->nb_segs = 1; 1912 pkt_buf->next = NULL; 1913 1914 if (m->ol_flags & PKT_TX_VLAN_PKT) { 1915 pkt_buf->ol_flags |= RTE_AVP_TX_VLAN_PKT; 1916 pkt_buf->vlan_tci = m->vlan_tci; 1917 } 1918 1919 tx_bytes += pkt_len; 1920 1921 /* free the original mbuf */ 1922 rte_pktmbuf_free(m); 1923 } 1924 1925 txq->packets += count; 1926 txq->bytes += tx_bytes; 1927 1928 /* send the packets */ 1929 n = avp_fifo_put(tx_q, (void **)&avp_bufs[0], count); 1930 1931 return n; 1932 } 1933 1934 static void 1935 avp_dev_rx_queue_release(void *rx_queue) 1936 { 1937 struct avp_queue *rxq = (struct avp_queue *)rx_queue; 1938 struct avp_dev *avp = rxq->avp; 1939 struct rte_eth_dev_data *data = avp->dev_data; 1940 unsigned int i; 1941 1942 for (i = 0; i < avp->num_rx_queues; i++) { 1943 if (data->rx_queues[i] == rxq) 1944 data->rx_queues[i] = NULL; 1945 } 1946 } 1947 1948 static void 1949 avp_dev_tx_queue_release(void *tx_queue) 1950 { 1951 struct avp_queue *txq = (struct avp_queue *)tx_queue; 1952 struct avp_dev *avp = txq->avp; 1953 struct rte_eth_dev_data *data = avp->dev_data; 1954 unsigned int i; 1955 1956 for (i = 0; i < avp->num_tx_queues; i++) { 1957 if (data->tx_queues[i] == txq) 1958 data->tx_queues[i] = NULL; 1959 } 1960 } 1961 1962 static int 1963 avp_dev_configure(struct rte_eth_dev *eth_dev) 1964 { 1965 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 1966 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 1967 struct rte_avp_device_info *host_info; 1968 struct rte_avp_device_config config; 1969 int mask = 0; 1970 void *addr; 1971 int ret; 1972 1973 rte_spinlock_lock(&avp->lock); 1974 if (avp->flags & AVP_F_DETACHED) { 1975 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n"); 1976 ret = -ENOTSUP; 1977 goto unlock; 1978 } 1979 1980 addr = pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR].addr; 1981 host_info = (struct rte_avp_device_info *)addr; 1982 1983 /* Setup required number of queues */ 1984 _avp_set_queue_counts(eth_dev); 1985 1986 mask = (ETH_VLAN_STRIP_MASK | 1987 ETH_VLAN_FILTER_MASK | 1988 ETH_VLAN_EXTEND_MASK); 1989 ret = avp_vlan_offload_set(eth_dev, mask); 1990 if (ret < 0) { 1991 PMD_DRV_LOG(ERR, "VLAN offload set failed by host, ret=%d\n", 1992 ret); 1993 goto unlock; 1994 } 1995 1996 /* update device config */ 1997 memset(&config, 0, sizeof(config)); 1998 config.device_id = host_info->device_id; 1999 config.driver_type = RTE_AVP_DRIVER_TYPE_DPDK; 2000 config.driver_version = AVP_DPDK_DRIVER_VERSION; 2001 config.features = avp->features; 2002 config.num_tx_queues = avp->num_tx_queues; 2003 config.num_rx_queues = avp->num_rx_queues; 2004 2005 ret = avp_dev_ctrl_set_config(eth_dev, &config); 2006 if (ret < 0) { 2007 PMD_DRV_LOG(ERR, "Config request failed by host, ret=%d\n", 2008 ret); 2009 goto unlock; 2010 } 2011 2012 avp->flags |= AVP_F_CONFIGURED; 2013 ret = 0; 2014 2015 unlock: 2016 rte_spinlock_unlock(&avp->lock); 2017 return ret; 2018 } 2019 2020 static int 2021 avp_dev_start(struct rte_eth_dev *eth_dev) 2022 { 2023 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2024 int ret; 2025 2026 rte_spinlock_lock(&avp->lock); 2027 if (avp->flags & AVP_F_DETACHED) { 2028 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n"); 2029 ret = -ENOTSUP; 2030 goto unlock; 2031 } 2032 2033 /* update link state */ 2034 ret = avp_dev_ctrl_set_link_state(eth_dev, 1); 2035 if (ret < 0) { 2036 PMD_DRV_LOG(ERR, "Link state change failed by host, ret=%d\n", 2037 ret); 2038 goto unlock; 2039 } 2040 2041 /* remember current link state */ 2042 avp->flags |= AVP_F_LINKUP; 2043 2044 ret = 0; 2045 2046 unlock: 2047 rte_spinlock_unlock(&avp->lock); 2048 return ret; 2049 } 2050 2051 static void 2052 avp_dev_stop(struct rte_eth_dev *eth_dev) 2053 { 2054 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2055 int ret; 2056 2057 rte_spinlock_lock(&avp->lock); 2058 if (avp->flags & AVP_F_DETACHED) { 2059 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n"); 2060 goto unlock; 2061 } 2062 2063 /* remember current link state */ 2064 avp->flags &= ~AVP_F_LINKUP; 2065 2066 /* update link state */ 2067 ret = avp_dev_ctrl_set_link_state(eth_dev, 0); 2068 if (ret < 0) { 2069 PMD_DRV_LOG(ERR, "Link state change failed by host, ret=%d\n", 2070 ret); 2071 } 2072 2073 unlock: 2074 rte_spinlock_unlock(&avp->lock); 2075 } 2076 2077 static void 2078 avp_dev_close(struct rte_eth_dev *eth_dev) 2079 { 2080 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2081 int ret; 2082 2083 rte_spinlock_lock(&avp->lock); 2084 if (avp->flags & AVP_F_DETACHED) { 2085 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n"); 2086 goto unlock; 2087 } 2088 2089 /* remember current link state */ 2090 avp->flags &= ~AVP_F_LINKUP; 2091 avp->flags &= ~AVP_F_CONFIGURED; 2092 2093 ret = avp_dev_disable_interrupts(eth_dev); 2094 if (ret < 0) { 2095 PMD_DRV_LOG(ERR, "Failed to disable interrupts\n"); 2096 /* continue */ 2097 } 2098 2099 /* update device state */ 2100 ret = avp_dev_ctrl_shutdown(eth_dev); 2101 if (ret < 0) { 2102 PMD_DRV_LOG(ERR, "Device shutdown failed by host, ret=%d\n", 2103 ret); 2104 /* continue */ 2105 } 2106 2107 unlock: 2108 rte_spinlock_unlock(&avp->lock); 2109 } 2110 2111 static int 2112 avp_dev_link_update(struct rte_eth_dev *eth_dev, 2113 __rte_unused int wait_to_complete) 2114 { 2115 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2116 struct rte_eth_link *link = ð_dev->data->dev_link; 2117 2118 link->link_speed = ETH_SPEED_NUM_10G; 2119 link->link_duplex = ETH_LINK_FULL_DUPLEX; 2120 link->link_status = !!(avp->flags & AVP_F_LINKUP); 2121 2122 return -1; 2123 } 2124 2125 static void 2126 avp_dev_promiscuous_enable(struct rte_eth_dev *eth_dev) 2127 { 2128 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2129 2130 rte_spinlock_lock(&avp->lock); 2131 if ((avp->flags & AVP_F_PROMISC) == 0) { 2132 avp->flags |= AVP_F_PROMISC; 2133 PMD_DRV_LOG(DEBUG, "Promiscuous mode enabled on %u\n", 2134 eth_dev->data->port_id); 2135 } 2136 rte_spinlock_unlock(&avp->lock); 2137 } 2138 2139 static void 2140 avp_dev_promiscuous_disable(struct rte_eth_dev *eth_dev) 2141 { 2142 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2143 2144 rte_spinlock_lock(&avp->lock); 2145 if ((avp->flags & AVP_F_PROMISC) != 0) { 2146 avp->flags &= ~AVP_F_PROMISC; 2147 PMD_DRV_LOG(DEBUG, "Promiscuous mode disabled on %u\n", 2148 eth_dev->data->port_id); 2149 } 2150 rte_spinlock_unlock(&avp->lock); 2151 } 2152 2153 static void 2154 avp_dev_info_get(struct rte_eth_dev *eth_dev, 2155 struct rte_eth_dev_info *dev_info) 2156 { 2157 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2158 2159 dev_info->max_rx_queues = avp->max_rx_queues; 2160 dev_info->max_tx_queues = avp->max_tx_queues; 2161 dev_info->min_rx_bufsize = AVP_MIN_RX_BUFSIZE; 2162 dev_info->max_rx_pktlen = avp->max_rx_pkt_len; 2163 dev_info->max_mac_addrs = AVP_MAX_MAC_ADDRS; 2164 if (avp->host_features & RTE_AVP_FEATURE_VLAN_OFFLOAD) { 2165 dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP; 2166 dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT; 2167 } 2168 } 2169 2170 static int 2171 avp_vlan_offload_set(struct rte_eth_dev *eth_dev, int mask) 2172 { 2173 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2174 struct rte_eth_conf *dev_conf = ð_dev->data->dev_conf; 2175 uint64_t offloads = dev_conf->rxmode.offloads; 2176 2177 if (mask & ETH_VLAN_STRIP_MASK) { 2178 if (avp->host_features & RTE_AVP_FEATURE_VLAN_OFFLOAD) { 2179 if (offloads & DEV_RX_OFFLOAD_VLAN_STRIP) 2180 avp->features |= RTE_AVP_FEATURE_VLAN_OFFLOAD; 2181 else 2182 avp->features &= ~RTE_AVP_FEATURE_VLAN_OFFLOAD; 2183 } else { 2184 PMD_DRV_LOG(ERR, "VLAN strip offload not supported\n"); 2185 } 2186 } 2187 2188 if (mask & ETH_VLAN_FILTER_MASK) { 2189 if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) 2190 PMD_DRV_LOG(ERR, "VLAN filter offload not supported\n"); 2191 } 2192 2193 if (mask & ETH_VLAN_EXTEND_MASK) { 2194 if (offloads & DEV_RX_OFFLOAD_VLAN_EXTEND) 2195 PMD_DRV_LOG(ERR, "VLAN extend offload not supported\n"); 2196 } 2197 2198 return 0; 2199 } 2200 2201 static int 2202 avp_dev_stats_get(struct rte_eth_dev *eth_dev, struct rte_eth_stats *stats) 2203 { 2204 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2205 unsigned int i; 2206 2207 for (i = 0; i < avp->num_rx_queues; i++) { 2208 struct avp_queue *rxq = avp->dev_data->rx_queues[i]; 2209 2210 if (rxq) { 2211 stats->ipackets += rxq->packets; 2212 stats->ibytes += rxq->bytes; 2213 stats->ierrors += rxq->errors; 2214 2215 stats->q_ipackets[i] += rxq->packets; 2216 stats->q_ibytes[i] += rxq->bytes; 2217 stats->q_errors[i] += rxq->errors; 2218 } 2219 } 2220 2221 for (i = 0; i < avp->num_tx_queues; i++) { 2222 struct avp_queue *txq = avp->dev_data->tx_queues[i]; 2223 2224 if (txq) { 2225 stats->opackets += txq->packets; 2226 stats->obytes += txq->bytes; 2227 stats->oerrors += txq->errors; 2228 2229 stats->q_opackets[i] += txq->packets; 2230 stats->q_obytes[i] += txq->bytes; 2231 stats->q_errors[i] += txq->errors; 2232 } 2233 } 2234 2235 return 0; 2236 } 2237 2238 static void 2239 avp_dev_stats_reset(struct rte_eth_dev *eth_dev) 2240 { 2241 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2242 unsigned int i; 2243 2244 for (i = 0; i < avp->num_rx_queues; i++) { 2245 struct avp_queue *rxq = avp->dev_data->rx_queues[i]; 2246 2247 if (rxq) { 2248 rxq->bytes = 0; 2249 rxq->packets = 0; 2250 rxq->errors = 0; 2251 } 2252 } 2253 2254 for (i = 0; i < avp->num_tx_queues; i++) { 2255 struct avp_queue *txq = avp->dev_data->tx_queues[i]; 2256 2257 if (txq) { 2258 txq->bytes = 0; 2259 txq->packets = 0; 2260 txq->errors = 0; 2261 } 2262 } 2263 } 2264 2265 RTE_PMD_REGISTER_PCI(net_avp, rte_avp_pmd); 2266 RTE_PMD_REGISTER_PCI_TABLE(net_avp, pci_id_avp_map); 2267 2268 RTE_INIT(avp_init_log) 2269 { 2270 avp_logtype_driver = rte_log_register("pmd.net.avp.driver"); 2271 if (avp_logtype_driver >= 0) 2272 rte_log_set_level(avp_logtype_driver, RTE_LOG_NOTICE); 2273 } 2274