1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2013-2017 Wind River Systems, Inc. 3 */ 4 5 #include <stdint.h> 6 #include <string.h> 7 #include <stdio.h> 8 #include <errno.h> 9 #include <unistd.h> 10 11 #include <rte_ethdev_driver.h> 12 #include <rte_ethdev_pci.h> 13 #include <rte_memcpy.h> 14 #include <rte_string_fns.h> 15 #include <rte_malloc.h> 16 #include <rte_atomic.h> 17 #include <rte_branch_prediction.h> 18 #include <rte_pci.h> 19 #include <rte_bus_pci.h> 20 #include <rte_ether.h> 21 #include <rte_common.h> 22 #include <rte_cycles.h> 23 #include <rte_spinlock.h> 24 #include <rte_byteorder.h> 25 #include <rte_dev.h> 26 #include <rte_memory.h> 27 #include <rte_eal.h> 28 #include <rte_io.h> 29 30 #include "rte_avp_common.h" 31 #include "rte_avp_fifo.h" 32 33 #include "avp_logs.h" 34 35 int avp_logtype_driver; 36 37 static int avp_dev_create(struct rte_pci_device *pci_dev, 38 struct rte_eth_dev *eth_dev); 39 40 static int avp_dev_configure(struct rte_eth_dev *dev); 41 static int avp_dev_start(struct rte_eth_dev *dev); 42 static void avp_dev_stop(struct rte_eth_dev *dev); 43 static void avp_dev_close(struct rte_eth_dev *dev); 44 static int avp_dev_info_get(struct rte_eth_dev *dev, 45 struct rte_eth_dev_info *dev_info); 46 static int avp_vlan_offload_set(struct rte_eth_dev *dev, int mask); 47 static int avp_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete); 48 static int avp_dev_promiscuous_enable(struct rte_eth_dev *dev); 49 static int avp_dev_promiscuous_disable(struct rte_eth_dev *dev); 50 51 static int avp_dev_rx_queue_setup(struct rte_eth_dev *dev, 52 uint16_t rx_queue_id, 53 uint16_t nb_rx_desc, 54 unsigned int socket_id, 55 const struct rte_eth_rxconf *rx_conf, 56 struct rte_mempool *pool); 57 58 static int avp_dev_tx_queue_setup(struct rte_eth_dev *dev, 59 uint16_t tx_queue_id, 60 uint16_t nb_tx_desc, 61 unsigned int socket_id, 62 const struct rte_eth_txconf *tx_conf); 63 64 static uint16_t avp_recv_scattered_pkts(void *rx_queue, 65 struct rte_mbuf **rx_pkts, 66 uint16_t nb_pkts); 67 68 static uint16_t avp_recv_pkts(void *rx_queue, 69 struct rte_mbuf **rx_pkts, 70 uint16_t nb_pkts); 71 72 static uint16_t avp_xmit_scattered_pkts(void *tx_queue, 73 struct rte_mbuf **tx_pkts, 74 uint16_t nb_pkts); 75 76 static uint16_t avp_xmit_pkts(void *tx_queue, 77 struct rte_mbuf **tx_pkts, 78 uint16_t nb_pkts); 79 80 static void avp_dev_rx_queue_release(void *rxq); 81 static void avp_dev_tx_queue_release(void *txq); 82 83 static int avp_dev_stats_get(struct rte_eth_dev *dev, 84 struct rte_eth_stats *stats); 85 static int avp_dev_stats_reset(struct rte_eth_dev *dev); 86 87 88 #define AVP_MAX_RX_BURST 64 89 #define AVP_MAX_TX_BURST 64 90 #define AVP_MAX_MAC_ADDRS 1 91 #define AVP_MIN_RX_BUFSIZE RTE_ETHER_MIN_LEN 92 93 94 /* 95 * Defines the number of microseconds to wait before checking the response 96 * queue for completion. 97 */ 98 #define AVP_REQUEST_DELAY_USECS (5000) 99 100 /* 101 * Defines the number times to check the response queue for completion before 102 * declaring a timeout. 103 */ 104 #define AVP_MAX_REQUEST_RETRY (100) 105 106 /* Defines the current PCI driver version number */ 107 #define AVP_DPDK_DRIVER_VERSION RTE_AVP_CURRENT_GUEST_VERSION 108 109 /* 110 * The set of PCI devices this driver supports 111 */ 112 static const struct rte_pci_id pci_id_avp_map[] = { 113 { .vendor_id = RTE_AVP_PCI_VENDOR_ID, 114 .device_id = RTE_AVP_PCI_DEVICE_ID, 115 .subsystem_vendor_id = RTE_AVP_PCI_SUB_VENDOR_ID, 116 .subsystem_device_id = RTE_AVP_PCI_SUB_DEVICE_ID, 117 .class_id = RTE_CLASS_ANY_ID, 118 }, 119 120 { .vendor_id = 0, /* sentinel */ 121 }, 122 }; 123 124 /* 125 * dev_ops for avp, bare necessities for basic operation 126 */ 127 static const struct eth_dev_ops avp_eth_dev_ops = { 128 .dev_configure = avp_dev_configure, 129 .dev_start = avp_dev_start, 130 .dev_stop = avp_dev_stop, 131 .dev_close = avp_dev_close, 132 .dev_infos_get = avp_dev_info_get, 133 .vlan_offload_set = avp_vlan_offload_set, 134 .stats_get = avp_dev_stats_get, 135 .stats_reset = avp_dev_stats_reset, 136 .link_update = avp_dev_link_update, 137 .promiscuous_enable = avp_dev_promiscuous_enable, 138 .promiscuous_disable = avp_dev_promiscuous_disable, 139 .rx_queue_setup = avp_dev_rx_queue_setup, 140 .rx_queue_release = avp_dev_rx_queue_release, 141 .tx_queue_setup = avp_dev_tx_queue_setup, 142 .tx_queue_release = avp_dev_tx_queue_release, 143 }; 144 145 /**@{ AVP device flags */ 146 #define AVP_F_PROMISC (1 << 1) 147 #define AVP_F_CONFIGURED (1 << 2) 148 #define AVP_F_LINKUP (1 << 3) 149 #define AVP_F_DETACHED (1 << 4) 150 /**@} */ 151 152 /* Ethernet device validation marker */ 153 #define AVP_ETHDEV_MAGIC 0x92972862 154 155 /* 156 * Defines the AVP device attributes which are attached to an RTE ethernet 157 * device 158 */ 159 struct avp_dev { 160 uint32_t magic; /**< Memory validation marker */ 161 uint64_t device_id; /**< Unique system identifier */ 162 struct rte_ether_addr ethaddr; /**< Host specified MAC address */ 163 struct rte_eth_dev_data *dev_data; 164 /**< Back pointer to ethernet device data */ 165 volatile uint32_t flags; /**< Device operational flags */ 166 uint16_t port_id; /**< Ethernet port identifier */ 167 struct rte_mempool *pool; /**< pkt mbuf mempool */ 168 unsigned int guest_mbuf_size; /**< local pool mbuf size */ 169 unsigned int host_mbuf_size; /**< host mbuf size */ 170 unsigned int max_rx_pkt_len; /**< maximum receive unit */ 171 uint32_t host_features; /**< Supported feature bitmap */ 172 uint32_t features; /**< Enabled feature bitmap */ 173 unsigned int num_tx_queues; /**< Negotiated number of transmit queues */ 174 unsigned int max_tx_queues; /**< Maximum number of transmit queues */ 175 unsigned int num_rx_queues; /**< Negotiated number of receive queues */ 176 unsigned int max_rx_queues; /**< Maximum number of receive queues */ 177 178 struct rte_avp_fifo *tx_q[RTE_AVP_MAX_QUEUES]; /**< TX queue */ 179 struct rte_avp_fifo *rx_q[RTE_AVP_MAX_QUEUES]; /**< RX queue */ 180 struct rte_avp_fifo *alloc_q[RTE_AVP_MAX_QUEUES]; 181 /**< Allocated mbufs queue */ 182 struct rte_avp_fifo *free_q[RTE_AVP_MAX_QUEUES]; 183 /**< To be freed mbufs queue */ 184 185 /* mutual exclusion over the 'flag' and 'resp_q/req_q' fields */ 186 rte_spinlock_t lock; 187 188 /* For request & response */ 189 struct rte_avp_fifo *req_q; /**< Request queue */ 190 struct rte_avp_fifo *resp_q; /**< Response queue */ 191 void *host_sync_addr; /**< (host) Req/Resp Mem address */ 192 void *sync_addr; /**< Req/Resp Mem address */ 193 void *host_mbuf_addr; /**< (host) MBUF pool start address */ 194 void *mbuf_addr; /**< MBUF pool start address */ 195 } __rte_cache_aligned; 196 197 /* RTE ethernet private data */ 198 struct avp_adapter { 199 struct avp_dev avp; 200 } __rte_cache_aligned; 201 202 203 /* 32-bit MMIO register write */ 204 #define AVP_WRITE32(_value, _addr) rte_write32_relaxed((_value), (_addr)) 205 206 /* 32-bit MMIO register read */ 207 #define AVP_READ32(_addr) rte_read32_relaxed((_addr)) 208 209 /* Macro to cast the ethernet device private data to a AVP object */ 210 #define AVP_DEV_PRIVATE_TO_HW(adapter) \ 211 (&((struct avp_adapter *)adapter)->avp) 212 213 /* 214 * Defines the structure of a AVP device queue for the purpose of handling the 215 * receive and transmit burst callback functions 216 */ 217 struct avp_queue { 218 struct rte_eth_dev_data *dev_data; 219 /**< Backpointer to ethernet device data */ 220 struct avp_dev *avp; /**< Backpointer to AVP device */ 221 uint16_t queue_id; 222 /**< Queue identifier used for indexing current queue */ 223 uint16_t queue_base; 224 /**< Base queue identifier for queue servicing */ 225 uint16_t queue_limit; 226 /**< Maximum queue identifier for queue servicing */ 227 228 uint64_t packets; 229 uint64_t bytes; 230 uint64_t errors; 231 }; 232 233 /* send a request and wait for a response 234 * 235 * @warning must be called while holding the avp->lock spinlock. 236 */ 237 static int 238 avp_dev_process_request(struct avp_dev *avp, struct rte_avp_request *request) 239 { 240 unsigned int retry = AVP_MAX_REQUEST_RETRY; 241 void *resp_addr = NULL; 242 unsigned int count; 243 int ret; 244 245 PMD_DRV_LOG(DEBUG, "Sending request %u to host\n", request->req_id); 246 247 request->result = -ENOTSUP; 248 249 /* Discard any stale responses before starting a new request */ 250 while (avp_fifo_get(avp->resp_q, (void **)&resp_addr, 1)) 251 PMD_DRV_LOG(DEBUG, "Discarding stale response\n"); 252 253 rte_memcpy(avp->sync_addr, request, sizeof(*request)); 254 count = avp_fifo_put(avp->req_q, &avp->host_sync_addr, 1); 255 if (count < 1) { 256 PMD_DRV_LOG(ERR, "Cannot send request %u to host\n", 257 request->req_id); 258 ret = -EBUSY; 259 goto done; 260 } 261 262 while (retry--) { 263 /* wait for a response */ 264 usleep(AVP_REQUEST_DELAY_USECS); 265 266 count = avp_fifo_count(avp->resp_q); 267 if (count >= 1) { 268 /* response received */ 269 break; 270 } 271 272 if ((count < 1) && (retry == 0)) { 273 PMD_DRV_LOG(ERR, "Timeout while waiting for a response for %u\n", 274 request->req_id); 275 ret = -ETIME; 276 goto done; 277 } 278 } 279 280 /* retrieve the response */ 281 count = avp_fifo_get(avp->resp_q, (void **)&resp_addr, 1); 282 if ((count != 1) || (resp_addr != avp->host_sync_addr)) { 283 PMD_DRV_LOG(ERR, "Invalid response from host, count=%u resp=%p host_sync_addr=%p\n", 284 count, resp_addr, avp->host_sync_addr); 285 ret = -ENODATA; 286 goto done; 287 } 288 289 /* copy to user buffer */ 290 rte_memcpy(request, avp->sync_addr, sizeof(*request)); 291 ret = 0; 292 293 PMD_DRV_LOG(DEBUG, "Result %d received for request %u\n", 294 request->result, request->req_id); 295 296 done: 297 return ret; 298 } 299 300 static int 301 avp_dev_ctrl_set_link_state(struct rte_eth_dev *eth_dev, unsigned int state) 302 { 303 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 304 struct rte_avp_request request; 305 int ret; 306 307 /* setup a link state change request */ 308 memset(&request, 0, sizeof(request)); 309 request.req_id = RTE_AVP_REQ_CFG_NETWORK_IF; 310 request.if_up = state; 311 312 ret = avp_dev_process_request(avp, &request); 313 314 return ret == 0 ? request.result : ret; 315 } 316 317 static int 318 avp_dev_ctrl_set_config(struct rte_eth_dev *eth_dev, 319 struct rte_avp_device_config *config) 320 { 321 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 322 struct rte_avp_request request; 323 int ret; 324 325 /* setup a configure request */ 326 memset(&request, 0, sizeof(request)); 327 request.req_id = RTE_AVP_REQ_CFG_DEVICE; 328 memcpy(&request.config, config, sizeof(request.config)); 329 330 ret = avp_dev_process_request(avp, &request); 331 332 return ret == 0 ? request.result : ret; 333 } 334 335 static int 336 avp_dev_ctrl_shutdown(struct rte_eth_dev *eth_dev) 337 { 338 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 339 struct rte_avp_request request; 340 int ret; 341 342 /* setup a shutdown request */ 343 memset(&request, 0, sizeof(request)); 344 request.req_id = RTE_AVP_REQ_SHUTDOWN_DEVICE; 345 346 ret = avp_dev_process_request(avp, &request); 347 348 return ret == 0 ? request.result : ret; 349 } 350 351 /* translate from host mbuf virtual address to guest virtual address */ 352 static inline void * 353 avp_dev_translate_buffer(struct avp_dev *avp, void *host_mbuf_address) 354 { 355 return RTE_PTR_ADD(RTE_PTR_SUB(host_mbuf_address, 356 (uintptr_t)avp->host_mbuf_addr), 357 (uintptr_t)avp->mbuf_addr); 358 } 359 360 /* translate from host physical address to guest virtual address */ 361 static void * 362 avp_dev_translate_address(struct rte_eth_dev *eth_dev, 363 rte_iova_t host_phys_addr) 364 { 365 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 366 struct rte_mem_resource *resource; 367 struct rte_avp_memmap_info *info; 368 struct rte_avp_memmap *map; 369 off_t offset; 370 void *addr; 371 unsigned int i; 372 373 addr = pci_dev->mem_resource[RTE_AVP_PCI_MEMORY_BAR].addr; 374 resource = &pci_dev->mem_resource[RTE_AVP_PCI_MEMMAP_BAR]; 375 info = (struct rte_avp_memmap_info *)resource->addr; 376 377 offset = 0; 378 for (i = 0; i < info->nb_maps; i++) { 379 /* search all segments looking for a matching address */ 380 map = &info->maps[i]; 381 382 if ((host_phys_addr >= map->phys_addr) && 383 (host_phys_addr < (map->phys_addr + map->length))) { 384 /* address is within this segment */ 385 offset += (host_phys_addr - map->phys_addr); 386 addr = RTE_PTR_ADD(addr, (uintptr_t)offset); 387 388 PMD_DRV_LOG(DEBUG, "Translating host physical 0x%" PRIx64 " to guest virtual 0x%p\n", 389 host_phys_addr, addr); 390 391 return addr; 392 } 393 offset += map->length; 394 } 395 396 return NULL; 397 } 398 399 /* verify that the incoming device version is compatible with our version */ 400 static int 401 avp_dev_version_check(uint32_t version) 402 { 403 uint32_t driver = RTE_AVP_STRIP_MINOR_VERSION(AVP_DPDK_DRIVER_VERSION); 404 uint32_t device = RTE_AVP_STRIP_MINOR_VERSION(version); 405 406 if (device <= driver) { 407 /* the host driver version is less than or equal to ours */ 408 return 0; 409 } 410 411 return 1; 412 } 413 414 /* verify that memory regions have expected version and validation markers */ 415 static int 416 avp_dev_check_regions(struct rte_eth_dev *eth_dev) 417 { 418 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 419 struct rte_avp_memmap_info *memmap; 420 struct rte_avp_device_info *info; 421 struct rte_mem_resource *resource; 422 unsigned int i; 423 424 /* Dump resource info for debug */ 425 for (i = 0; i < PCI_MAX_RESOURCE; i++) { 426 resource = &pci_dev->mem_resource[i]; 427 if ((resource->phys_addr == 0) || (resource->len == 0)) 428 continue; 429 430 PMD_DRV_LOG(DEBUG, "resource[%u]: phys=0x%" PRIx64 " len=%" PRIu64 " addr=%p\n", 431 i, resource->phys_addr, 432 resource->len, resource->addr); 433 434 switch (i) { 435 case RTE_AVP_PCI_MEMMAP_BAR: 436 memmap = (struct rte_avp_memmap_info *)resource->addr; 437 if ((memmap->magic != RTE_AVP_MEMMAP_MAGIC) || 438 (memmap->version != RTE_AVP_MEMMAP_VERSION)) { 439 PMD_DRV_LOG(ERR, "Invalid memmap magic 0x%08x and version %u\n", 440 memmap->magic, memmap->version); 441 return -EINVAL; 442 } 443 break; 444 445 case RTE_AVP_PCI_DEVICE_BAR: 446 info = (struct rte_avp_device_info *)resource->addr; 447 if ((info->magic != RTE_AVP_DEVICE_MAGIC) || 448 avp_dev_version_check(info->version)) { 449 PMD_DRV_LOG(ERR, "Invalid device info magic 0x%08x or version 0x%08x > 0x%08x\n", 450 info->magic, info->version, 451 AVP_DPDK_DRIVER_VERSION); 452 return -EINVAL; 453 } 454 break; 455 456 case RTE_AVP_PCI_MEMORY_BAR: 457 case RTE_AVP_PCI_MMIO_BAR: 458 if (resource->addr == NULL) { 459 PMD_DRV_LOG(ERR, "Missing address space for BAR%u\n", 460 i); 461 return -EINVAL; 462 } 463 break; 464 465 case RTE_AVP_PCI_MSIX_BAR: 466 default: 467 /* no validation required */ 468 break; 469 } 470 } 471 472 return 0; 473 } 474 475 static int 476 avp_dev_detach(struct rte_eth_dev *eth_dev) 477 { 478 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 479 int ret; 480 481 PMD_DRV_LOG(NOTICE, "Detaching port %u from AVP device 0x%" PRIx64 "\n", 482 eth_dev->data->port_id, avp->device_id); 483 484 rte_spinlock_lock(&avp->lock); 485 486 if (avp->flags & AVP_F_DETACHED) { 487 PMD_DRV_LOG(NOTICE, "port %u already detached\n", 488 eth_dev->data->port_id); 489 ret = 0; 490 goto unlock; 491 } 492 493 /* shutdown the device first so the host stops sending us packets. */ 494 ret = avp_dev_ctrl_shutdown(eth_dev); 495 if (ret < 0) { 496 PMD_DRV_LOG(ERR, "Failed to send/recv shutdown to host, ret=%d\n", 497 ret); 498 avp->flags &= ~AVP_F_DETACHED; 499 goto unlock; 500 } 501 502 avp->flags |= AVP_F_DETACHED; 503 rte_wmb(); 504 505 /* wait for queues to acknowledge the presence of the detach flag */ 506 rte_delay_ms(1); 507 508 ret = 0; 509 510 unlock: 511 rte_spinlock_unlock(&avp->lock); 512 return ret; 513 } 514 515 static void 516 _avp_set_rx_queue_mappings(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id) 517 { 518 struct avp_dev *avp = 519 AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 520 struct avp_queue *rxq; 521 uint16_t queue_count; 522 uint16_t remainder; 523 524 rxq = (struct avp_queue *)eth_dev->data->rx_queues[rx_queue_id]; 525 526 /* 527 * Must map all AVP fifos as evenly as possible between the configured 528 * device queues. Each device queue will service a subset of the AVP 529 * fifos. If there is an odd number of device queues the first set of 530 * device queues will get the extra AVP fifos. 531 */ 532 queue_count = avp->num_rx_queues / eth_dev->data->nb_rx_queues; 533 remainder = avp->num_rx_queues % eth_dev->data->nb_rx_queues; 534 if (rx_queue_id < remainder) { 535 /* these queues must service one extra FIFO */ 536 rxq->queue_base = rx_queue_id * (queue_count + 1); 537 rxq->queue_limit = rxq->queue_base + (queue_count + 1) - 1; 538 } else { 539 /* these queues service the regular number of FIFO */ 540 rxq->queue_base = ((remainder * (queue_count + 1)) + 541 ((rx_queue_id - remainder) * queue_count)); 542 rxq->queue_limit = rxq->queue_base + queue_count - 1; 543 } 544 545 PMD_DRV_LOG(DEBUG, "rxq %u at %p base %u limit %u\n", 546 rx_queue_id, rxq, rxq->queue_base, rxq->queue_limit); 547 548 rxq->queue_id = rxq->queue_base; 549 } 550 551 static void 552 _avp_set_queue_counts(struct rte_eth_dev *eth_dev) 553 { 554 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 555 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 556 struct rte_avp_device_info *host_info; 557 void *addr; 558 559 addr = pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR].addr; 560 host_info = (struct rte_avp_device_info *)addr; 561 562 /* 563 * the transmit direction is not negotiated beyond respecting the max 564 * number of queues because the host can handle arbitrary guest tx 565 * queues (host rx queues). 566 */ 567 avp->num_tx_queues = eth_dev->data->nb_tx_queues; 568 569 /* 570 * the receive direction is more restrictive. The host requires a 571 * minimum number of guest rx queues (host tx queues) therefore 572 * negotiate a value that is at least as large as the host minimum 573 * requirement. If the host and guest values are not identical then a 574 * mapping will be established in the receive_queue_setup function. 575 */ 576 avp->num_rx_queues = RTE_MAX(host_info->min_rx_queues, 577 eth_dev->data->nb_rx_queues); 578 579 PMD_DRV_LOG(DEBUG, "Requesting %u Tx and %u Rx queues from host\n", 580 avp->num_tx_queues, avp->num_rx_queues); 581 } 582 583 static int 584 avp_dev_attach(struct rte_eth_dev *eth_dev) 585 { 586 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 587 struct rte_avp_device_config config; 588 unsigned int i; 589 int ret; 590 591 PMD_DRV_LOG(NOTICE, "Attaching port %u to AVP device 0x%" PRIx64 "\n", 592 eth_dev->data->port_id, avp->device_id); 593 594 rte_spinlock_lock(&avp->lock); 595 596 if (!(avp->flags & AVP_F_DETACHED)) { 597 PMD_DRV_LOG(NOTICE, "port %u already attached\n", 598 eth_dev->data->port_id); 599 ret = 0; 600 goto unlock; 601 } 602 603 /* 604 * make sure that the detached flag is set prior to reconfiguring the 605 * queues. 606 */ 607 avp->flags |= AVP_F_DETACHED; 608 rte_wmb(); 609 610 /* 611 * re-run the device create utility which will parse the new host info 612 * and setup the AVP device queue pointers. 613 */ 614 ret = avp_dev_create(RTE_ETH_DEV_TO_PCI(eth_dev), eth_dev); 615 if (ret < 0) { 616 PMD_DRV_LOG(ERR, "Failed to re-create AVP device, ret=%d\n", 617 ret); 618 goto unlock; 619 } 620 621 if (avp->flags & AVP_F_CONFIGURED) { 622 /* 623 * Update the receive queue mapping to handle cases where the 624 * source and destination hosts have different queue 625 * requirements. As long as the DETACHED flag is asserted the 626 * queue table should not be referenced so it should be safe to 627 * update it. 628 */ 629 _avp_set_queue_counts(eth_dev); 630 for (i = 0; i < eth_dev->data->nb_rx_queues; i++) 631 _avp_set_rx_queue_mappings(eth_dev, i); 632 633 /* 634 * Update the host with our config details so that it knows the 635 * device is active. 636 */ 637 memset(&config, 0, sizeof(config)); 638 config.device_id = avp->device_id; 639 config.driver_type = RTE_AVP_DRIVER_TYPE_DPDK; 640 config.driver_version = AVP_DPDK_DRIVER_VERSION; 641 config.features = avp->features; 642 config.num_tx_queues = avp->num_tx_queues; 643 config.num_rx_queues = avp->num_rx_queues; 644 config.if_up = !!(avp->flags & AVP_F_LINKUP); 645 646 ret = avp_dev_ctrl_set_config(eth_dev, &config); 647 if (ret < 0) { 648 PMD_DRV_LOG(ERR, "Config request failed by host, ret=%d\n", 649 ret); 650 goto unlock; 651 } 652 } 653 654 rte_wmb(); 655 avp->flags &= ~AVP_F_DETACHED; 656 657 ret = 0; 658 659 unlock: 660 rte_spinlock_unlock(&avp->lock); 661 return ret; 662 } 663 664 static void 665 avp_dev_interrupt_handler(void *data) 666 { 667 struct rte_eth_dev *eth_dev = data; 668 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 669 void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr; 670 uint32_t status, value; 671 int ret; 672 673 if (registers == NULL) 674 rte_panic("no mapped MMIO register space\n"); 675 676 /* read the interrupt status register 677 * note: this register clears on read so all raised interrupts must be 678 * handled or remembered for later processing 679 */ 680 status = AVP_READ32( 681 RTE_PTR_ADD(registers, 682 RTE_AVP_INTERRUPT_STATUS_OFFSET)); 683 684 if (status & RTE_AVP_MIGRATION_INTERRUPT_MASK) { 685 /* handle interrupt based on current status */ 686 value = AVP_READ32( 687 RTE_PTR_ADD(registers, 688 RTE_AVP_MIGRATION_STATUS_OFFSET)); 689 switch (value) { 690 case RTE_AVP_MIGRATION_DETACHED: 691 ret = avp_dev_detach(eth_dev); 692 break; 693 case RTE_AVP_MIGRATION_ATTACHED: 694 ret = avp_dev_attach(eth_dev); 695 break; 696 default: 697 PMD_DRV_LOG(ERR, "unexpected migration status, status=%u\n", 698 value); 699 ret = -EINVAL; 700 } 701 702 /* acknowledge the request by writing out our current status */ 703 value = (ret == 0 ? value : RTE_AVP_MIGRATION_ERROR); 704 AVP_WRITE32(value, 705 RTE_PTR_ADD(registers, 706 RTE_AVP_MIGRATION_ACK_OFFSET)); 707 708 PMD_DRV_LOG(NOTICE, "AVP migration interrupt handled\n"); 709 } 710 711 if (status & ~RTE_AVP_MIGRATION_INTERRUPT_MASK) 712 PMD_DRV_LOG(WARNING, "AVP unexpected interrupt, status=0x%08x\n", 713 status); 714 715 /* re-enable UIO interrupt handling */ 716 ret = rte_intr_ack(&pci_dev->intr_handle); 717 if (ret < 0) { 718 PMD_DRV_LOG(ERR, "Failed to re-enable UIO interrupts, ret=%d\n", 719 ret); 720 /* continue */ 721 } 722 } 723 724 static int 725 avp_dev_enable_interrupts(struct rte_eth_dev *eth_dev) 726 { 727 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 728 void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr; 729 int ret; 730 731 if (registers == NULL) 732 return -EINVAL; 733 734 /* enable UIO interrupt handling */ 735 ret = rte_intr_enable(&pci_dev->intr_handle); 736 if (ret < 0) { 737 PMD_DRV_LOG(ERR, "Failed to enable UIO interrupts, ret=%d\n", 738 ret); 739 return ret; 740 } 741 742 /* inform the device that all interrupts are enabled */ 743 AVP_WRITE32(RTE_AVP_APP_INTERRUPTS_MASK, 744 RTE_PTR_ADD(registers, RTE_AVP_INTERRUPT_MASK_OFFSET)); 745 746 return 0; 747 } 748 749 static int 750 avp_dev_disable_interrupts(struct rte_eth_dev *eth_dev) 751 { 752 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 753 void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr; 754 int ret; 755 756 if (registers == NULL) 757 return 0; 758 759 /* inform the device that all interrupts are disabled */ 760 AVP_WRITE32(RTE_AVP_NO_INTERRUPTS_MASK, 761 RTE_PTR_ADD(registers, RTE_AVP_INTERRUPT_MASK_OFFSET)); 762 763 /* enable UIO interrupt handling */ 764 ret = rte_intr_disable(&pci_dev->intr_handle); 765 if (ret < 0) { 766 PMD_DRV_LOG(ERR, "Failed to disable UIO interrupts, ret=%d\n", 767 ret); 768 return ret; 769 } 770 771 return 0; 772 } 773 774 static int 775 avp_dev_setup_interrupts(struct rte_eth_dev *eth_dev) 776 { 777 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 778 int ret; 779 780 /* register a callback handler with UIO for interrupt notifications */ 781 ret = rte_intr_callback_register(&pci_dev->intr_handle, 782 avp_dev_interrupt_handler, 783 (void *)eth_dev); 784 if (ret < 0) { 785 PMD_DRV_LOG(ERR, "Failed to register UIO interrupt callback, ret=%d\n", 786 ret); 787 return ret; 788 } 789 790 /* enable interrupt processing */ 791 return avp_dev_enable_interrupts(eth_dev); 792 } 793 794 static int 795 avp_dev_migration_pending(struct rte_eth_dev *eth_dev) 796 { 797 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 798 void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr; 799 uint32_t value; 800 801 if (registers == NULL) 802 return 0; 803 804 value = AVP_READ32(RTE_PTR_ADD(registers, 805 RTE_AVP_MIGRATION_STATUS_OFFSET)); 806 if (value == RTE_AVP_MIGRATION_DETACHED) { 807 /* migration is in progress; ack it if we have not already */ 808 AVP_WRITE32(value, 809 RTE_PTR_ADD(registers, 810 RTE_AVP_MIGRATION_ACK_OFFSET)); 811 return 1; 812 } 813 return 0; 814 } 815 816 /* 817 * create a AVP device using the supplied device info by first translating it 818 * to guest address space(s). 819 */ 820 static int 821 avp_dev_create(struct rte_pci_device *pci_dev, 822 struct rte_eth_dev *eth_dev) 823 { 824 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 825 struct rte_avp_device_info *host_info; 826 struct rte_mem_resource *resource; 827 unsigned int i; 828 829 resource = &pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR]; 830 if (resource->addr == NULL) { 831 PMD_DRV_LOG(ERR, "BAR%u is not mapped\n", 832 RTE_AVP_PCI_DEVICE_BAR); 833 return -EFAULT; 834 } 835 host_info = (struct rte_avp_device_info *)resource->addr; 836 837 if ((host_info->magic != RTE_AVP_DEVICE_MAGIC) || 838 avp_dev_version_check(host_info->version)) { 839 PMD_DRV_LOG(ERR, "Invalid AVP PCI device, magic 0x%08x version 0x%08x > 0x%08x\n", 840 host_info->magic, host_info->version, 841 AVP_DPDK_DRIVER_VERSION); 842 return -EINVAL; 843 } 844 845 PMD_DRV_LOG(DEBUG, "AVP host device is v%u.%u.%u\n", 846 RTE_AVP_GET_RELEASE_VERSION(host_info->version), 847 RTE_AVP_GET_MAJOR_VERSION(host_info->version), 848 RTE_AVP_GET_MINOR_VERSION(host_info->version)); 849 850 PMD_DRV_LOG(DEBUG, "AVP host supports %u to %u TX queue(s)\n", 851 host_info->min_tx_queues, host_info->max_tx_queues); 852 PMD_DRV_LOG(DEBUG, "AVP host supports %u to %u RX queue(s)\n", 853 host_info->min_rx_queues, host_info->max_rx_queues); 854 PMD_DRV_LOG(DEBUG, "AVP host supports features 0x%08x\n", 855 host_info->features); 856 857 if (avp->magic != AVP_ETHDEV_MAGIC) { 858 /* 859 * First time initialization (i.e., not during a VM 860 * migration) 861 */ 862 memset(avp, 0, sizeof(*avp)); 863 avp->magic = AVP_ETHDEV_MAGIC; 864 avp->dev_data = eth_dev->data; 865 avp->port_id = eth_dev->data->port_id; 866 avp->host_mbuf_size = host_info->mbuf_size; 867 avp->host_features = host_info->features; 868 rte_spinlock_init(&avp->lock); 869 memcpy(&avp->ethaddr.addr_bytes[0], 870 host_info->ethaddr, RTE_ETHER_ADDR_LEN); 871 /* adjust max values to not exceed our max */ 872 avp->max_tx_queues = 873 RTE_MIN(host_info->max_tx_queues, RTE_AVP_MAX_QUEUES); 874 avp->max_rx_queues = 875 RTE_MIN(host_info->max_rx_queues, RTE_AVP_MAX_QUEUES); 876 } else { 877 /* Re-attaching during migration */ 878 879 /* TODO... requires validation of host values */ 880 if ((host_info->features & avp->features) != avp->features) { 881 PMD_DRV_LOG(ERR, "AVP host features mismatched; 0x%08x, host=0x%08x\n", 882 avp->features, host_info->features); 883 /* this should not be possible; continue for now */ 884 } 885 } 886 887 /* the device id is allowed to change over migrations */ 888 avp->device_id = host_info->device_id; 889 890 /* translate incoming host addresses to guest address space */ 891 PMD_DRV_LOG(DEBUG, "AVP first host tx queue at 0x%" PRIx64 "\n", 892 host_info->tx_phys); 893 PMD_DRV_LOG(DEBUG, "AVP first host alloc queue at 0x%" PRIx64 "\n", 894 host_info->alloc_phys); 895 for (i = 0; i < avp->max_tx_queues; i++) { 896 avp->tx_q[i] = avp_dev_translate_address(eth_dev, 897 host_info->tx_phys + (i * host_info->tx_size)); 898 899 avp->alloc_q[i] = avp_dev_translate_address(eth_dev, 900 host_info->alloc_phys + (i * host_info->alloc_size)); 901 } 902 903 PMD_DRV_LOG(DEBUG, "AVP first host rx queue at 0x%" PRIx64 "\n", 904 host_info->rx_phys); 905 PMD_DRV_LOG(DEBUG, "AVP first host free queue at 0x%" PRIx64 "\n", 906 host_info->free_phys); 907 for (i = 0; i < avp->max_rx_queues; i++) { 908 avp->rx_q[i] = avp_dev_translate_address(eth_dev, 909 host_info->rx_phys + (i * host_info->rx_size)); 910 avp->free_q[i] = avp_dev_translate_address(eth_dev, 911 host_info->free_phys + (i * host_info->free_size)); 912 } 913 914 PMD_DRV_LOG(DEBUG, "AVP host request queue at 0x%" PRIx64 "\n", 915 host_info->req_phys); 916 PMD_DRV_LOG(DEBUG, "AVP host response queue at 0x%" PRIx64 "\n", 917 host_info->resp_phys); 918 PMD_DRV_LOG(DEBUG, "AVP host sync address at 0x%" PRIx64 "\n", 919 host_info->sync_phys); 920 PMD_DRV_LOG(DEBUG, "AVP host mbuf address at 0x%" PRIx64 "\n", 921 host_info->mbuf_phys); 922 avp->req_q = avp_dev_translate_address(eth_dev, host_info->req_phys); 923 avp->resp_q = avp_dev_translate_address(eth_dev, host_info->resp_phys); 924 avp->sync_addr = 925 avp_dev_translate_address(eth_dev, host_info->sync_phys); 926 avp->mbuf_addr = 927 avp_dev_translate_address(eth_dev, host_info->mbuf_phys); 928 929 /* 930 * store the host mbuf virtual address so that we can calculate 931 * relative offsets for each mbuf as they are processed 932 */ 933 avp->host_mbuf_addr = host_info->mbuf_va; 934 avp->host_sync_addr = host_info->sync_va; 935 936 /* 937 * store the maximum packet length that is supported by the host. 938 */ 939 avp->max_rx_pkt_len = host_info->max_rx_pkt_len; 940 PMD_DRV_LOG(DEBUG, "AVP host max receive packet length is %u\n", 941 host_info->max_rx_pkt_len); 942 943 return 0; 944 } 945 946 /* 947 * This function is based on probe() function in avp_pci.c 948 * It returns 0 on success. 949 */ 950 static int 951 eth_avp_dev_init(struct rte_eth_dev *eth_dev) 952 { 953 struct avp_dev *avp = 954 AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 955 struct rte_pci_device *pci_dev; 956 int ret; 957 958 pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 959 eth_dev->dev_ops = &avp_eth_dev_ops; 960 eth_dev->rx_pkt_burst = &avp_recv_pkts; 961 eth_dev->tx_pkt_burst = &avp_xmit_pkts; 962 /* Let rte_eth_dev_close() release the port resources */ 963 eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE; 964 965 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 966 /* 967 * no setup required on secondary processes. All data is saved 968 * in dev_private by the primary process. All resource should 969 * be mapped to the same virtual address so all pointers should 970 * be valid. 971 */ 972 if (eth_dev->data->scattered_rx) { 973 PMD_DRV_LOG(NOTICE, "AVP device configured for chained mbufs\n"); 974 eth_dev->rx_pkt_burst = avp_recv_scattered_pkts; 975 eth_dev->tx_pkt_burst = avp_xmit_scattered_pkts; 976 } 977 return 0; 978 } 979 980 rte_eth_copy_pci_info(eth_dev, pci_dev); 981 982 /* Check current migration status */ 983 if (avp_dev_migration_pending(eth_dev)) { 984 PMD_DRV_LOG(ERR, "VM live migration operation in progress\n"); 985 return -EBUSY; 986 } 987 988 /* Check BAR resources */ 989 ret = avp_dev_check_regions(eth_dev); 990 if (ret < 0) { 991 PMD_DRV_LOG(ERR, "Failed to validate BAR resources, ret=%d\n", 992 ret); 993 return ret; 994 } 995 996 /* Enable interrupts */ 997 ret = avp_dev_setup_interrupts(eth_dev); 998 if (ret < 0) { 999 PMD_DRV_LOG(ERR, "Failed to enable interrupts, ret=%d\n", ret); 1000 return ret; 1001 } 1002 1003 /* Handle each subtype */ 1004 ret = avp_dev_create(pci_dev, eth_dev); 1005 if (ret < 0) { 1006 PMD_DRV_LOG(ERR, "Failed to create device, ret=%d\n", ret); 1007 return ret; 1008 } 1009 1010 /* Allocate memory for storing MAC addresses */ 1011 eth_dev->data->mac_addrs = rte_zmalloc("avp_ethdev", 1012 RTE_ETHER_ADDR_LEN, 0); 1013 if (eth_dev->data->mac_addrs == NULL) { 1014 PMD_DRV_LOG(ERR, "Failed to allocate %d bytes needed to store MAC addresses\n", 1015 RTE_ETHER_ADDR_LEN); 1016 return -ENOMEM; 1017 } 1018 1019 /* Get a mac from device config */ 1020 rte_ether_addr_copy(&avp->ethaddr, ð_dev->data->mac_addrs[0]); 1021 1022 return 0; 1023 } 1024 1025 static int 1026 eth_avp_dev_uninit(struct rte_eth_dev *eth_dev) 1027 { 1028 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 1029 return -EPERM; 1030 1031 if (eth_dev->data == NULL) 1032 return 0; 1033 1034 avp_dev_close(eth_dev); 1035 1036 return 0; 1037 } 1038 1039 static int 1040 eth_avp_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 1041 struct rte_pci_device *pci_dev) 1042 { 1043 return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct avp_adapter), 1044 eth_avp_dev_init); 1045 } 1046 1047 static int 1048 eth_avp_pci_remove(struct rte_pci_device *pci_dev) 1049 { 1050 return rte_eth_dev_pci_generic_remove(pci_dev, 1051 eth_avp_dev_uninit); 1052 } 1053 1054 static struct rte_pci_driver rte_avp_pmd = { 1055 .id_table = pci_id_avp_map, 1056 .drv_flags = RTE_PCI_DRV_NEED_MAPPING, 1057 .probe = eth_avp_pci_probe, 1058 .remove = eth_avp_pci_remove, 1059 }; 1060 1061 static int 1062 avp_dev_enable_scattered(struct rte_eth_dev *eth_dev, 1063 struct avp_dev *avp) 1064 { 1065 unsigned int max_rx_pkt_len; 1066 1067 max_rx_pkt_len = eth_dev->data->dev_conf.rxmode.max_rx_pkt_len; 1068 1069 if ((max_rx_pkt_len > avp->guest_mbuf_size) || 1070 (max_rx_pkt_len > avp->host_mbuf_size)) { 1071 /* 1072 * If the guest MTU is greater than either the host or guest 1073 * buffers then chained mbufs have to be enabled in the TX 1074 * direction. It is assumed that the application will not need 1075 * to send packets larger than their max_rx_pkt_len (MRU). 1076 */ 1077 return 1; 1078 } 1079 1080 if ((avp->max_rx_pkt_len > avp->guest_mbuf_size) || 1081 (avp->max_rx_pkt_len > avp->host_mbuf_size)) { 1082 /* 1083 * If the host MRU is greater than its own mbuf size or the 1084 * guest mbuf size then chained mbufs have to be enabled in the 1085 * RX direction. 1086 */ 1087 return 1; 1088 } 1089 1090 return 0; 1091 } 1092 1093 static int 1094 avp_dev_rx_queue_setup(struct rte_eth_dev *eth_dev, 1095 uint16_t rx_queue_id, 1096 uint16_t nb_rx_desc, 1097 unsigned int socket_id, 1098 const struct rte_eth_rxconf *rx_conf, 1099 struct rte_mempool *pool) 1100 { 1101 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 1102 struct rte_pktmbuf_pool_private *mbp_priv; 1103 struct avp_queue *rxq; 1104 1105 if (rx_queue_id >= eth_dev->data->nb_rx_queues) { 1106 PMD_DRV_LOG(ERR, "RX queue id is out of range: rx_queue_id=%u, nb_rx_queues=%u\n", 1107 rx_queue_id, eth_dev->data->nb_rx_queues); 1108 return -EINVAL; 1109 } 1110 1111 /* Save mbuf pool pointer */ 1112 avp->pool = pool; 1113 1114 /* Save the local mbuf size */ 1115 mbp_priv = rte_mempool_get_priv(pool); 1116 avp->guest_mbuf_size = (uint16_t)(mbp_priv->mbuf_data_room_size); 1117 avp->guest_mbuf_size -= RTE_PKTMBUF_HEADROOM; 1118 1119 if (avp_dev_enable_scattered(eth_dev, avp)) { 1120 if (!eth_dev->data->scattered_rx) { 1121 PMD_DRV_LOG(NOTICE, "AVP device configured for chained mbufs\n"); 1122 eth_dev->data->scattered_rx = 1; 1123 eth_dev->rx_pkt_burst = avp_recv_scattered_pkts; 1124 eth_dev->tx_pkt_burst = avp_xmit_scattered_pkts; 1125 } 1126 } 1127 1128 PMD_DRV_LOG(DEBUG, "AVP max_rx_pkt_len=(%u,%u) mbuf_size=(%u,%u)\n", 1129 avp->max_rx_pkt_len, 1130 eth_dev->data->dev_conf.rxmode.max_rx_pkt_len, 1131 avp->host_mbuf_size, 1132 avp->guest_mbuf_size); 1133 1134 /* allocate a queue object */ 1135 rxq = rte_zmalloc_socket("ethdev RX queue", sizeof(struct avp_queue), 1136 RTE_CACHE_LINE_SIZE, socket_id); 1137 if (rxq == NULL) { 1138 PMD_DRV_LOG(ERR, "Failed to allocate new Rx queue object\n"); 1139 return -ENOMEM; 1140 } 1141 1142 /* save back pointers to AVP and Ethernet devices */ 1143 rxq->avp = avp; 1144 rxq->dev_data = eth_dev->data; 1145 eth_dev->data->rx_queues[rx_queue_id] = (void *)rxq; 1146 1147 /* setup the queue receive mapping for the current queue. */ 1148 _avp_set_rx_queue_mappings(eth_dev, rx_queue_id); 1149 1150 PMD_DRV_LOG(DEBUG, "Rx queue %u setup at %p\n", rx_queue_id, rxq); 1151 1152 (void)nb_rx_desc; 1153 (void)rx_conf; 1154 return 0; 1155 } 1156 1157 static int 1158 avp_dev_tx_queue_setup(struct rte_eth_dev *eth_dev, 1159 uint16_t tx_queue_id, 1160 uint16_t nb_tx_desc, 1161 unsigned int socket_id, 1162 const struct rte_eth_txconf *tx_conf) 1163 { 1164 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 1165 struct avp_queue *txq; 1166 1167 if (tx_queue_id >= eth_dev->data->nb_tx_queues) { 1168 PMD_DRV_LOG(ERR, "TX queue id is out of range: tx_queue_id=%u, nb_tx_queues=%u\n", 1169 tx_queue_id, eth_dev->data->nb_tx_queues); 1170 return -EINVAL; 1171 } 1172 1173 /* allocate a queue object */ 1174 txq = rte_zmalloc_socket("ethdev TX queue", sizeof(struct avp_queue), 1175 RTE_CACHE_LINE_SIZE, socket_id); 1176 if (txq == NULL) { 1177 PMD_DRV_LOG(ERR, "Failed to allocate new Tx queue object\n"); 1178 return -ENOMEM; 1179 } 1180 1181 /* only the configured set of transmit queues are used */ 1182 txq->queue_id = tx_queue_id; 1183 txq->queue_base = tx_queue_id; 1184 txq->queue_limit = tx_queue_id; 1185 1186 /* save back pointers to AVP and Ethernet devices */ 1187 txq->avp = avp; 1188 txq->dev_data = eth_dev->data; 1189 eth_dev->data->tx_queues[tx_queue_id] = (void *)txq; 1190 1191 PMD_DRV_LOG(DEBUG, "Tx queue %u setup at %p\n", tx_queue_id, txq); 1192 1193 (void)nb_tx_desc; 1194 (void)tx_conf; 1195 return 0; 1196 } 1197 1198 static inline int 1199 _avp_cmp_ether_addr(struct rte_ether_addr *a, struct rte_ether_addr *b) 1200 { 1201 uint16_t *_a = (uint16_t *)&a->addr_bytes[0]; 1202 uint16_t *_b = (uint16_t *)&b->addr_bytes[0]; 1203 return (_a[0] ^ _b[0]) | (_a[1] ^ _b[1]) | (_a[2] ^ _b[2]); 1204 } 1205 1206 static inline int 1207 _avp_mac_filter(struct avp_dev *avp, struct rte_mbuf *m) 1208 { 1209 struct rte_ether_hdr *eth = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); 1210 1211 if (likely(_avp_cmp_ether_addr(&avp->ethaddr, ð->d_addr) == 0)) { 1212 /* allow all packets destined to our address */ 1213 return 0; 1214 } 1215 1216 if (likely(rte_is_broadcast_ether_addr(ð->d_addr))) { 1217 /* allow all broadcast packets */ 1218 return 0; 1219 } 1220 1221 if (likely(rte_is_multicast_ether_addr(ð->d_addr))) { 1222 /* allow all multicast packets */ 1223 return 0; 1224 } 1225 1226 if (avp->flags & AVP_F_PROMISC) { 1227 /* allow all packets when in promiscuous mode */ 1228 return 0; 1229 } 1230 1231 return -1; 1232 } 1233 1234 #ifdef RTE_LIBRTE_AVP_DEBUG_BUFFERS 1235 static inline void 1236 __avp_dev_buffer_sanity_check(struct avp_dev *avp, struct rte_avp_desc *buf) 1237 { 1238 struct rte_avp_desc *first_buf; 1239 struct rte_avp_desc *pkt_buf; 1240 unsigned int pkt_len; 1241 unsigned int nb_segs; 1242 void *pkt_data; 1243 unsigned int i; 1244 1245 first_buf = avp_dev_translate_buffer(avp, buf); 1246 1247 i = 0; 1248 pkt_len = 0; 1249 nb_segs = first_buf->nb_segs; 1250 do { 1251 /* Adjust pointers for guest addressing */ 1252 pkt_buf = avp_dev_translate_buffer(avp, buf); 1253 if (pkt_buf == NULL) 1254 rte_panic("bad buffer: segment %u has an invalid address %p\n", 1255 i, buf); 1256 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data); 1257 if (pkt_data == NULL) 1258 rte_panic("bad buffer: segment %u has a NULL data pointer\n", 1259 i); 1260 if (pkt_buf->data_len == 0) 1261 rte_panic("bad buffer: segment %u has 0 data length\n", 1262 i); 1263 pkt_len += pkt_buf->data_len; 1264 nb_segs--; 1265 i++; 1266 1267 } while (nb_segs && (buf = pkt_buf->next) != NULL); 1268 1269 if (nb_segs != 0) 1270 rte_panic("bad buffer: expected %u segments found %u\n", 1271 first_buf->nb_segs, (first_buf->nb_segs - nb_segs)); 1272 if (pkt_len != first_buf->pkt_len) 1273 rte_panic("bad buffer: expected length %u found %u\n", 1274 first_buf->pkt_len, pkt_len); 1275 } 1276 1277 #define avp_dev_buffer_sanity_check(a, b) \ 1278 __avp_dev_buffer_sanity_check((a), (b)) 1279 1280 #else /* RTE_LIBRTE_AVP_DEBUG_BUFFERS */ 1281 1282 #define avp_dev_buffer_sanity_check(a, b) do {} while (0) 1283 1284 #endif 1285 1286 /* 1287 * Copy a host buffer chain to a set of mbufs. This function assumes that 1288 * there exactly the required number of mbufs to copy all source bytes. 1289 */ 1290 static inline struct rte_mbuf * 1291 avp_dev_copy_from_buffers(struct avp_dev *avp, 1292 struct rte_avp_desc *buf, 1293 struct rte_mbuf **mbufs, 1294 unsigned int count) 1295 { 1296 struct rte_mbuf *m_previous = NULL; 1297 struct rte_avp_desc *pkt_buf; 1298 unsigned int total_length = 0; 1299 unsigned int copy_length; 1300 unsigned int src_offset; 1301 struct rte_mbuf *m; 1302 uint16_t ol_flags; 1303 uint16_t vlan_tci; 1304 void *pkt_data; 1305 unsigned int i; 1306 1307 avp_dev_buffer_sanity_check(avp, buf); 1308 1309 /* setup the first source buffer */ 1310 pkt_buf = avp_dev_translate_buffer(avp, buf); 1311 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data); 1312 total_length = pkt_buf->pkt_len; 1313 src_offset = 0; 1314 1315 if (pkt_buf->ol_flags & RTE_AVP_RX_VLAN_PKT) { 1316 ol_flags = PKT_RX_VLAN; 1317 vlan_tci = pkt_buf->vlan_tci; 1318 } else { 1319 ol_flags = 0; 1320 vlan_tci = 0; 1321 } 1322 1323 for (i = 0; (i < count) && (buf != NULL); i++) { 1324 /* fill each destination buffer */ 1325 m = mbufs[i]; 1326 1327 if (m_previous != NULL) 1328 m_previous->next = m; 1329 1330 m_previous = m; 1331 1332 do { 1333 /* 1334 * Copy as many source buffers as will fit in the 1335 * destination buffer. 1336 */ 1337 copy_length = RTE_MIN((avp->guest_mbuf_size - 1338 rte_pktmbuf_data_len(m)), 1339 (pkt_buf->data_len - 1340 src_offset)); 1341 rte_memcpy(RTE_PTR_ADD(rte_pktmbuf_mtod(m, void *), 1342 rte_pktmbuf_data_len(m)), 1343 RTE_PTR_ADD(pkt_data, src_offset), 1344 copy_length); 1345 rte_pktmbuf_data_len(m) += copy_length; 1346 src_offset += copy_length; 1347 1348 if (likely(src_offset == pkt_buf->data_len)) { 1349 /* need a new source buffer */ 1350 buf = pkt_buf->next; 1351 if (buf != NULL) { 1352 pkt_buf = avp_dev_translate_buffer( 1353 avp, buf); 1354 pkt_data = avp_dev_translate_buffer( 1355 avp, pkt_buf->data); 1356 src_offset = 0; 1357 } 1358 } 1359 1360 if (unlikely(rte_pktmbuf_data_len(m) == 1361 avp->guest_mbuf_size)) { 1362 /* need a new destination mbuf */ 1363 break; 1364 } 1365 1366 } while (buf != NULL); 1367 } 1368 1369 m = mbufs[0]; 1370 m->ol_flags = ol_flags; 1371 m->nb_segs = count; 1372 rte_pktmbuf_pkt_len(m) = total_length; 1373 m->vlan_tci = vlan_tci; 1374 1375 __rte_mbuf_sanity_check(m, 1); 1376 1377 return m; 1378 } 1379 1380 static uint16_t 1381 avp_recv_scattered_pkts(void *rx_queue, 1382 struct rte_mbuf **rx_pkts, 1383 uint16_t nb_pkts) 1384 { 1385 struct avp_queue *rxq = (struct avp_queue *)rx_queue; 1386 struct rte_avp_desc *avp_bufs[AVP_MAX_RX_BURST]; 1387 struct rte_mbuf *mbufs[RTE_AVP_MAX_MBUF_SEGMENTS]; 1388 struct avp_dev *avp = rxq->avp; 1389 struct rte_avp_desc *pkt_buf; 1390 struct rte_avp_fifo *free_q; 1391 struct rte_avp_fifo *rx_q; 1392 struct rte_avp_desc *buf; 1393 unsigned int count, avail, n; 1394 unsigned int guest_mbuf_size; 1395 struct rte_mbuf *m; 1396 unsigned int required; 1397 unsigned int buf_len; 1398 unsigned int port_id; 1399 unsigned int i; 1400 1401 if (unlikely(avp->flags & AVP_F_DETACHED)) { 1402 /* VM live migration in progress */ 1403 return 0; 1404 } 1405 1406 guest_mbuf_size = avp->guest_mbuf_size; 1407 port_id = avp->port_id; 1408 rx_q = avp->rx_q[rxq->queue_id]; 1409 free_q = avp->free_q[rxq->queue_id]; 1410 1411 /* setup next queue to service */ 1412 rxq->queue_id = (rxq->queue_id < rxq->queue_limit) ? 1413 (rxq->queue_id + 1) : rxq->queue_base; 1414 1415 /* determine how many slots are available in the free queue */ 1416 count = avp_fifo_free_count(free_q); 1417 1418 /* determine how many packets are available in the rx queue */ 1419 avail = avp_fifo_count(rx_q); 1420 1421 /* determine how many packets can be received */ 1422 count = RTE_MIN(count, avail); 1423 count = RTE_MIN(count, nb_pkts); 1424 count = RTE_MIN(count, (unsigned int)AVP_MAX_RX_BURST); 1425 1426 if (unlikely(count == 0)) { 1427 /* no free buffers, or no buffers on the rx queue */ 1428 return 0; 1429 } 1430 1431 /* retrieve pending packets */ 1432 n = avp_fifo_get(rx_q, (void **)&avp_bufs, count); 1433 PMD_RX_LOG(DEBUG, "Receiving %u packets from Rx queue at %p\n", 1434 count, rx_q); 1435 1436 count = 0; 1437 for (i = 0; i < n; i++) { 1438 /* prefetch next entry while processing current one */ 1439 if (i + 1 < n) { 1440 pkt_buf = avp_dev_translate_buffer(avp, 1441 avp_bufs[i + 1]); 1442 rte_prefetch0(pkt_buf); 1443 } 1444 buf = avp_bufs[i]; 1445 1446 /* Peek into the first buffer to determine the total length */ 1447 pkt_buf = avp_dev_translate_buffer(avp, buf); 1448 buf_len = pkt_buf->pkt_len; 1449 1450 /* Allocate enough mbufs to receive the entire packet */ 1451 required = (buf_len + guest_mbuf_size - 1) / guest_mbuf_size; 1452 if (rte_pktmbuf_alloc_bulk(avp->pool, mbufs, required)) { 1453 rxq->dev_data->rx_mbuf_alloc_failed++; 1454 continue; 1455 } 1456 1457 /* Copy the data from the buffers to our mbufs */ 1458 m = avp_dev_copy_from_buffers(avp, buf, mbufs, required); 1459 1460 /* finalize mbuf */ 1461 m->port = port_id; 1462 1463 if (_avp_mac_filter(avp, m) != 0) { 1464 /* silently discard packets not destined to our MAC */ 1465 rte_pktmbuf_free(m); 1466 continue; 1467 } 1468 1469 /* return new mbuf to caller */ 1470 rx_pkts[count++] = m; 1471 rxq->bytes += buf_len; 1472 } 1473 1474 rxq->packets += count; 1475 1476 /* return the buffers to the free queue */ 1477 avp_fifo_put(free_q, (void **)&avp_bufs[0], n); 1478 1479 return count; 1480 } 1481 1482 1483 static uint16_t 1484 avp_recv_pkts(void *rx_queue, 1485 struct rte_mbuf **rx_pkts, 1486 uint16_t nb_pkts) 1487 { 1488 struct avp_queue *rxq = (struct avp_queue *)rx_queue; 1489 struct rte_avp_desc *avp_bufs[AVP_MAX_RX_BURST]; 1490 struct avp_dev *avp = rxq->avp; 1491 struct rte_avp_desc *pkt_buf; 1492 struct rte_avp_fifo *free_q; 1493 struct rte_avp_fifo *rx_q; 1494 unsigned int count, avail, n; 1495 unsigned int pkt_len; 1496 struct rte_mbuf *m; 1497 char *pkt_data; 1498 unsigned int i; 1499 1500 if (unlikely(avp->flags & AVP_F_DETACHED)) { 1501 /* VM live migration in progress */ 1502 return 0; 1503 } 1504 1505 rx_q = avp->rx_q[rxq->queue_id]; 1506 free_q = avp->free_q[rxq->queue_id]; 1507 1508 /* setup next queue to service */ 1509 rxq->queue_id = (rxq->queue_id < rxq->queue_limit) ? 1510 (rxq->queue_id + 1) : rxq->queue_base; 1511 1512 /* determine how many slots are available in the free queue */ 1513 count = avp_fifo_free_count(free_q); 1514 1515 /* determine how many packets are available in the rx queue */ 1516 avail = avp_fifo_count(rx_q); 1517 1518 /* determine how many packets can be received */ 1519 count = RTE_MIN(count, avail); 1520 count = RTE_MIN(count, nb_pkts); 1521 count = RTE_MIN(count, (unsigned int)AVP_MAX_RX_BURST); 1522 1523 if (unlikely(count == 0)) { 1524 /* no free buffers, or no buffers on the rx queue */ 1525 return 0; 1526 } 1527 1528 /* retrieve pending packets */ 1529 n = avp_fifo_get(rx_q, (void **)&avp_bufs, count); 1530 PMD_RX_LOG(DEBUG, "Receiving %u packets from Rx queue at %p\n", 1531 count, rx_q); 1532 1533 count = 0; 1534 for (i = 0; i < n; i++) { 1535 /* prefetch next entry while processing current one */ 1536 if (i < n - 1) { 1537 pkt_buf = avp_dev_translate_buffer(avp, 1538 avp_bufs[i + 1]); 1539 rte_prefetch0(pkt_buf); 1540 } 1541 1542 /* Adjust host pointers for guest addressing */ 1543 pkt_buf = avp_dev_translate_buffer(avp, avp_bufs[i]); 1544 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data); 1545 pkt_len = pkt_buf->pkt_len; 1546 1547 if (unlikely((pkt_len > avp->guest_mbuf_size) || 1548 (pkt_buf->nb_segs > 1))) { 1549 /* 1550 * application should be using the scattered receive 1551 * function 1552 */ 1553 rxq->errors++; 1554 continue; 1555 } 1556 1557 /* process each packet to be transmitted */ 1558 m = rte_pktmbuf_alloc(avp->pool); 1559 if (unlikely(m == NULL)) { 1560 rxq->dev_data->rx_mbuf_alloc_failed++; 1561 continue; 1562 } 1563 1564 /* copy data out of the host buffer to our buffer */ 1565 m->data_off = RTE_PKTMBUF_HEADROOM; 1566 rte_memcpy(rte_pktmbuf_mtod(m, void *), pkt_data, pkt_len); 1567 1568 /* initialize the local mbuf */ 1569 rte_pktmbuf_data_len(m) = pkt_len; 1570 rte_pktmbuf_pkt_len(m) = pkt_len; 1571 m->port = avp->port_id; 1572 1573 if (pkt_buf->ol_flags & RTE_AVP_RX_VLAN_PKT) { 1574 m->ol_flags = PKT_RX_VLAN; 1575 m->vlan_tci = pkt_buf->vlan_tci; 1576 } 1577 1578 if (_avp_mac_filter(avp, m) != 0) { 1579 /* silently discard packets not destined to our MAC */ 1580 rte_pktmbuf_free(m); 1581 continue; 1582 } 1583 1584 /* return new mbuf to caller */ 1585 rx_pkts[count++] = m; 1586 rxq->bytes += pkt_len; 1587 } 1588 1589 rxq->packets += count; 1590 1591 /* return the buffers to the free queue */ 1592 avp_fifo_put(free_q, (void **)&avp_bufs[0], n); 1593 1594 return count; 1595 } 1596 1597 /* 1598 * Copy a chained mbuf to a set of host buffers. This function assumes that 1599 * there are sufficient destination buffers to contain the entire source 1600 * packet. 1601 */ 1602 static inline uint16_t 1603 avp_dev_copy_to_buffers(struct avp_dev *avp, 1604 struct rte_mbuf *mbuf, 1605 struct rte_avp_desc **buffers, 1606 unsigned int count) 1607 { 1608 struct rte_avp_desc *previous_buf = NULL; 1609 struct rte_avp_desc *first_buf = NULL; 1610 struct rte_avp_desc *pkt_buf; 1611 struct rte_avp_desc *buf; 1612 size_t total_length; 1613 struct rte_mbuf *m; 1614 size_t copy_length; 1615 size_t src_offset; 1616 char *pkt_data; 1617 unsigned int i; 1618 1619 __rte_mbuf_sanity_check(mbuf, 1); 1620 1621 m = mbuf; 1622 src_offset = 0; 1623 total_length = rte_pktmbuf_pkt_len(m); 1624 for (i = 0; (i < count) && (m != NULL); i++) { 1625 /* fill each destination buffer */ 1626 buf = buffers[i]; 1627 1628 if (i < count - 1) { 1629 /* prefetch next entry while processing this one */ 1630 pkt_buf = avp_dev_translate_buffer(avp, buffers[i + 1]); 1631 rte_prefetch0(pkt_buf); 1632 } 1633 1634 /* Adjust pointers for guest addressing */ 1635 pkt_buf = avp_dev_translate_buffer(avp, buf); 1636 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data); 1637 1638 /* setup the buffer chain */ 1639 if (previous_buf != NULL) 1640 previous_buf->next = buf; 1641 else 1642 first_buf = pkt_buf; 1643 1644 previous_buf = pkt_buf; 1645 1646 do { 1647 /* 1648 * copy as many source mbuf segments as will fit in the 1649 * destination buffer. 1650 */ 1651 copy_length = RTE_MIN((avp->host_mbuf_size - 1652 pkt_buf->data_len), 1653 (rte_pktmbuf_data_len(m) - 1654 src_offset)); 1655 rte_memcpy(RTE_PTR_ADD(pkt_data, pkt_buf->data_len), 1656 RTE_PTR_ADD(rte_pktmbuf_mtod(m, void *), 1657 src_offset), 1658 copy_length); 1659 pkt_buf->data_len += copy_length; 1660 src_offset += copy_length; 1661 1662 if (likely(src_offset == rte_pktmbuf_data_len(m))) { 1663 /* need a new source buffer */ 1664 m = m->next; 1665 src_offset = 0; 1666 } 1667 1668 if (unlikely(pkt_buf->data_len == 1669 avp->host_mbuf_size)) { 1670 /* need a new destination buffer */ 1671 break; 1672 } 1673 1674 } while (m != NULL); 1675 } 1676 1677 first_buf->nb_segs = count; 1678 first_buf->pkt_len = total_length; 1679 1680 if (mbuf->ol_flags & PKT_TX_VLAN_PKT) { 1681 first_buf->ol_flags |= RTE_AVP_TX_VLAN_PKT; 1682 first_buf->vlan_tci = mbuf->vlan_tci; 1683 } 1684 1685 avp_dev_buffer_sanity_check(avp, buffers[0]); 1686 1687 return total_length; 1688 } 1689 1690 1691 static uint16_t 1692 avp_xmit_scattered_pkts(void *tx_queue, 1693 struct rte_mbuf **tx_pkts, 1694 uint16_t nb_pkts) 1695 { 1696 struct rte_avp_desc *avp_bufs[(AVP_MAX_TX_BURST * 1697 RTE_AVP_MAX_MBUF_SEGMENTS)]; 1698 struct avp_queue *txq = (struct avp_queue *)tx_queue; 1699 struct rte_avp_desc *tx_bufs[AVP_MAX_TX_BURST]; 1700 struct avp_dev *avp = txq->avp; 1701 struct rte_avp_fifo *alloc_q; 1702 struct rte_avp_fifo *tx_q; 1703 unsigned int count, avail, n; 1704 unsigned int orig_nb_pkts; 1705 struct rte_mbuf *m; 1706 unsigned int required; 1707 unsigned int segments; 1708 unsigned int tx_bytes; 1709 unsigned int i; 1710 1711 orig_nb_pkts = nb_pkts; 1712 if (unlikely(avp->flags & AVP_F_DETACHED)) { 1713 /* VM live migration in progress */ 1714 /* TODO ... buffer for X packets then drop? */ 1715 txq->errors += nb_pkts; 1716 return 0; 1717 } 1718 1719 tx_q = avp->tx_q[txq->queue_id]; 1720 alloc_q = avp->alloc_q[txq->queue_id]; 1721 1722 /* limit the number of transmitted packets to the max burst size */ 1723 if (unlikely(nb_pkts > AVP_MAX_TX_BURST)) 1724 nb_pkts = AVP_MAX_TX_BURST; 1725 1726 /* determine how many buffers are available to copy into */ 1727 avail = avp_fifo_count(alloc_q); 1728 if (unlikely(avail > (AVP_MAX_TX_BURST * 1729 RTE_AVP_MAX_MBUF_SEGMENTS))) 1730 avail = AVP_MAX_TX_BURST * RTE_AVP_MAX_MBUF_SEGMENTS; 1731 1732 /* determine how many slots are available in the transmit queue */ 1733 count = avp_fifo_free_count(tx_q); 1734 1735 /* determine how many packets can be sent */ 1736 nb_pkts = RTE_MIN(count, nb_pkts); 1737 1738 /* determine how many packets will fit in the available buffers */ 1739 count = 0; 1740 segments = 0; 1741 for (i = 0; i < nb_pkts; i++) { 1742 m = tx_pkts[i]; 1743 if (likely(i < (unsigned int)nb_pkts - 1)) { 1744 /* prefetch next entry while processing this one */ 1745 rte_prefetch0(tx_pkts[i + 1]); 1746 } 1747 required = (rte_pktmbuf_pkt_len(m) + avp->host_mbuf_size - 1) / 1748 avp->host_mbuf_size; 1749 1750 if (unlikely((required == 0) || 1751 (required > RTE_AVP_MAX_MBUF_SEGMENTS))) 1752 break; 1753 else if (unlikely(required + segments > avail)) 1754 break; 1755 segments += required; 1756 count++; 1757 } 1758 nb_pkts = count; 1759 1760 if (unlikely(nb_pkts == 0)) { 1761 /* no available buffers, or no space on the tx queue */ 1762 txq->errors += orig_nb_pkts; 1763 return 0; 1764 } 1765 1766 PMD_TX_LOG(DEBUG, "Sending %u packets on Tx queue at %p\n", 1767 nb_pkts, tx_q); 1768 1769 /* retrieve sufficient send buffers */ 1770 n = avp_fifo_get(alloc_q, (void **)&avp_bufs, segments); 1771 if (unlikely(n != segments)) { 1772 PMD_TX_LOG(DEBUG, "Failed to allocate buffers " 1773 "n=%u, segments=%u, orig=%u\n", 1774 n, segments, orig_nb_pkts); 1775 txq->errors += orig_nb_pkts; 1776 return 0; 1777 } 1778 1779 tx_bytes = 0; 1780 count = 0; 1781 for (i = 0; i < nb_pkts; i++) { 1782 /* process each packet to be transmitted */ 1783 m = tx_pkts[i]; 1784 1785 /* determine how many buffers are required for this packet */ 1786 required = (rte_pktmbuf_pkt_len(m) + avp->host_mbuf_size - 1) / 1787 avp->host_mbuf_size; 1788 1789 tx_bytes += avp_dev_copy_to_buffers(avp, m, 1790 &avp_bufs[count], required); 1791 tx_bufs[i] = avp_bufs[count]; 1792 count += required; 1793 1794 /* free the original mbuf */ 1795 rte_pktmbuf_free(m); 1796 } 1797 1798 txq->packets += nb_pkts; 1799 txq->bytes += tx_bytes; 1800 1801 #ifdef RTE_LIBRTE_AVP_DEBUG_BUFFERS 1802 for (i = 0; i < nb_pkts; i++) 1803 avp_dev_buffer_sanity_check(avp, tx_bufs[i]); 1804 #endif 1805 1806 /* send the packets */ 1807 n = avp_fifo_put(tx_q, (void **)&tx_bufs[0], nb_pkts); 1808 if (unlikely(n != orig_nb_pkts)) 1809 txq->errors += (orig_nb_pkts - n); 1810 1811 return n; 1812 } 1813 1814 1815 static uint16_t 1816 avp_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) 1817 { 1818 struct avp_queue *txq = (struct avp_queue *)tx_queue; 1819 struct rte_avp_desc *avp_bufs[AVP_MAX_TX_BURST]; 1820 struct avp_dev *avp = txq->avp; 1821 struct rte_avp_desc *pkt_buf; 1822 struct rte_avp_fifo *alloc_q; 1823 struct rte_avp_fifo *tx_q; 1824 unsigned int count, avail, n; 1825 struct rte_mbuf *m; 1826 unsigned int pkt_len; 1827 unsigned int tx_bytes; 1828 char *pkt_data; 1829 unsigned int i; 1830 1831 if (unlikely(avp->flags & AVP_F_DETACHED)) { 1832 /* VM live migration in progress */ 1833 /* TODO ... buffer for X packets then drop?! */ 1834 txq->errors++; 1835 return 0; 1836 } 1837 1838 tx_q = avp->tx_q[txq->queue_id]; 1839 alloc_q = avp->alloc_q[txq->queue_id]; 1840 1841 /* limit the number of transmitted packets to the max burst size */ 1842 if (unlikely(nb_pkts > AVP_MAX_TX_BURST)) 1843 nb_pkts = AVP_MAX_TX_BURST; 1844 1845 /* determine how many buffers are available to copy into */ 1846 avail = avp_fifo_count(alloc_q); 1847 1848 /* determine how many slots are available in the transmit queue */ 1849 count = avp_fifo_free_count(tx_q); 1850 1851 /* determine how many packets can be sent */ 1852 count = RTE_MIN(count, avail); 1853 count = RTE_MIN(count, nb_pkts); 1854 1855 if (unlikely(count == 0)) { 1856 /* no available buffers, or no space on the tx queue */ 1857 txq->errors += nb_pkts; 1858 return 0; 1859 } 1860 1861 PMD_TX_LOG(DEBUG, "Sending %u packets on Tx queue at %p\n", 1862 count, tx_q); 1863 1864 /* retrieve sufficient send buffers */ 1865 n = avp_fifo_get(alloc_q, (void **)&avp_bufs, count); 1866 if (unlikely(n != count)) { 1867 txq->errors++; 1868 return 0; 1869 } 1870 1871 tx_bytes = 0; 1872 for (i = 0; i < count; i++) { 1873 /* prefetch next entry while processing the current one */ 1874 if (i < count - 1) { 1875 pkt_buf = avp_dev_translate_buffer(avp, 1876 avp_bufs[i + 1]); 1877 rte_prefetch0(pkt_buf); 1878 } 1879 1880 /* process each packet to be transmitted */ 1881 m = tx_pkts[i]; 1882 1883 /* Adjust pointers for guest addressing */ 1884 pkt_buf = avp_dev_translate_buffer(avp, avp_bufs[i]); 1885 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data); 1886 pkt_len = rte_pktmbuf_pkt_len(m); 1887 1888 if (unlikely((pkt_len > avp->guest_mbuf_size) || 1889 (pkt_len > avp->host_mbuf_size))) { 1890 /* 1891 * application should be using the scattered transmit 1892 * function; send it truncated to avoid the performance 1893 * hit of having to manage returning the already 1894 * allocated buffer to the free list. This should not 1895 * happen since the application should have set the 1896 * max_rx_pkt_len based on its MTU and it should be 1897 * policing its own packet sizes. 1898 */ 1899 txq->errors++; 1900 pkt_len = RTE_MIN(avp->guest_mbuf_size, 1901 avp->host_mbuf_size); 1902 } 1903 1904 /* copy data out of our mbuf and into the AVP buffer */ 1905 rte_memcpy(pkt_data, rte_pktmbuf_mtod(m, void *), pkt_len); 1906 pkt_buf->pkt_len = pkt_len; 1907 pkt_buf->data_len = pkt_len; 1908 pkt_buf->nb_segs = 1; 1909 pkt_buf->next = NULL; 1910 1911 if (m->ol_flags & PKT_TX_VLAN_PKT) { 1912 pkt_buf->ol_flags |= RTE_AVP_TX_VLAN_PKT; 1913 pkt_buf->vlan_tci = m->vlan_tci; 1914 } 1915 1916 tx_bytes += pkt_len; 1917 1918 /* free the original mbuf */ 1919 rte_pktmbuf_free(m); 1920 } 1921 1922 txq->packets += count; 1923 txq->bytes += tx_bytes; 1924 1925 /* send the packets */ 1926 n = avp_fifo_put(tx_q, (void **)&avp_bufs[0], count); 1927 1928 return n; 1929 } 1930 1931 static void 1932 avp_dev_rx_queue_release(void *rx_queue) 1933 { 1934 struct avp_queue *rxq = (struct avp_queue *)rx_queue; 1935 struct avp_dev *avp = rxq->avp; 1936 struct rte_eth_dev_data *data = avp->dev_data; 1937 unsigned int i; 1938 1939 for (i = 0; i < avp->num_rx_queues; i++) { 1940 if (data->rx_queues[i] == rxq) { 1941 rte_free(data->rx_queues[i]); 1942 data->rx_queues[i] = NULL; 1943 } 1944 } 1945 } 1946 1947 static void 1948 avp_dev_rx_queue_release_all(struct rte_eth_dev *eth_dev) 1949 { 1950 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 1951 struct rte_eth_dev_data *data = avp->dev_data; 1952 unsigned int i; 1953 1954 for (i = 0; i < avp->num_rx_queues; i++) { 1955 if (data->rx_queues[i]) { 1956 rte_free(data->rx_queues[i]); 1957 data->rx_queues[i] = NULL; 1958 } 1959 } 1960 } 1961 1962 static void 1963 avp_dev_tx_queue_release(void *tx_queue) 1964 { 1965 struct avp_queue *txq = (struct avp_queue *)tx_queue; 1966 struct avp_dev *avp = txq->avp; 1967 struct rte_eth_dev_data *data = avp->dev_data; 1968 unsigned int i; 1969 1970 for (i = 0; i < avp->num_tx_queues; i++) { 1971 if (data->tx_queues[i] == txq) { 1972 rte_free(data->tx_queues[i]); 1973 data->tx_queues[i] = NULL; 1974 } 1975 } 1976 } 1977 1978 static void 1979 avp_dev_tx_queue_release_all(struct rte_eth_dev *eth_dev) 1980 { 1981 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 1982 struct rte_eth_dev_data *data = avp->dev_data; 1983 unsigned int i; 1984 1985 for (i = 0; i < avp->num_tx_queues; i++) { 1986 if (data->tx_queues[i]) { 1987 rte_free(data->tx_queues[i]); 1988 data->tx_queues[i] = NULL; 1989 } 1990 } 1991 } 1992 1993 static int 1994 avp_dev_configure(struct rte_eth_dev *eth_dev) 1995 { 1996 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 1997 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 1998 struct rte_avp_device_info *host_info; 1999 struct rte_avp_device_config config; 2000 int mask = 0; 2001 void *addr; 2002 int ret; 2003 2004 rte_spinlock_lock(&avp->lock); 2005 if (avp->flags & AVP_F_DETACHED) { 2006 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n"); 2007 ret = -ENOTSUP; 2008 goto unlock; 2009 } 2010 2011 addr = pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR].addr; 2012 host_info = (struct rte_avp_device_info *)addr; 2013 2014 /* Setup required number of queues */ 2015 _avp_set_queue_counts(eth_dev); 2016 2017 mask = (ETH_VLAN_STRIP_MASK | 2018 ETH_VLAN_FILTER_MASK | 2019 ETH_VLAN_EXTEND_MASK); 2020 ret = avp_vlan_offload_set(eth_dev, mask); 2021 if (ret < 0) { 2022 PMD_DRV_LOG(ERR, "VLAN offload set failed by host, ret=%d\n", 2023 ret); 2024 goto unlock; 2025 } 2026 2027 /* update device config */ 2028 memset(&config, 0, sizeof(config)); 2029 config.device_id = host_info->device_id; 2030 config.driver_type = RTE_AVP_DRIVER_TYPE_DPDK; 2031 config.driver_version = AVP_DPDK_DRIVER_VERSION; 2032 config.features = avp->features; 2033 config.num_tx_queues = avp->num_tx_queues; 2034 config.num_rx_queues = avp->num_rx_queues; 2035 2036 ret = avp_dev_ctrl_set_config(eth_dev, &config); 2037 if (ret < 0) { 2038 PMD_DRV_LOG(ERR, "Config request failed by host, ret=%d\n", 2039 ret); 2040 goto unlock; 2041 } 2042 2043 avp->flags |= AVP_F_CONFIGURED; 2044 ret = 0; 2045 2046 unlock: 2047 rte_spinlock_unlock(&avp->lock); 2048 return ret; 2049 } 2050 2051 static int 2052 avp_dev_start(struct rte_eth_dev *eth_dev) 2053 { 2054 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2055 int ret; 2056 2057 rte_spinlock_lock(&avp->lock); 2058 if (avp->flags & AVP_F_DETACHED) { 2059 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n"); 2060 ret = -ENOTSUP; 2061 goto unlock; 2062 } 2063 2064 /* update link state */ 2065 ret = avp_dev_ctrl_set_link_state(eth_dev, 1); 2066 if (ret < 0) { 2067 PMD_DRV_LOG(ERR, "Link state change failed by host, ret=%d\n", 2068 ret); 2069 goto unlock; 2070 } 2071 2072 /* remember current link state */ 2073 avp->flags |= AVP_F_LINKUP; 2074 2075 ret = 0; 2076 2077 unlock: 2078 rte_spinlock_unlock(&avp->lock); 2079 return ret; 2080 } 2081 2082 static void 2083 avp_dev_stop(struct rte_eth_dev *eth_dev) 2084 { 2085 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2086 int ret; 2087 2088 rte_spinlock_lock(&avp->lock); 2089 if (avp->flags & AVP_F_DETACHED) { 2090 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n"); 2091 goto unlock; 2092 } 2093 2094 /* remember current link state */ 2095 avp->flags &= ~AVP_F_LINKUP; 2096 2097 /* update link state */ 2098 ret = avp_dev_ctrl_set_link_state(eth_dev, 0); 2099 if (ret < 0) { 2100 PMD_DRV_LOG(ERR, "Link state change failed by host, ret=%d\n", 2101 ret); 2102 } 2103 2104 unlock: 2105 rte_spinlock_unlock(&avp->lock); 2106 } 2107 2108 static void 2109 avp_dev_close(struct rte_eth_dev *eth_dev) 2110 { 2111 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2112 int ret; 2113 2114 rte_spinlock_lock(&avp->lock); 2115 if (avp->flags & AVP_F_DETACHED) { 2116 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n"); 2117 goto unlock; 2118 } 2119 2120 /* remember current link state */ 2121 avp->flags &= ~AVP_F_LINKUP; 2122 avp->flags &= ~AVP_F_CONFIGURED; 2123 2124 ret = avp_dev_disable_interrupts(eth_dev); 2125 if (ret < 0) { 2126 PMD_DRV_LOG(ERR, "Failed to disable interrupts\n"); 2127 /* continue */ 2128 } 2129 2130 /* update device state */ 2131 ret = avp_dev_ctrl_shutdown(eth_dev); 2132 if (ret < 0) { 2133 PMD_DRV_LOG(ERR, "Device shutdown failed by host, ret=%d\n", 2134 ret); 2135 /* continue */ 2136 } 2137 2138 /* release dynamic storage for rx/tx queues */ 2139 avp_dev_rx_queue_release_all(eth_dev); 2140 avp_dev_tx_queue_release_all(eth_dev); 2141 2142 unlock: 2143 rte_spinlock_unlock(&avp->lock); 2144 } 2145 2146 static int 2147 avp_dev_link_update(struct rte_eth_dev *eth_dev, 2148 __rte_unused int wait_to_complete) 2149 { 2150 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2151 struct rte_eth_link *link = ð_dev->data->dev_link; 2152 2153 link->link_speed = ETH_SPEED_NUM_10G; 2154 link->link_duplex = ETH_LINK_FULL_DUPLEX; 2155 link->link_status = !!(avp->flags & AVP_F_LINKUP); 2156 2157 return -1; 2158 } 2159 2160 static int 2161 avp_dev_promiscuous_enable(struct rte_eth_dev *eth_dev) 2162 { 2163 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2164 2165 rte_spinlock_lock(&avp->lock); 2166 if ((avp->flags & AVP_F_PROMISC) == 0) { 2167 avp->flags |= AVP_F_PROMISC; 2168 PMD_DRV_LOG(DEBUG, "Promiscuous mode enabled on %u\n", 2169 eth_dev->data->port_id); 2170 } 2171 rte_spinlock_unlock(&avp->lock); 2172 2173 return 0; 2174 } 2175 2176 static int 2177 avp_dev_promiscuous_disable(struct rte_eth_dev *eth_dev) 2178 { 2179 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2180 2181 rte_spinlock_lock(&avp->lock); 2182 if ((avp->flags & AVP_F_PROMISC) != 0) { 2183 avp->flags &= ~AVP_F_PROMISC; 2184 PMD_DRV_LOG(DEBUG, "Promiscuous mode disabled on %u\n", 2185 eth_dev->data->port_id); 2186 } 2187 rte_spinlock_unlock(&avp->lock); 2188 2189 return 0; 2190 } 2191 2192 static int 2193 avp_dev_info_get(struct rte_eth_dev *eth_dev, 2194 struct rte_eth_dev_info *dev_info) 2195 { 2196 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2197 2198 dev_info->max_rx_queues = avp->max_rx_queues; 2199 dev_info->max_tx_queues = avp->max_tx_queues; 2200 dev_info->min_rx_bufsize = AVP_MIN_RX_BUFSIZE; 2201 dev_info->max_rx_pktlen = avp->max_rx_pkt_len; 2202 dev_info->max_mac_addrs = AVP_MAX_MAC_ADDRS; 2203 if (avp->host_features & RTE_AVP_FEATURE_VLAN_OFFLOAD) { 2204 dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP; 2205 dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT; 2206 } 2207 2208 return 0; 2209 } 2210 2211 static int 2212 avp_vlan_offload_set(struct rte_eth_dev *eth_dev, int mask) 2213 { 2214 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2215 struct rte_eth_conf *dev_conf = ð_dev->data->dev_conf; 2216 uint64_t offloads = dev_conf->rxmode.offloads; 2217 2218 if (mask & ETH_VLAN_STRIP_MASK) { 2219 if (avp->host_features & RTE_AVP_FEATURE_VLAN_OFFLOAD) { 2220 if (offloads & DEV_RX_OFFLOAD_VLAN_STRIP) 2221 avp->features |= RTE_AVP_FEATURE_VLAN_OFFLOAD; 2222 else 2223 avp->features &= ~RTE_AVP_FEATURE_VLAN_OFFLOAD; 2224 } else { 2225 PMD_DRV_LOG(ERR, "VLAN strip offload not supported\n"); 2226 } 2227 } 2228 2229 if (mask & ETH_VLAN_FILTER_MASK) { 2230 if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) 2231 PMD_DRV_LOG(ERR, "VLAN filter offload not supported\n"); 2232 } 2233 2234 if (mask & ETH_VLAN_EXTEND_MASK) { 2235 if (offloads & DEV_RX_OFFLOAD_VLAN_EXTEND) 2236 PMD_DRV_LOG(ERR, "VLAN extend offload not supported\n"); 2237 } 2238 2239 return 0; 2240 } 2241 2242 static int 2243 avp_dev_stats_get(struct rte_eth_dev *eth_dev, struct rte_eth_stats *stats) 2244 { 2245 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2246 unsigned int i; 2247 2248 for (i = 0; i < avp->num_rx_queues; i++) { 2249 struct avp_queue *rxq = avp->dev_data->rx_queues[i]; 2250 2251 if (rxq) { 2252 stats->ipackets += rxq->packets; 2253 stats->ibytes += rxq->bytes; 2254 stats->ierrors += rxq->errors; 2255 2256 stats->q_ipackets[i] += rxq->packets; 2257 stats->q_ibytes[i] += rxq->bytes; 2258 stats->q_errors[i] += rxq->errors; 2259 } 2260 } 2261 2262 for (i = 0; i < avp->num_tx_queues; i++) { 2263 struct avp_queue *txq = avp->dev_data->tx_queues[i]; 2264 2265 if (txq) { 2266 stats->opackets += txq->packets; 2267 stats->obytes += txq->bytes; 2268 stats->oerrors += txq->errors; 2269 2270 stats->q_opackets[i] += txq->packets; 2271 stats->q_obytes[i] += txq->bytes; 2272 } 2273 } 2274 2275 return 0; 2276 } 2277 2278 static int 2279 avp_dev_stats_reset(struct rte_eth_dev *eth_dev) 2280 { 2281 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); 2282 unsigned int i; 2283 2284 for (i = 0; i < avp->num_rx_queues; i++) { 2285 struct avp_queue *rxq = avp->dev_data->rx_queues[i]; 2286 2287 if (rxq) { 2288 rxq->bytes = 0; 2289 rxq->packets = 0; 2290 rxq->errors = 0; 2291 } 2292 } 2293 2294 for (i = 0; i < avp->num_tx_queues; i++) { 2295 struct avp_queue *txq = avp->dev_data->tx_queues[i]; 2296 2297 if (txq) { 2298 txq->bytes = 0; 2299 txq->packets = 0; 2300 txq->errors = 0; 2301 } 2302 } 2303 2304 return 0; 2305 } 2306 2307 RTE_PMD_REGISTER_PCI(net_avp, rte_avp_pmd); 2308 RTE_PMD_REGISTER_PCI_TABLE(net_avp, pci_id_avp_map); 2309 2310 RTE_INIT(avp_init_log) 2311 { 2312 avp_logtype_driver = rte_log_register("pmd.net.avp.driver"); 2313 if (avp_logtype_driver >= 0) 2314 rte_log_set_level(avp_logtype_driver, RTE_LOG_NOTICE); 2315 } 2316