xref: /dpdk/drivers/crypto/octeontx/otx_cryptodev_ops.c (revision f4eac3a09c51a1a2dab1f2fd3a10fe0619286a0d)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Cavium, Inc
3  */
4 
5 #include <rte_alarm.h>
6 #include <rte_bus_pci.h>
7 #include <rte_cryptodev.h>
8 #include <cryptodev_pmd.h>
9 #include <rte_eventdev.h>
10 #include <rte_event_crypto_adapter.h>
11 #include <rte_errno.h>
12 #include <rte_malloc.h>
13 #include <rte_mempool.h>
14 
15 #include "otx_cryptodev.h"
16 #include "otx_cryptodev_capabilities.h"
17 #include "otx_cryptodev_hw_access.h"
18 #include "otx_cryptodev_mbox.h"
19 #include "otx_cryptodev_ops.h"
20 
21 #include "cpt_pmd_logs.h"
22 #include "cpt_pmd_ops_helper.h"
23 #include "cpt_ucode.h"
24 #include "cpt_ucode_asym.h"
25 
26 #include "ssovf_worker.h"
27 
28 static uint64_t otx_fpm_iova[CPT_EC_ID_PMAX];
29 
30 /* Forward declarations */
31 
32 static int
33 otx_cpt_que_pair_release(struct rte_cryptodev *dev, uint16_t que_pair_id);
34 
35 /* Alarm routines */
36 
37 static void
38 otx_cpt_alarm_cb(void *arg)
39 {
40 	struct cpt_vf *cptvf = arg;
41 	otx_cpt_poll_misc(cptvf);
42 	rte_eal_alarm_set(CPT_INTR_POLL_INTERVAL_MS * 1000,
43 			  otx_cpt_alarm_cb, cptvf);
44 }
45 
46 static int
47 otx_cpt_periodic_alarm_start(void *arg)
48 {
49 	return rte_eal_alarm_set(CPT_INTR_POLL_INTERVAL_MS * 1000,
50 				 otx_cpt_alarm_cb, arg);
51 }
52 
53 static int
54 otx_cpt_periodic_alarm_stop(void *arg)
55 {
56 	return rte_eal_alarm_cancel(otx_cpt_alarm_cb, arg);
57 }
58 
59 /* PMD ops */
60 
61 static int
62 otx_cpt_dev_config(struct rte_cryptodev *dev,
63 		   struct rte_cryptodev_config *config __rte_unused)
64 {
65 	int ret = 0;
66 
67 	CPT_PMD_INIT_FUNC_TRACE();
68 
69 	if (dev->feature_flags & RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO)
70 		/* Initialize shared FPM table */
71 		ret = cpt_fpm_init(otx_fpm_iova);
72 
73 	return ret;
74 }
75 
76 static int
77 otx_cpt_dev_start(struct rte_cryptodev *c_dev)
78 {
79 	void *cptvf = c_dev->data->dev_private;
80 
81 	CPT_PMD_INIT_FUNC_TRACE();
82 
83 	return otx_cpt_start_device(cptvf);
84 }
85 
86 static void
87 otx_cpt_dev_stop(struct rte_cryptodev *c_dev)
88 {
89 	void *cptvf = c_dev->data->dev_private;
90 
91 	CPT_PMD_INIT_FUNC_TRACE();
92 
93 	if (c_dev->feature_flags & RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO)
94 		cpt_fpm_clear();
95 
96 	otx_cpt_stop_device(cptvf);
97 }
98 
99 static int
100 otx_cpt_dev_close(struct rte_cryptodev *c_dev)
101 {
102 	void *cptvf = c_dev->data->dev_private;
103 	int i, ret;
104 
105 	CPT_PMD_INIT_FUNC_TRACE();
106 
107 	for (i = 0; i < c_dev->data->nb_queue_pairs; i++) {
108 		ret = otx_cpt_que_pair_release(c_dev, i);
109 		if (ret)
110 			return ret;
111 	}
112 
113 	otx_cpt_periodic_alarm_stop(cptvf);
114 	otx_cpt_deinit_device(cptvf);
115 
116 	return 0;
117 }
118 
119 static void
120 otx_cpt_dev_info_get(struct rte_cryptodev *dev, struct rte_cryptodev_info *info)
121 {
122 	CPT_PMD_INIT_FUNC_TRACE();
123 	if (info != NULL) {
124 		info->max_nb_queue_pairs = CPT_NUM_QS_PER_VF;
125 		info->feature_flags = dev->feature_flags;
126 		info->capabilities = otx_get_capabilities(info->feature_flags);
127 		info->sym.max_nb_sessions = 0;
128 		info->driver_id = otx_cryptodev_driver_id;
129 		info->min_mbuf_headroom_req = OTX_CPT_MIN_HEADROOM_REQ;
130 		info->min_mbuf_tailroom_req = OTX_CPT_MIN_TAILROOM_REQ;
131 	}
132 }
133 
134 static int
135 otx_cpt_que_pair_setup(struct rte_cryptodev *dev,
136 		       uint16_t que_pair_id,
137 		       const struct rte_cryptodev_qp_conf *qp_conf,
138 		       int socket_id __rte_unused)
139 {
140 	struct cpt_instance *instance = NULL;
141 	struct rte_pci_device *pci_dev;
142 	int ret = -1;
143 
144 	CPT_PMD_INIT_FUNC_TRACE();
145 
146 	if (dev->data->queue_pairs[que_pair_id] != NULL) {
147 		ret = otx_cpt_que_pair_release(dev, que_pair_id);
148 		if (ret)
149 			return ret;
150 	}
151 
152 	if (qp_conf->nb_descriptors > DEFAULT_CMD_QLEN) {
153 		CPT_LOG_INFO("Number of descriptors too big %d, using default "
154 			     "queue length of %d", qp_conf->nb_descriptors,
155 			     DEFAULT_CMD_QLEN);
156 	}
157 
158 	pci_dev = RTE_DEV_TO_PCI(dev->device);
159 
160 	if (pci_dev->mem_resource[0].addr == NULL) {
161 		CPT_LOG_ERR("PCI mem address null");
162 		return -EIO;
163 	}
164 
165 	ret = otx_cpt_get_resource(dev, 0, &instance, que_pair_id);
166 	if (ret != 0 || instance == NULL) {
167 		CPT_LOG_ERR("Error getting instance handle from device %s : "
168 			    "ret = %d", dev->data->name, ret);
169 		return ret;
170 	}
171 
172 	instance->queue_id = que_pair_id;
173 	instance->sess_mp = qp_conf->mp_session;
174 	instance->sess_mp_priv = qp_conf->mp_session_private;
175 	dev->data->queue_pairs[que_pair_id] = instance;
176 
177 	return 0;
178 }
179 
180 static int
181 otx_cpt_que_pair_release(struct rte_cryptodev *dev, uint16_t que_pair_id)
182 {
183 	struct cpt_instance *instance = dev->data->queue_pairs[que_pair_id];
184 	int ret;
185 
186 	CPT_PMD_INIT_FUNC_TRACE();
187 
188 	ret = otx_cpt_put_resource(instance);
189 	if (ret != 0) {
190 		CPT_LOG_ERR("Error putting instance handle of device %s : "
191 			    "ret = %d", dev->data->name, ret);
192 		return ret;
193 	}
194 
195 	dev->data->queue_pairs[que_pair_id] = NULL;
196 
197 	return 0;
198 }
199 
200 static unsigned int
201 otx_cpt_get_session_size(struct rte_cryptodev *dev __rte_unused)
202 {
203 	return cpt_get_session_size();
204 }
205 
206 static int
207 sym_xform_verify(struct rte_crypto_sym_xform *xform)
208 {
209 	if (xform->next) {
210 		if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
211 		    xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
212 		    xform->next->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT &&
213 		    (xform->auth.algo != RTE_CRYPTO_AUTH_SHA1_HMAC ||
214 		     xform->next->cipher.algo != RTE_CRYPTO_CIPHER_AES_CBC))
215 			return -ENOTSUP;
216 
217 		if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
218 		    xform->cipher.op == RTE_CRYPTO_CIPHER_OP_DECRYPT &&
219 		    xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
220 		    (xform->cipher.algo != RTE_CRYPTO_CIPHER_AES_CBC ||
221 		     xform->next->auth.algo != RTE_CRYPTO_AUTH_SHA1_HMAC))
222 			return -ENOTSUP;
223 
224 		if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
225 		    xform->cipher.algo == RTE_CRYPTO_CIPHER_3DES_CBC &&
226 		    xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
227 		    xform->next->auth.algo == RTE_CRYPTO_AUTH_SHA1)
228 			return -ENOTSUP;
229 
230 		if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
231 		    xform->auth.algo == RTE_CRYPTO_AUTH_SHA1 &&
232 		    xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
233 		    xform->next->cipher.algo == RTE_CRYPTO_CIPHER_3DES_CBC)
234 			return -ENOTSUP;
235 
236 	} else {
237 		if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
238 		    xform->auth.algo == RTE_CRYPTO_AUTH_NULL &&
239 		    xform->auth.op == RTE_CRYPTO_AUTH_OP_VERIFY)
240 			return -ENOTSUP;
241 	}
242 	return 0;
243 }
244 
245 static int
246 sym_session_configure(int driver_id, struct rte_crypto_sym_xform *xform,
247 		      struct rte_cryptodev_sym_session *sess,
248 		      struct rte_mempool *pool)
249 {
250 	struct rte_crypto_sym_xform *temp_xform = xform;
251 	struct cpt_sess_misc *misc;
252 	vq_cmd_word3_t vq_cmd_w3;
253 	void *priv;
254 	int ret;
255 
256 	ret = sym_xform_verify(xform);
257 	if (unlikely(ret))
258 		return ret;
259 
260 	if (unlikely(rte_mempool_get(pool, &priv))) {
261 		CPT_LOG_ERR("Could not allocate session private data");
262 		return -ENOMEM;
263 	}
264 
265 	memset(priv, 0, sizeof(struct cpt_sess_misc) +
266 			offsetof(struct cpt_ctx, mc_ctx));
267 
268 	misc = priv;
269 
270 	for ( ; xform != NULL; xform = xform->next) {
271 		switch (xform->type) {
272 		case RTE_CRYPTO_SYM_XFORM_AEAD:
273 			ret = fill_sess_aead(xform, misc);
274 			break;
275 		case RTE_CRYPTO_SYM_XFORM_CIPHER:
276 			ret = fill_sess_cipher(xform, misc);
277 			break;
278 		case RTE_CRYPTO_SYM_XFORM_AUTH:
279 			if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC)
280 				ret = fill_sess_gmac(xform, misc);
281 			else
282 				ret = fill_sess_auth(xform, misc);
283 			break;
284 		default:
285 			ret = -1;
286 		}
287 
288 		if (ret)
289 			goto priv_put;
290 	}
291 
292 	if ((GET_SESS_FC_TYPE(misc) == HASH_HMAC) &&
293 			cpt_mac_len_verify(&temp_xform->auth)) {
294 		CPT_LOG_ERR("MAC length is not supported");
295 		struct cpt_ctx *ctx = SESS_PRIV(misc);
296 		if (ctx->auth_key != NULL) {
297 			rte_free(ctx->auth_key);
298 			ctx->auth_key = NULL;
299 		}
300 		ret = -ENOTSUP;
301 		goto priv_put;
302 	}
303 
304 	set_sym_session_private_data(sess, driver_id, priv);
305 
306 	misc->ctx_dma_addr = rte_mempool_virt2iova(misc) +
307 			     sizeof(struct cpt_sess_misc);
308 
309 	vq_cmd_w3.u64 = 0;
310 	vq_cmd_w3.s.grp = 0;
311 	vq_cmd_w3.s.cptr = misc->ctx_dma_addr + offsetof(struct cpt_ctx,
312 							 mc_ctx);
313 
314 	misc->cpt_inst_w7 = vq_cmd_w3.u64;
315 
316 	return 0;
317 
318 priv_put:
319 	if (priv)
320 		rte_mempool_put(pool, priv);
321 	return -ENOTSUP;
322 }
323 
324 static void
325 sym_session_clear(int driver_id, struct rte_cryptodev_sym_session *sess)
326 {
327 	void *priv = get_sym_session_private_data(sess, driver_id);
328 	struct cpt_sess_misc *misc;
329 	struct rte_mempool *pool;
330 	struct cpt_ctx *ctx;
331 
332 	if (priv == NULL)
333 		return;
334 
335 	misc = priv;
336 	ctx = SESS_PRIV(misc);
337 
338 	rte_free(ctx->auth_key);
339 
340 	memset(priv, 0, cpt_get_session_size());
341 
342 	pool = rte_mempool_from_obj(priv);
343 
344 	set_sym_session_private_data(sess, driver_id, NULL);
345 
346 	rte_mempool_put(pool, priv);
347 }
348 
349 static int
350 otx_cpt_session_cfg(struct rte_cryptodev *dev,
351 		    struct rte_crypto_sym_xform *xform,
352 		    struct rte_cryptodev_sym_session *sess,
353 		    struct rte_mempool *pool)
354 {
355 	CPT_PMD_INIT_FUNC_TRACE();
356 
357 	return sym_session_configure(dev->driver_id, xform, sess, pool);
358 }
359 
360 
361 static void
362 otx_cpt_session_clear(struct rte_cryptodev *dev,
363 		  struct rte_cryptodev_sym_session *sess)
364 {
365 	CPT_PMD_INIT_FUNC_TRACE();
366 
367 	return sym_session_clear(dev->driver_id, sess);
368 }
369 
370 static unsigned int
371 otx_cpt_asym_session_size_get(struct rte_cryptodev *dev __rte_unused)
372 {
373 	return sizeof(struct cpt_asym_sess_misc);
374 }
375 
376 static int
377 otx_cpt_asym_session_cfg(struct rte_cryptodev *dev,
378 			 struct rte_crypto_asym_xform *xform __rte_unused,
379 			 struct rte_cryptodev_asym_session *sess,
380 			 struct rte_mempool *pool)
381 {
382 	struct cpt_asym_sess_misc *priv;
383 	int ret;
384 
385 	CPT_PMD_INIT_FUNC_TRACE();
386 
387 	if (rte_mempool_get(pool, (void **)&priv)) {
388 		CPT_LOG_ERR("Could not allocate session private data");
389 		return -ENOMEM;
390 	}
391 
392 	memset(priv, 0, sizeof(struct cpt_asym_sess_misc));
393 
394 	ret = cpt_fill_asym_session_parameters(priv, xform);
395 	if (ret) {
396 		CPT_LOG_ERR("Could not configure session parameters");
397 
398 		/* Return session to mempool */
399 		rte_mempool_put(pool, priv);
400 		return ret;
401 	}
402 
403 	priv->cpt_inst_w7 = 0;
404 
405 	set_asym_session_private_data(sess, dev->driver_id, priv);
406 	return 0;
407 }
408 
409 static void
410 otx_cpt_asym_session_clear(struct rte_cryptodev *dev,
411 			   struct rte_cryptodev_asym_session *sess)
412 {
413 	struct cpt_asym_sess_misc *priv;
414 	struct rte_mempool *sess_mp;
415 
416 	CPT_PMD_INIT_FUNC_TRACE();
417 
418 	priv = get_asym_session_private_data(sess, dev->driver_id);
419 
420 	if (priv == NULL)
421 		return;
422 
423 	/* Free resources allocated during session configure */
424 	cpt_free_asym_session_parameters(priv);
425 	memset(priv, 0, otx_cpt_asym_session_size_get(dev));
426 	sess_mp = rte_mempool_from_obj(priv);
427 	set_asym_session_private_data(sess, dev->driver_id, NULL);
428 	rte_mempool_put(sess_mp, priv);
429 }
430 
431 static __rte_always_inline void * __rte_hot
432 otx_cpt_request_enqueue(struct cpt_instance *instance,
433 			void *req, uint64_t cpt_inst_w7)
434 {
435 	struct cpt_request_info *user_req = (struct cpt_request_info *)req;
436 
437 	fill_cpt_inst(instance, req, cpt_inst_w7);
438 
439 	CPT_LOG_DP_DEBUG("req: %p op: %p ", req, user_req->op);
440 
441 	/* Fill time_out cycles */
442 	user_req->time_out = rte_get_timer_cycles() +
443 			DEFAULT_COMMAND_TIMEOUT * rte_get_timer_hz();
444 	user_req->extra_time = 0;
445 
446 	/* Default mode of software queue */
447 	mark_cpt_inst(instance);
448 
449 	CPT_LOG_DP_DEBUG("Submitted NB cmd with request: %p "
450 			 "op: %p", user_req, user_req->op);
451 	return req;
452 }
453 
454 static __rte_always_inline void * __rte_hot
455 otx_cpt_enq_single_asym(struct cpt_instance *instance,
456 			struct rte_crypto_op *op)
457 {
458 	struct cpt_qp_meta_info *minfo = &instance->meta_info;
459 	struct rte_crypto_asym_op *asym_op = op->asym;
460 	struct asym_op_params params = {0};
461 	struct cpt_asym_sess_misc *sess;
462 	uintptr_t *cop;
463 	void *mdata;
464 	void *req;
465 	int ret;
466 
467 	if (unlikely(rte_mempool_get(minfo->pool, &mdata) < 0)) {
468 		CPT_LOG_DP_ERR("Could not allocate meta buffer for request");
469 		rte_errno = ENOMEM;
470 		return NULL;
471 	}
472 
473 	sess = get_asym_session_private_data(asym_op->session,
474 					     otx_cryptodev_driver_id);
475 
476 	/* Store phys_addr of the mdata to meta_buf */
477 	params.meta_buf = rte_mempool_virt2iova(mdata);
478 
479 	cop = mdata;
480 	cop[0] = (uintptr_t)mdata;
481 	cop[1] = (uintptr_t)op;
482 	cop[2] = cop[3] = 0ULL;
483 
484 	params.req = RTE_PTR_ADD(cop, 4 * sizeof(uintptr_t));
485 	params.req->op = cop;
486 
487 	/* Adjust meta_buf by crypto_op data  and request_info struct */
488 	params.meta_buf += (4 * sizeof(uintptr_t)) +
489 			   sizeof(struct cpt_request_info);
490 
491 	switch (sess->xfrm_type) {
492 	case RTE_CRYPTO_ASYM_XFORM_MODEX:
493 		ret = cpt_modex_prep(&params, &sess->mod_ctx);
494 		if (unlikely(ret))
495 			goto req_fail;
496 		break;
497 	case RTE_CRYPTO_ASYM_XFORM_RSA:
498 		ret = cpt_enqueue_rsa_op(op, &params, sess);
499 		if (unlikely(ret))
500 			goto req_fail;
501 		break;
502 	case RTE_CRYPTO_ASYM_XFORM_ECDSA:
503 		ret = cpt_enqueue_ecdsa_op(op, &params, sess, otx_fpm_iova);
504 		if (unlikely(ret))
505 			goto req_fail;
506 		break;
507 	case RTE_CRYPTO_ASYM_XFORM_ECPM:
508 		ret = cpt_ecpm_prep(&asym_op->ecpm, &params,
509 				    sess->ec_ctx.curveid);
510 		if (unlikely(ret))
511 			goto req_fail;
512 		break;
513 
514 	default:
515 		op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
516 		rte_errno = EINVAL;
517 		goto req_fail;
518 	}
519 
520 	req = otx_cpt_request_enqueue(instance, params.req, sess->cpt_inst_w7);
521 	if (unlikely(req == NULL)) {
522 		CPT_LOG_DP_ERR("Could not enqueue crypto req");
523 		goto req_fail;
524 	}
525 
526 	return req;
527 
528 req_fail:
529 	free_op_meta(mdata, minfo->pool);
530 
531 	return NULL;
532 }
533 
534 static __rte_always_inline void * __rte_hot
535 otx_cpt_enq_single_sym(struct cpt_instance *instance,
536 		       struct rte_crypto_op *op)
537 {
538 	struct cpt_sess_misc *sess;
539 	struct rte_crypto_sym_op *sym_op = op->sym;
540 	struct cpt_request_info *prep_req;
541 	void *mdata = NULL;
542 	int ret = 0;
543 	void *req;
544 	uint64_t cpt_op;
545 
546 	sess = (struct cpt_sess_misc *)
547 			get_sym_session_private_data(sym_op->session,
548 						     otx_cryptodev_driver_id);
549 
550 	cpt_op = sess->cpt_op;
551 
552 	if (likely(cpt_op & CPT_OP_CIPHER_MASK))
553 		ret = fill_fc_params(op, sess, &instance->meta_info, &mdata,
554 				     (void **)&prep_req);
555 	else
556 		ret = fill_digest_params(op, sess, &instance->meta_info,
557 					 &mdata, (void **)&prep_req);
558 
559 	if (unlikely(ret)) {
560 		CPT_LOG_DP_ERR("prep crypto req : op %p, cpt_op 0x%x "
561 			       "ret 0x%x", op, (unsigned int)cpt_op, ret);
562 		return NULL;
563 	}
564 
565 	/* Enqueue prepared instruction to h/w */
566 	req = otx_cpt_request_enqueue(instance, prep_req, sess->cpt_inst_w7);
567 	if (unlikely(req == NULL))
568 		/* Buffer allocated for request preparation need to be freed */
569 		free_op_meta(mdata, instance->meta_info.pool);
570 
571 	return req;
572 }
573 
574 static __rte_always_inline void * __rte_hot
575 otx_cpt_enq_single_sym_sessless(struct cpt_instance *instance,
576 				struct rte_crypto_op *op)
577 {
578 	const int driver_id = otx_cryptodev_driver_id;
579 	struct rte_crypto_sym_op *sym_op = op->sym;
580 	struct rte_cryptodev_sym_session *sess;
581 	void *req;
582 	int ret;
583 
584 	/* Create temporary session */
585 	sess = rte_cryptodev_sym_session_create(instance->sess_mp);
586 	if (sess == NULL) {
587 		rte_errno = ENOMEM;
588 		return NULL;
589 	}
590 
591 	ret = sym_session_configure(driver_id, sym_op->xform, sess,
592 				    instance->sess_mp_priv);
593 	if (ret)
594 		goto sess_put;
595 
596 	sym_op->session = sess;
597 
598 	/* Enqueue op with the tmp session set */
599 	req = otx_cpt_enq_single_sym(instance, op);
600 	if (unlikely(req == NULL))
601 		goto priv_put;
602 
603 	return req;
604 
605 priv_put:
606 	sym_session_clear(driver_id, sess);
607 sess_put:
608 	rte_mempool_put(instance->sess_mp, sess);
609 	return NULL;
610 }
611 
612 #define OP_TYPE_SYM		0
613 #define OP_TYPE_ASYM		1
614 
615 static __rte_always_inline void *__rte_hot
616 otx_cpt_enq_single(struct cpt_instance *inst,
617 		   struct rte_crypto_op *op,
618 		   const uint8_t op_type)
619 {
620 	/* Check for the type */
621 
622 	if (op_type == OP_TYPE_SYM) {
623 		if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
624 			return otx_cpt_enq_single_sym(inst, op);
625 		else
626 			return otx_cpt_enq_single_sym_sessless(inst, op);
627 	}
628 
629 	if (op_type == OP_TYPE_ASYM) {
630 		if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
631 			return otx_cpt_enq_single_asym(inst, op);
632 	}
633 
634 	/* Should not reach here */
635 	rte_errno = ENOTSUP;
636 	return NULL;
637 }
638 
639 static  __rte_always_inline uint16_t __rte_hot
640 otx_cpt_pkt_enqueue(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops,
641 		    const uint8_t op_type)
642 {
643 	struct cpt_instance *instance = (struct cpt_instance *)qptr;
644 	uint16_t count, free_slots;
645 	void *req;
646 	struct cpt_vf *cptvf = (struct cpt_vf *)instance;
647 	struct pending_queue *pqueue = &cptvf->pqueue;
648 
649 	free_slots = pending_queue_free_slots(pqueue, DEFAULT_CMD_QLEN,
650 				DEFAULT_CMD_QRSVD_SLOTS);
651 	if (nb_ops > free_slots)
652 		nb_ops = free_slots;
653 
654 	count = 0;
655 	while (likely(count < nb_ops)) {
656 
657 		/* Enqueue single op */
658 		req = otx_cpt_enq_single(instance, ops[count], op_type);
659 
660 		if (unlikely(req == NULL))
661 			break;
662 
663 		pending_queue_push(pqueue, req, count, DEFAULT_CMD_QLEN);
664 		count++;
665 	}
666 
667 	if (likely(count)) {
668 		pending_queue_commit(pqueue, count, DEFAULT_CMD_QLEN);
669 		otx_cpt_ring_dbell(instance, count);
670 	}
671 	return count;
672 }
673 
674 static uint16_t
675 otx_cpt_enqueue_asym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
676 {
677 	return otx_cpt_pkt_enqueue(qptr, ops, nb_ops, OP_TYPE_ASYM);
678 }
679 
680 static uint16_t
681 otx_cpt_enqueue_sym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
682 {
683 	return otx_cpt_pkt_enqueue(qptr, ops, nb_ops, OP_TYPE_SYM);
684 }
685 
686 static __rte_always_inline void
687 submit_request_to_sso(struct ssows *ws, uintptr_t req,
688 		      struct rte_event *rsp_info)
689 {
690 	uint64_t add_work;
691 
692 	add_work = rsp_info->flow_id | (RTE_EVENT_TYPE_CRYPTODEV << 28) |
693 		   ((uint64_t)(rsp_info->sched_type) << 32);
694 
695 	if (!rsp_info->sched_type)
696 		ssows_head_wait(ws);
697 
698 	rte_atomic_thread_fence(__ATOMIC_RELEASE);
699 	ssovf_store_pair(add_work, req, ws->grps[rsp_info->queue_id]);
700 }
701 
702 static inline union rte_event_crypto_metadata *
703 get_event_crypto_mdata(struct rte_crypto_op *op)
704 {
705 	union rte_event_crypto_metadata *ec_mdata;
706 
707 	if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
708 		ec_mdata = rte_cryptodev_sym_session_get_user_data(
709 							   op->sym->session);
710 	else if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS &&
711 		 op->private_data_offset)
712 		ec_mdata = (union rte_event_crypto_metadata *)
713 			((uint8_t *)op + op->private_data_offset);
714 	else
715 		return NULL;
716 
717 	return ec_mdata;
718 }
719 
720 uint16_t __rte_hot
721 otx_crypto_adapter_enqueue(void *port, struct rte_crypto_op *op)
722 {
723 	union rte_event_crypto_metadata *ec_mdata;
724 	struct cpt_instance *instance;
725 	struct cpt_request_info *req;
726 	struct rte_event *rsp_info;
727 	uint8_t op_type, cdev_id;
728 	uint16_t qp_id;
729 
730 	ec_mdata = get_event_crypto_mdata(op);
731 	if (unlikely(ec_mdata == NULL)) {
732 		rte_errno = EINVAL;
733 		return 0;
734 	}
735 
736 	cdev_id = ec_mdata->request_info.cdev_id;
737 	qp_id = ec_mdata->request_info.queue_pair_id;
738 	rsp_info = &ec_mdata->response_info;
739 	instance = rte_cryptodevs[cdev_id].data->queue_pairs[qp_id];
740 
741 	if (unlikely(!instance->ca_enabled)) {
742 		rte_errno = EINVAL;
743 		return 0;
744 	}
745 
746 	op_type = op->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC ? OP_TYPE_SYM :
747 							     OP_TYPE_ASYM;
748 	req = otx_cpt_enq_single(instance, op, op_type);
749 	if (unlikely(req == NULL))
750 		return 0;
751 
752 	otx_cpt_ring_dbell(instance, 1);
753 	req->qp = instance;
754 	submit_request_to_sso(port, (uintptr_t)req, rsp_info);
755 
756 	return 1;
757 }
758 
759 static inline void
760 otx_cpt_asym_rsa_op(struct rte_crypto_op *cop, struct cpt_request_info *req,
761 		    struct rte_crypto_rsa_xform *rsa_ctx)
762 
763 {
764 	struct rte_crypto_rsa_op_param *rsa = &cop->asym->rsa;
765 
766 	switch (rsa->op_type) {
767 	case RTE_CRYPTO_ASYM_OP_ENCRYPT:
768 		rsa->cipher.length = rsa_ctx->n.length;
769 		memcpy(rsa->cipher.data, req->rptr, rsa->cipher.length);
770 		break;
771 	case RTE_CRYPTO_ASYM_OP_DECRYPT:
772 		if (rsa->pad == RTE_CRYPTO_RSA_PADDING_NONE)
773 			rsa->message.length = rsa_ctx->n.length;
774 		else {
775 			/* Get length of decrypted output */
776 			rsa->message.length = rte_cpu_to_be_16
777 					(*((uint16_t *)req->rptr));
778 
779 			/* Offset data pointer by length fields */
780 			req->rptr += 2;
781 		}
782 		memcpy(rsa->message.data, req->rptr, rsa->message.length);
783 		break;
784 	case RTE_CRYPTO_ASYM_OP_SIGN:
785 		rsa->sign.length = rsa_ctx->n.length;
786 		memcpy(rsa->sign.data, req->rptr, rsa->sign.length);
787 		break;
788 	case RTE_CRYPTO_ASYM_OP_VERIFY:
789 		if (rsa->pad == RTE_CRYPTO_RSA_PADDING_NONE)
790 			rsa->sign.length = rsa_ctx->n.length;
791 		else {
792 			/* Get length of decrypted output */
793 			rsa->sign.length = rte_cpu_to_be_16
794 					(*((uint16_t *)req->rptr));
795 
796 			/* Offset data pointer by length fields */
797 			req->rptr += 2;
798 		}
799 		memcpy(rsa->sign.data, req->rptr, rsa->sign.length);
800 
801 		if (memcmp(rsa->sign.data, rsa->message.data,
802 			   rsa->message.length)) {
803 			CPT_LOG_DP_ERR("RSA verification failed");
804 			cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
805 		}
806 		break;
807 	default:
808 		CPT_LOG_DP_DEBUG("Invalid RSA operation type");
809 		cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
810 		break;
811 	}
812 }
813 
814 static __rte_always_inline void
815 otx_cpt_asym_dequeue_ecdsa_op(struct rte_crypto_ecdsa_op_param *ecdsa,
816 			    struct cpt_request_info *req,
817 			    struct cpt_asym_ec_ctx *ec)
818 
819 {
820 	int prime_len = ec_grp[ec->curveid].prime.length;
821 
822 	if (ecdsa->op_type == RTE_CRYPTO_ASYM_OP_VERIFY)
823 		return;
824 
825 	/* Separate out sign r and s components */
826 	memcpy(ecdsa->r.data, req->rptr, prime_len);
827 	memcpy(ecdsa->s.data, req->rptr + RTE_ALIGN_CEIL(prime_len, 8),
828 	       prime_len);
829 	ecdsa->r.length = prime_len;
830 	ecdsa->s.length = prime_len;
831 }
832 
833 static __rte_always_inline void
834 otx_cpt_asym_dequeue_ecpm_op(struct rte_crypto_ecpm_op_param *ecpm,
835 			     struct cpt_request_info *req,
836 			     struct cpt_asym_ec_ctx *ec)
837 {
838 	int prime_len = ec_grp[ec->curveid].prime.length;
839 
840 	memcpy(ecpm->r.x.data, req->rptr, prime_len);
841 	memcpy(ecpm->r.y.data, req->rptr + RTE_ALIGN_CEIL(prime_len, 8),
842 	       prime_len);
843 	ecpm->r.x.length = prime_len;
844 	ecpm->r.y.length = prime_len;
845 }
846 
847 static __rte_always_inline void __rte_hot
848 otx_cpt_asym_post_process(struct rte_crypto_op *cop,
849 			  struct cpt_request_info *req)
850 {
851 	struct rte_crypto_asym_op *op = cop->asym;
852 	struct cpt_asym_sess_misc *sess;
853 
854 	sess = get_asym_session_private_data(op->session,
855 					     otx_cryptodev_driver_id);
856 
857 	switch (sess->xfrm_type) {
858 	case RTE_CRYPTO_ASYM_XFORM_RSA:
859 		otx_cpt_asym_rsa_op(cop, req, &sess->rsa_ctx);
860 		break;
861 	case RTE_CRYPTO_ASYM_XFORM_MODEX:
862 		op->modex.result.length = sess->mod_ctx.modulus.length;
863 		memcpy(op->modex.result.data, req->rptr,
864 		       op->modex.result.length);
865 		break;
866 	case RTE_CRYPTO_ASYM_XFORM_ECDSA:
867 		otx_cpt_asym_dequeue_ecdsa_op(&op->ecdsa, req, &sess->ec_ctx);
868 		break;
869 	case RTE_CRYPTO_ASYM_XFORM_ECPM:
870 		otx_cpt_asym_dequeue_ecpm_op(&op->ecpm, req, &sess->ec_ctx);
871 		break;
872 	default:
873 		CPT_LOG_DP_DEBUG("Invalid crypto xform type");
874 		cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
875 		break;
876 	}
877 }
878 
879 static __rte_always_inline void __rte_hot
880 otx_cpt_dequeue_post_process(struct rte_crypto_op *cop, uintptr_t *rsp,
881 			     const uint8_t op_type)
882 {
883 	/* H/w has returned success */
884 	cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
885 
886 	/* Perform further post processing */
887 
888 	if ((op_type == OP_TYPE_SYM) &&
889 	    (cop->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC)) {
890 		/* Check if auth verify need to be completed */
891 		if (unlikely(rsp[2]))
892 			compl_auth_verify(cop, (uint8_t *)rsp[2], rsp[3]);
893 		return;
894 	}
895 
896 	if ((op_type == OP_TYPE_ASYM) &&
897 	    (cop->type == RTE_CRYPTO_OP_TYPE_ASYMMETRIC)) {
898 		rsp = RTE_PTR_ADD(rsp, 4 * sizeof(uintptr_t));
899 		otx_cpt_asym_post_process(cop, (struct cpt_request_info *)rsp);
900 	}
901 
902 	return;
903 }
904 
905 static inline void
906 free_sym_session_data(const struct cpt_instance *instance,
907 		      struct rte_crypto_op *cop)
908 {
909 	void *sess_private_data_t = get_sym_session_private_data(
910 		cop->sym->session, otx_cryptodev_driver_id);
911 	memset(sess_private_data_t, 0, cpt_get_session_size());
912 	memset(cop->sym->session, 0,
913 	       rte_cryptodev_sym_get_existing_header_session_size(
914 		       cop->sym->session));
915 	rte_mempool_put(instance->sess_mp_priv, sess_private_data_t);
916 	rte_mempool_put(instance->sess_mp, cop->sym->session);
917 	cop->sym->session = NULL;
918 }
919 
920 static __rte_always_inline struct rte_crypto_op *
921 otx_cpt_process_response(const struct cpt_instance *instance, uintptr_t *rsp,
922 			 uint8_t cc, const uint8_t op_type)
923 {
924 	struct rte_crypto_op *cop;
925 	void *metabuf;
926 
927 	metabuf = (void *)rsp[0];
928 	cop = (void *)rsp[1];
929 
930 	/* Check completion code */
931 	if (likely(cc == 0)) {
932 		/* H/w success pkt. Post process */
933 		otx_cpt_dequeue_post_process(cop, rsp, op_type);
934 	} else if (cc == ERR_GC_ICV_MISCOMPARE) {
935 		/* auth data mismatch */
936 		cop->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
937 	} else {
938 		/* Error */
939 		cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
940 	}
941 
942 	if (unlikely(cop->sess_type == RTE_CRYPTO_OP_SESSIONLESS))
943 		free_sym_session_data(instance, cop);
944 	free_op_meta(metabuf, instance->meta_info.pool);
945 
946 	return cop;
947 }
948 
949 static __rte_always_inline uint16_t __rte_hot
950 otx_cpt_pkt_dequeue(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops,
951 		    const uint8_t op_type)
952 {
953 	struct cpt_instance *instance = (struct cpt_instance *)qptr;
954 	struct cpt_request_info *user_req;
955 	struct cpt_vf *cptvf = (struct cpt_vf *)instance;
956 	uint8_t cc[nb_ops];
957 	int i, count, pcount;
958 	uint8_t ret;
959 	int nb_completed;
960 	struct pending_queue *pqueue = &cptvf->pqueue;
961 
962 	pcount = pending_queue_level(pqueue, DEFAULT_CMD_QLEN);
963 
964 	/* Ensure pcount isn't read before data lands */
965 	rte_atomic_thread_fence(__ATOMIC_ACQUIRE);
966 
967 	count = (nb_ops > pcount) ? pcount : nb_ops;
968 
969 	for (i = 0; i < count; i++) {
970 		pending_queue_peek(pqueue, (void **) &user_req,
971 			DEFAULT_CMD_QLEN, i + 1 < count);
972 
973 		ret = check_nb_command_id(user_req, instance);
974 
975 		if (unlikely(ret == ERR_REQ_PENDING)) {
976 			/* Stop checking for completions */
977 			break;
978 		}
979 
980 		/* Return completion code and op handle */
981 		cc[i] = ret;
982 		ops[i] = user_req->op;
983 
984 		CPT_LOG_DP_DEBUG("Request %p Op %p completed with code %d",
985 				 user_req, user_req->op, ret);
986 
987 		pending_queue_pop(pqueue, DEFAULT_CMD_QLEN);
988 	}
989 
990 	nb_completed = i;
991 
992 	for (i = 0; i < nb_completed; i++) {
993 		if (likely((i + 1) < nb_completed))
994 			rte_prefetch0(ops[i+1]);
995 
996 		ops[i] = otx_cpt_process_response(instance, (void *)ops[i],
997 						  cc[i], op_type);
998 	}
999 
1000 	return nb_completed;
1001 }
1002 
1003 static uint16_t
1004 otx_cpt_dequeue_asym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
1005 {
1006 	return otx_cpt_pkt_dequeue(qptr, ops, nb_ops, OP_TYPE_ASYM);
1007 }
1008 
1009 static uint16_t
1010 otx_cpt_dequeue_sym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
1011 {
1012 	return otx_cpt_pkt_dequeue(qptr, ops, nb_ops, OP_TYPE_SYM);
1013 }
1014 
1015 uintptr_t __rte_hot
1016 otx_crypto_adapter_dequeue(uintptr_t get_work1)
1017 {
1018 	const struct cpt_instance *instance;
1019 	struct cpt_request_info *req;
1020 	struct rte_crypto_op *cop;
1021 	uint8_t cc, op_type;
1022 	uintptr_t *rsp;
1023 
1024 	req = (struct cpt_request_info *)get_work1;
1025 	instance = req->qp;
1026 	rsp = req->op;
1027 	cop = (void *)rsp[1];
1028 	op_type = cop->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC ? OP_TYPE_SYM :
1029 							      OP_TYPE_ASYM;
1030 
1031 	do {
1032 		cc = check_nb_command_id(
1033 			req, (struct cpt_instance *)(uintptr_t)instance);
1034 	} while (cc == ERR_REQ_PENDING);
1035 
1036 	cop = otx_cpt_process_response(instance, (void *)req->op, cc, op_type);
1037 
1038 	return (uintptr_t)(cop);
1039 }
1040 
1041 static struct rte_cryptodev_ops cptvf_ops = {
1042 	/* Device related operations */
1043 	.dev_configure = otx_cpt_dev_config,
1044 	.dev_start = otx_cpt_dev_start,
1045 	.dev_stop = otx_cpt_dev_stop,
1046 	.dev_close = otx_cpt_dev_close,
1047 	.dev_infos_get = otx_cpt_dev_info_get,
1048 
1049 	.stats_get = NULL,
1050 	.stats_reset = NULL,
1051 	.queue_pair_setup = otx_cpt_que_pair_setup,
1052 	.queue_pair_release = otx_cpt_que_pair_release,
1053 
1054 	/* Crypto related operations */
1055 	.sym_session_get_size = otx_cpt_get_session_size,
1056 	.sym_session_configure = otx_cpt_session_cfg,
1057 	.sym_session_clear = otx_cpt_session_clear,
1058 
1059 	.asym_session_get_size = otx_cpt_asym_session_size_get,
1060 	.asym_session_configure = otx_cpt_asym_session_cfg,
1061 	.asym_session_clear = otx_cpt_asym_session_clear,
1062 };
1063 
1064 int
1065 otx_cpt_dev_create(struct rte_cryptodev *c_dev)
1066 {
1067 	struct rte_pci_device *pdev = RTE_DEV_TO_PCI(c_dev->device);
1068 	struct cpt_vf *cptvf = NULL;
1069 	void *reg_base;
1070 	char dev_name[32];
1071 	int ret;
1072 
1073 	if (pdev->mem_resource[0].phys_addr == 0ULL)
1074 		return -EIO;
1075 
1076 	/* for secondary processes, we don't initialise any further as primary
1077 	 * has already done this work.
1078 	 */
1079 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1080 		return 0;
1081 
1082 	cptvf = rte_zmalloc_socket("otx_cryptodev_private_mem",
1083 			sizeof(struct cpt_vf), RTE_CACHE_LINE_SIZE,
1084 			rte_socket_id());
1085 
1086 	if (cptvf == NULL) {
1087 		CPT_LOG_ERR("Cannot allocate memory for device private data");
1088 		return -ENOMEM;
1089 	}
1090 
1091 	snprintf(dev_name, 32, "%02x:%02x.%x",
1092 			pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
1093 
1094 	reg_base = pdev->mem_resource[0].addr;
1095 	if (!reg_base) {
1096 		CPT_LOG_ERR("Failed to map BAR0 of %s", dev_name);
1097 		ret = -ENODEV;
1098 		goto fail;
1099 	}
1100 
1101 	ret = otx_cpt_hw_init(cptvf, pdev, reg_base, dev_name);
1102 	if (ret) {
1103 		CPT_LOG_ERR("Failed to init cptvf %s", dev_name);
1104 		ret = -EIO;
1105 		goto fail;
1106 	}
1107 
1108 	switch (cptvf->vftype) {
1109 	case OTX_CPT_VF_TYPE_AE:
1110 		/* Set asymmetric cpt feature flags */
1111 		c_dev->feature_flags = RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO |
1112 				RTE_CRYPTODEV_FF_HW_ACCELERATED |
1113 				RTE_CRYPTODEV_FF_RSA_PRIV_OP_KEY_QT;
1114 		break;
1115 	case OTX_CPT_VF_TYPE_SE:
1116 		/* Set symmetric cpt feature flags */
1117 		c_dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
1118 				RTE_CRYPTODEV_FF_HW_ACCELERATED |
1119 				RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
1120 				RTE_CRYPTODEV_FF_IN_PLACE_SGL |
1121 				RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT |
1122 				RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT |
1123 				RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT |
1124 				RTE_CRYPTODEV_FF_SYM_SESSIONLESS |
1125 				RTE_CRYPTODEV_FF_DIGEST_ENCRYPTED;
1126 		break;
1127 	default:
1128 		/* Feature not supported. Abort */
1129 		CPT_LOG_ERR("VF type not supported by %s", dev_name);
1130 		ret = -EIO;
1131 		goto deinit_dev;
1132 	}
1133 
1134 	/* Start off timer for mailbox interrupts */
1135 	otx_cpt_periodic_alarm_start(cptvf);
1136 
1137 	c_dev->dev_ops = &cptvf_ops;
1138 
1139 	if (c_dev->feature_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) {
1140 		c_dev->enqueue_burst = otx_cpt_enqueue_sym;
1141 		c_dev->dequeue_burst = otx_cpt_dequeue_sym;
1142 	} else {
1143 		c_dev->enqueue_burst = otx_cpt_enqueue_asym;
1144 		c_dev->dequeue_burst = otx_cpt_dequeue_asym;
1145 	}
1146 
1147 	/* Save dev private data */
1148 	c_dev->data->dev_private = cptvf;
1149 
1150 	return 0;
1151 
1152 deinit_dev:
1153 	otx_cpt_deinit_device(cptvf);
1154 
1155 fail:
1156 	if (cptvf) {
1157 		/* Free private data allocated */
1158 		rte_free(cptvf);
1159 	}
1160 
1161 	return ret;
1162 }
1163