xref: /dpdk/drivers/crypto/octeontx/otx_cryptodev_ops.c (revision 8a97564b1c1e035daaa0cdda553edd46178889e2)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Cavium, Inc
3  */
4 
5 #include <rte_alarm.h>
6 #include <bus_pci_driver.h>
7 #include <rte_cryptodev.h>
8 #include <cryptodev_pmd.h>
9 #include <rte_eventdev.h>
10 #include <rte_event_crypto_adapter.h>
11 #include <rte_errno.h>
12 #include <rte_malloc.h>
13 #include <rte_mempool.h>
14 
15 #include "otx_cryptodev.h"
16 #include "otx_cryptodev_capabilities.h"
17 #include "otx_cryptodev_hw_access.h"
18 #include "otx_cryptodev_mbox.h"
19 #include "otx_cryptodev_ops.h"
20 
21 #include "cpt_pmd_logs.h"
22 #include "cpt_pmd_ops_helper.h"
23 #include "cpt_ucode.h"
24 #include "cpt_ucode_asym.h"
25 
26 #include "ssovf_worker.h"
27 
28 static uint64_t otx_fpm_iova[CPT_EC_ID_PMAX];
29 
30 /* Forward declarations */
31 
32 static int
33 otx_cpt_que_pair_release(struct rte_cryptodev *dev, uint16_t que_pair_id);
34 
35 /* Alarm routines */
36 
37 static void
38 otx_cpt_alarm_cb(void *arg)
39 {
40 	struct cpt_vf *cptvf = arg;
41 	otx_cpt_poll_misc(cptvf);
42 	rte_eal_alarm_set(CPT_INTR_POLL_INTERVAL_MS * 1000,
43 			  otx_cpt_alarm_cb, cptvf);
44 }
45 
46 static int
47 otx_cpt_periodic_alarm_start(void *arg)
48 {
49 	return rte_eal_alarm_set(CPT_INTR_POLL_INTERVAL_MS * 1000,
50 				 otx_cpt_alarm_cb, arg);
51 }
52 
53 static int
54 otx_cpt_periodic_alarm_stop(void *arg)
55 {
56 	return rte_eal_alarm_cancel(otx_cpt_alarm_cb, arg);
57 }
58 
59 /* PMD ops */
60 
61 static int
62 otx_cpt_dev_config(struct rte_cryptodev *dev,
63 		   struct rte_cryptodev_config *config __rte_unused)
64 {
65 	int ret = 0;
66 
67 	CPT_PMD_INIT_FUNC_TRACE();
68 
69 	if (dev->feature_flags & RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO)
70 		/* Initialize shared FPM table */
71 		ret = cpt_fpm_init(otx_fpm_iova);
72 
73 	return ret;
74 }
75 
76 static int
77 otx_cpt_dev_start(struct rte_cryptodev *c_dev)
78 {
79 	void *cptvf = c_dev->data->dev_private;
80 
81 	CPT_PMD_INIT_FUNC_TRACE();
82 
83 	return otx_cpt_start_device(cptvf);
84 }
85 
86 static void
87 otx_cpt_dev_stop(struct rte_cryptodev *c_dev)
88 {
89 	void *cptvf = c_dev->data->dev_private;
90 
91 	CPT_PMD_INIT_FUNC_TRACE();
92 
93 	if (c_dev->feature_flags & RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO)
94 		cpt_fpm_clear();
95 
96 	otx_cpt_stop_device(cptvf);
97 }
98 
99 static int
100 otx_cpt_dev_close(struct rte_cryptodev *c_dev)
101 {
102 	void *cptvf = c_dev->data->dev_private;
103 	int i, ret;
104 
105 	CPT_PMD_INIT_FUNC_TRACE();
106 
107 	for (i = 0; i < c_dev->data->nb_queue_pairs; i++) {
108 		ret = otx_cpt_que_pair_release(c_dev, i);
109 		if (ret)
110 			return ret;
111 	}
112 
113 	otx_cpt_periodic_alarm_stop(cptvf);
114 	otx_cpt_deinit_device(cptvf);
115 
116 	return 0;
117 }
118 
119 static void
120 otx_cpt_dev_info_get(struct rte_cryptodev *dev, struct rte_cryptodev_info *info)
121 {
122 	CPT_PMD_INIT_FUNC_TRACE();
123 	if (info != NULL) {
124 		info->max_nb_queue_pairs = CPT_NUM_QS_PER_VF;
125 		info->feature_flags = dev->feature_flags;
126 		info->capabilities = otx_get_capabilities(info->feature_flags);
127 		info->sym.max_nb_sessions = 0;
128 		info->driver_id = otx_cryptodev_driver_id;
129 		info->min_mbuf_headroom_req = OTX_CPT_MIN_HEADROOM_REQ;
130 		info->min_mbuf_tailroom_req = OTX_CPT_MIN_TAILROOM_REQ;
131 	}
132 }
133 
134 static int
135 otx_cpt_que_pair_setup(struct rte_cryptodev *dev,
136 		       uint16_t que_pair_id,
137 		       const struct rte_cryptodev_qp_conf *qp_conf,
138 		       int socket_id __rte_unused)
139 {
140 	struct cpt_instance *instance = NULL;
141 	struct rte_pci_device *pci_dev;
142 	int ret = -1;
143 
144 	CPT_PMD_INIT_FUNC_TRACE();
145 
146 	if (dev->data->queue_pairs[que_pair_id] != NULL) {
147 		ret = otx_cpt_que_pair_release(dev, que_pair_id);
148 		if (ret)
149 			return ret;
150 	}
151 
152 	if (qp_conf->nb_descriptors > DEFAULT_CMD_QLEN) {
153 		CPT_LOG_INFO("Number of descriptors too big %d, using default "
154 			     "queue length of %d", qp_conf->nb_descriptors,
155 			     DEFAULT_CMD_QLEN);
156 	}
157 
158 	pci_dev = RTE_DEV_TO_PCI(dev->device);
159 
160 	if (pci_dev->mem_resource[0].addr == NULL) {
161 		CPT_LOG_ERR("PCI mem address null");
162 		return -EIO;
163 	}
164 
165 	ret = otx_cpt_get_resource(dev, 0, &instance, que_pair_id);
166 	if (ret != 0 || instance == NULL) {
167 		CPT_LOG_ERR("Error getting instance handle from device %s : "
168 			    "ret = %d", dev->data->name, ret);
169 		return ret;
170 	}
171 
172 	instance->queue_id = que_pair_id;
173 	instance->sess_mp = qp_conf->mp_session;
174 	dev->data->queue_pairs[que_pair_id] = instance;
175 
176 	return 0;
177 }
178 
179 static int
180 otx_cpt_que_pair_release(struct rte_cryptodev *dev, uint16_t que_pair_id)
181 {
182 	struct cpt_instance *instance = dev->data->queue_pairs[que_pair_id];
183 	int ret;
184 
185 	CPT_PMD_INIT_FUNC_TRACE();
186 
187 	ret = otx_cpt_put_resource(instance);
188 	if (ret != 0) {
189 		CPT_LOG_ERR("Error putting instance handle of device %s : "
190 			    "ret = %d", dev->data->name, ret);
191 		return ret;
192 	}
193 
194 	dev->data->queue_pairs[que_pair_id] = NULL;
195 
196 	return 0;
197 }
198 
199 static unsigned int
200 otx_cpt_get_session_size(struct rte_cryptodev *dev __rte_unused)
201 {
202 	return cpt_get_session_size();
203 }
204 
205 static int
206 sym_xform_verify(struct rte_crypto_sym_xform *xform)
207 {
208 	if (xform->next) {
209 		if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
210 		    xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
211 		    xform->next->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT &&
212 		    (xform->auth.algo != RTE_CRYPTO_AUTH_SHA1_HMAC ||
213 		     xform->next->cipher.algo != RTE_CRYPTO_CIPHER_AES_CBC))
214 			return -ENOTSUP;
215 
216 		if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
217 		    xform->cipher.op == RTE_CRYPTO_CIPHER_OP_DECRYPT &&
218 		    xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
219 		    (xform->cipher.algo != RTE_CRYPTO_CIPHER_AES_CBC ||
220 		     xform->next->auth.algo != RTE_CRYPTO_AUTH_SHA1_HMAC))
221 			return -ENOTSUP;
222 
223 		if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
224 		    xform->cipher.algo == RTE_CRYPTO_CIPHER_3DES_CBC &&
225 		    xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
226 		    xform->next->auth.algo == RTE_CRYPTO_AUTH_SHA1)
227 			return -ENOTSUP;
228 
229 		if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
230 		    xform->auth.algo == RTE_CRYPTO_AUTH_SHA1 &&
231 		    xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
232 		    xform->next->cipher.algo == RTE_CRYPTO_CIPHER_3DES_CBC)
233 			return -ENOTSUP;
234 
235 	} else {
236 		if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
237 		    xform->auth.algo == RTE_CRYPTO_AUTH_NULL &&
238 		    xform->auth.op == RTE_CRYPTO_AUTH_OP_VERIFY)
239 			return -ENOTSUP;
240 	}
241 	return 0;
242 }
243 
244 static int
245 sym_session_configure(struct rte_crypto_sym_xform *xform,
246 		      struct rte_cryptodev_sym_session *sess)
247 {
248 	struct rte_crypto_sym_xform *temp_xform = xform;
249 	struct cpt_sess_misc *misc;
250 	vq_cmd_word3_t vq_cmd_w3;
251 	void *priv = CRYPTODEV_GET_SYM_SESS_PRIV(sess);
252 	int ret;
253 
254 	ret = sym_xform_verify(xform);
255 	if (unlikely(ret))
256 		return ret;
257 
258 	memset(priv, 0, sizeof(struct cpt_sess_misc) +
259 			offsetof(struct cpt_ctx, mc_ctx));
260 
261 	misc = priv;
262 
263 	for ( ; xform != NULL; xform = xform->next) {
264 		switch (xform->type) {
265 		case RTE_CRYPTO_SYM_XFORM_AEAD:
266 			ret = fill_sess_aead(xform, misc);
267 			break;
268 		case RTE_CRYPTO_SYM_XFORM_CIPHER:
269 			ret = fill_sess_cipher(xform, misc);
270 			break;
271 		case RTE_CRYPTO_SYM_XFORM_AUTH:
272 			if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC)
273 				ret = fill_sess_gmac(xform, misc);
274 			else
275 				ret = fill_sess_auth(xform, misc);
276 			break;
277 		default:
278 			ret = -1;
279 		}
280 
281 		if (ret)
282 			goto priv_put;
283 	}
284 
285 	if ((GET_SESS_FC_TYPE(misc) == HASH_HMAC) &&
286 			cpt_mac_len_verify(&temp_xform->auth)) {
287 		CPT_LOG_ERR("MAC length is not supported");
288 		struct cpt_ctx *ctx = SESS_PRIV(misc);
289 		if (ctx->auth_key != NULL) {
290 			rte_free(ctx->auth_key);
291 			ctx->auth_key = NULL;
292 		}
293 		ret = -ENOTSUP;
294 		goto priv_put;
295 	}
296 
297 	misc->ctx_dma_addr = CRYPTODEV_GET_SYM_SESS_PRIV_IOVA(sess) +
298 			     sizeof(struct cpt_sess_misc);
299 
300 	vq_cmd_w3.u64 = 0;
301 	vq_cmd_w3.s.grp = 0;
302 	vq_cmd_w3.s.cptr = misc->ctx_dma_addr + offsetof(struct cpt_ctx,
303 							 mc_ctx);
304 
305 	misc->cpt_inst_w7 = vq_cmd_w3.u64;
306 
307 	return 0;
308 
309 priv_put:
310 	return -ENOTSUP;
311 }
312 
313 static void
314 sym_session_clear(struct rte_cryptodev_sym_session *sess)
315 {
316 	void *priv = CRYPTODEV_GET_SYM_SESS_PRIV(sess);
317 	struct cpt_sess_misc *misc;
318 	struct cpt_ctx *ctx;
319 
320 	if (priv == NULL)
321 		return;
322 
323 	misc = priv;
324 	ctx = SESS_PRIV(misc);
325 
326 	rte_free(ctx->auth_key);
327 }
328 
329 static int
330 otx_cpt_session_cfg(struct rte_cryptodev *dev __rte_unused,
331 		    struct rte_crypto_sym_xform *xform,
332 		    struct rte_cryptodev_sym_session *sess)
333 {
334 	CPT_PMD_INIT_FUNC_TRACE();
335 
336 	return sym_session_configure(xform, sess);
337 }
338 
339 
340 static void
341 otx_cpt_session_clear(struct rte_cryptodev *dev __rte_unused,
342 		  struct rte_cryptodev_sym_session *sess)
343 {
344 	CPT_PMD_INIT_FUNC_TRACE();
345 
346 	return sym_session_clear(sess);
347 }
348 
349 static unsigned int
350 otx_cpt_asym_session_size_get(struct rte_cryptodev *dev __rte_unused)
351 {
352 	return sizeof(struct cpt_asym_sess_misc);
353 }
354 
355 static int
356 otx_cpt_asym_session_cfg(struct rte_cryptodev *dev __rte_unused,
357 			 struct rte_crypto_asym_xform *xform __rte_unused,
358 			 struct rte_cryptodev_asym_session *sess)
359 {
360 	struct cpt_asym_sess_misc *priv = (struct cpt_asym_sess_misc *)
361 			sess->sess_private_data;
362 	int ret;
363 
364 	CPT_PMD_INIT_FUNC_TRACE();
365 
366 	ret = cpt_fill_asym_session_parameters(priv, xform);
367 	if (ret) {
368 		CPT_LOG_ERR("Could not configure session parameters");
369 		return ret;
370 	}
371 
372 	priv->cpt_inst_w7 = 0;
373 
374 	return 0;
375 }
376 
377 static void
378 otx_cpt_asym_session_clear(struct rte_cryptodev *dev,
379 			   struct rte_cryptodev_asym_session *sess)
380 {
381 	struct cpt_asym_sess_misc *priv;
382 
383 	CPT_PMD_INIT_FUNC_TRACE();
384 
385 	priv = (struct cpt_asym_sess_misc *) sess->sess_private_data;
386 
387 	if (priv == NULL)
388 		return;
389 
390 	/* Free resources allocated during session configure */
391 	cpt_free_asym_session_parameters(priv);
392 	memset(priv, 0, otx_cpt_asym_session_size_get(dev));
393 }
394 
395 static __rte_always_inline void * __rte_hot
396 otx_cpt_request_enqueue(struct cpt_instance *instance,
397 			void *req, uint64_t cpt_inst_w7)
398 {
399 	struct cpt_request_info *user_req = (struct cpt_request_info *)req;
400 
401 	fill_cpt_inst(instance, req, cpt_inst_w7);
402 
403 	CPT_LOG_DP_DEBUG("req: %p op: %p ", req, user_req->op);
404 
405 	/* Fill time_out cycles */
406 	user_req->time_out = rte_get_timer_cycles() +
407 			DEFAULT_COMMAND_TIMEOUT * rte_get_timer_hz();
408 	user_req->extra_time = 0;
409 
410 	/* Default mode of software queue */
411 	mark_cpt_inst(instance);
412 
413 	CPT_LOG_DP_DEBUG("Submitted NB cmd with request: %p "
414 			 "op: %p", user_req, user_req->op);
415 	return req;
416 }
417 
418 static __rte_always_inline void * __rte_hot
419 otx_cpt_enq_single_asym(struct cpt_instance *instance,
420 			struct rte_crypto_op *op)
421 {
422 	struct cpt_qp_meta_info *minfo = &instance->meta_info;
423 	struct rte_crypto_asym_op *asym_op = op->asym;
424 	struct asym_op_params params = {0};
425 	struct cpt_asym_sess_misc *sess;
426 	uintptr_t *cop;
427 	void *mdata;
428 	void *req;
429 	int ret;
430 
431 	if (unlikely(rte_mempool_get(minfo->pool, &mdata) < 0)) {
432 		CPT_LOG_DP_ERR("Could not allocate meta buffer for request");
433 		rte_errno = ENOMEM;
434 		return NULL;
435 	}
436 
437 	sess = (struct cpt_asym_sess_misc *)
438 			asym_op->session->sess_private_data;
439 
440 	/* Store phys_addr of the mdata to meta_buf */
441 	params.meta_buf = rte_mempool_virt2iova(mdata);
442 
443 	cop = mdata;
444 	cop[0] = (uintptr_t)mdata;
445 	cop[1] = (uintptr_t)op;
446 	cop[2] = cop[3] = 0ULL;
447 
448 	params.req = RTE_PTR_ADD(cop, 4 * sizeof(uintptr_t));
449 	params.req->op = cop;
450 
451 	/* Adjust meta_buf by crypto_op data  and request_info struct */
452 	params.meta_buf += (4 * sizeof(uintptr_t)) +
453 			   sizeof(struct cpt_request_info);
454 
455 	switch (sess->xfrm_type) {
456 	case RTE_CRYPTO_ASYM_XFORM_MODEX:
457 		ret = cpt_modex_prep(&params, &sess->mod_ctx);
458 		if (unlikely(ret))
459 			goto req_fail;
460 		break;
461 	case RTE_CRYPTO_ASYM_XFORM_RSA:
462 		ret = cpt_enqueue_rsa_op(op, &params, sess);
463 		if (unlikely(ret))
464 			goto req_fail;
465 		break;
466 	case RTE_CRYPTO_ASYM_XFORM_ECDSA:
467 		ret = cpt_enqueue_ecdsa_op(op, &params, sess, otx_fpm_iova);
468 		if (unlikely(ret))
469 			goto req_fail;
470 		break;
471 	case RTE_CRYPTO_ASYM_XFORM_ECPM:
472 		ret = cpt_ecpm_prep(&asym_op->ecpm, &params,
473 				    sess->ec_ctx.curveid);
474 		if (unlikely(ret))
475 			goto req_fail;
476 		break;
477 
478 	default:
479 		op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
480 		rte_errno = EINVAL;
481 		goto req_fail;
482 	}
483 
484 	req = otx_cpt_request_enqueue(instance, params.req, sess->cpt_inst_w7);
485 	if (unlikely(req == NULL)) {
486 		CPT_LOG_DP_ERR("Could not enqueue crypto req");
487 		goto req_fail;
488 	}
489 
490 	return req;
491 
492 req_fail:
493 	free_op_meta(mdata, minfo->pool);
494 
495 	return NULL;
496 }
497 
498 static __rte_always_inline void * __rte_hot
499 otx_cpt_enq_single_sym(struct cpt_instance *instance,
500 		       struct rte_crypto_op *op)
501 {
502 	struct cpt_sess_misc *sess;
503 	struct rte_crypto_sym_op *sym_op = op->sym;
504 	struct cpt_request_info *prep_req;
505 	void *mdata = NULL;
506 	int ret = 0;
507 	void *req;
508 	uint64_t cpt_op;
509 
510 	sess = CRYPTODEV_GET_SYM_SESS_PRIV(sym_op->session);
511 	cpt_op = sess->cpt_op;
512 
513 	if (likely(cpt_op & CPT_OP_CIPHER_MASK))
514 		ret = fill_fc_params(op, sess, &instance->meta_info, &mdata,
515 				     (void **)&prep_req);
516 	else
517 		ret = fill_digest_params(op, sess, &instance->meta_info,
518 					 &mdata, (void **)&prep_req);
519 
520 	if (unlikely(ret)) {
521 		CPT_LOG_DP_ERR("prep crypto req : op %p, cpt_op 0x%x "
522 			       "ret 0x%x", op, (unsigned int)cpt_op, ret);
523 		return NULL;
524 	}
525 
526 	/* Enqueue prepared instruction to h/w */
527 	req = otx_cpt_request_enqueue(instance, prep_req, sess->cpt_inst_w7);
528 	if (unlikely(req == NULL))
529 		/* Buffer allocated for request preparation need to be freed */
530 		free_op_meta(mdata, instance->meta_info.pool);
531 
532 	return req;
533 }
534 
535 static __rte_always_inline void * __rte_hot
536 otx_cpt_enq_single_sym_sessless(struct cpt_instance *instance,
537 				struct rte_crypto_op *op)
538 {
539 	struct rte_crypto_sym_op *sym_op = op->sym;
540 	struct rte_cryptodev_sym_session *sess;
541 	void *req;
542 	int ret;
543 
544 	/* Create temporary session */
545 	if (rte_mempool_get(instance->sess_mp, (void **)&sess) < 0) {
546 		rte_errno = ENOMEM;
547 		return NULL;
548 	}
549 
550 	ret = sym_session_configure(sym_op->xform, sess);
551 	if (ret)
552 		goto sess_put;
553 
554 	sym_op->session = sess;
555 
556 	/* Enqueue op with the tmp session set */
557 	req = otx_cpt_enq_single_sym(instance, op);
558 	if (unlikely(req == NULL))
559 		goto sess_put;
560 
561 	return req;
562 
563 sess_put:
564 	rte_mempool_put(instance->sess_mp, sess);
565 	return NULL;
566 }
567 
568 #define OP_TYPE_SYM		0
569 #define OP_TYPE_ASYM		1
570 
571 static __rte_always_inline void *__rte_hot
572 otx_cpt_enq_single(struct cpt_instance *inst,
573 		   struct rte_crypto_op *op,
574 		   const uint8_t op_type)
575 {
576 	/* Check for the type */
577 
578 	if (op_type == OP_TYPE_SYM) {
579 		if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
580 			return otx_cpt_enq_single_sym(inst, op);
581 		else
582 			return otx_cpt_enq_single_sym_sessless(inst, op);
583 	}
584 
585 	if (op_type == OP_TYPE_ASYM) {
586 		if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
587 			return otx_cpt_enq_single_asym(inst, op);
588 	}
589 
590 	/* Should not reach here */
591 	rte_errno = ENOTSUP;
592 	return NULL;
593 }
594 
595 static  __rte_always_inline uint16_t __rte_hot
596 otx_cpt_pkt_enqueue(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops,
597 		    const uint8_t op_type)
598 {
599 	struct cpt_instance *instance = (struct cpt_instance *)qptr;
600 	uint16_t count, free_slots;
601 	void *req;
602 	struct cpt_vf *cptvf = (struct cpt_vf *)instance;
603 	struct pending_queue *pqueue = &cptvf->pqueue;
604 
605 	free_slots = pending_queue_free_slots(pqueue, DEFAULT_CMD_QLEN,
606 				DEFAULT_CMD_QRSVD_SLOTS);
607 	if (nb_ops > free_slots)
608 		nb_ops = free_slots;
609 
610 	count = 0;
611 	while (likely(count < nb_ops)) {
612 
613 		/* Enqueue single op */
614 		req = otx_cpt_enq_single(instance, ops[count], op_type);
615 
616 		if (unlikely(req == NULL))
617 			break;
618 
619 		pending_queue_push(pqueue, req, count, DEFAULT_CMD_QLEN);
620 		count++;
621 	}
622 
623 	if (likely(count)) {
624 		pending_queue_commit(pqueue, count, DEFAULT_CMD_QLEN);
625 		otx_cpt_ring_dbell(instance, count);
626 	}
627 	return count;
628 }
629 
630 static uint16_t
631 otx_cpt_enqueue_asym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
632 {
633 	return otx_cpt_pkt_enqueue(qptr, ops, nb_ops, OP_TYPE_ASYM);
634 }
635 
636 static uint16_t
637 otx_cpt_enqueue_sym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
638 {
639 	return otx_cpt_pkt_enqueue(qptr, ops, nb_ops, OP_TYPE_SYM);
640 }
641 
642 static __rte_always_inline void
643 submit_request_to_sso(struct ssows *ws, uintptr_t req,
644 		      struct rte_event *rsp_info)
645 {
646 	uint64_t add_work;
647 
648 	add_work = rsp_info->flow_id | (RTE_EVENT_TYPE_CRYPTODEV << 28) |
649 		   (rsp_info->sub_event_type << 20) |
650 		   ((uint64_t)(rsp_info->sched_type) << 32);
651 
652 	if (!rsp_info->sched_type)
653 		ssows_head_wait(ws);
654 
655 	rte_atomic_thread_fence(rte_memory_order_release);
656 	ssovf_store_pair(add_work, req, ws->grps[rsp_info->queue_id]);
657 }
658 
659 uint16_t __rte_hot
660 otx_crypto_adapter_enqueue(void *port, struct rte_crypto_op *op)
661 {
662 	union rte_event_crypto_metadata *ec_mdata;
663 	struct cpt_instance *instance;
664 	struct cpt_request_info *req;
665 	struct rte_event *rsp_info;
666 	uint8_t op_type, cdev_id;
667 	uint16_t qp_id;
668 
669 	ec_mdata = rte_cryptodev_session_event_mdata_get(op);
670 	if (unlikely(ec_mdata == NULL)) {
671 		rte_errno = EINVAL;
672 		return 0;
673 	}
674 
675 	cdev_id = ec_mdata->request_info.cdev_id;
676 	qp_id = ec_mdata->request_info.queue_pair_id;
677 	rsp_info = &ec_mdata->response_info;
678 	instance = rte_cryptodevs[cdev_id].data->queue_pairs[qp_id];
679 
680 	if (unlikely(!instance->ca_enabled)) {
681 		rte_errno = EINVAL;
682 		return 0;
683 	}
684 
685 	op_type = op->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC ? OP_TYPE_SYM :
686 							     OP_TYPE_ASYM;
687 	req = otx_cpt_enq_single(instance, op, op_type);
688 	if (unlikely(req == NULL))
689 		return 0;
690 
691 	otx_cpt_ring_dbell(instance, 1);
692 	req->qp = instance;
693 	submit_request_to_sso(port, (uintptr_t)req, rsp_info);
694 
695 	return 1;
696 }
697 
698 static inline void
699 otx_cpt_asym_rsa_op(struct rte_crypto_op *cop, struct cpt_request_info *req,
700 		    struct rte_crypto_rsa_xform *rsa_ctx)
701 
702 {
703 	struct rte_crypto_rsa_op_param *rsa = &cop->asym->rsa;
704 
705 	switch (rsa->op_type) {
706 	case RTE_CRYPTO_ASYM_OP_ENCRYPT:
707 		rsa->cipher.length = rsa_ctx->n.length;
708 		memcpy(rsa->cipher.data, req->rptr, rsa->cipher.length);
709 		break;
710 	case RTE_CRYPTO_ASYM_OP_DECRYPT:
711 		if (rsa_ctx->padding.type == RTE_CRYPTO_RSA_PADDING_NONE)
712 			rsa->message.length = rsa_ctx->n.length;
713 		else {
714 			/* Get length of decrypted output */
715 			rsa->message.length = rte_cpu_to_be_16
716 					(*((uint16_t *)req->rptr));
717 
718 			/* Offset data pointer by length fields */
719 			req->rptr += 2;
720 		}
721 		memcpy(rsa->message.data, req->rptr, rsa->message.length);
722 		break;
723 	case RTE_CRYPTO_ASYM_OP_SIGN:
724 		rsa->sign.length = rsa_ctx->n.length;
725 		memcpy(rsa->sign.data, req->rptr, rsa->sign.length);
726 		break;
727 	case RTE_CRYPTO_ASYM_OP_VERIFY:
728 		if (rsa_ctx->padding.type == RTE_CRYPTO_RSA_PADDING_NONE)
729 			rsa->sign.length = rsa_ctx->n.length;
730 		else {
731 			/* Get length of decrypted output */
732 			rsa->sign.length = rte_cpu_to_be_16
733 					(*((uint16_t *)req->rptr));
734 
735 			/* Offset data pointer by length fields */
736 			req->rptr += 2;
737 		}
738 		memcpy(rsa->sign.data, req->rptr, rsa->sign.length);
739 
740 		if (memcmp(rsa->sign.data, rsa->message.data,
741 			   rsa->message.length)) {
742 			CPT_LOG_DP_ERR("RSA verification failed");
743 			cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
744 		}
745 		break;
746 	default:
747 		CPT_LOG_DP_DEBUG("Invalid RSA operation type");
748 		cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
749 		break;
750 	}
751 }
752 
753 static __rte_always_inline void
754 otx_cpt_asym_dequeue_ecdsa_op(struct rte_crypto_ecdsa_op_param *ecdsa,
755 			    struct cpt_request_info *req,
756 			    struct cpt_asym_ec_ctx *ec)
757 
758 {
759 	int prime_len = ec_grp[ec->curveid].prime.length;
760 
761 	if (ecdsa->op_type == RTE_CRYPTO_ASYM_OP_VERIFY)
762 		return;
763 
764 	/* Separate out sign r and s components */
765 	memcpy(ecdsa->r.data, req->rptr, prime_len);
766 	memcpy(ecdsa->s.data, req->rptr + RTE_ALIGN_CEIL(prime_len, 8),
767 	       prime_len);
768 	ecdsa->r.length = prime_len;
769 	ecdsa->s.length = prime_len;
770 }
771 
772 static __rte_always_inline void
773 otx_cpt_asym_dequeue_ecpm_op(struct rte_crypto_ecpm_op_param *ecpm,
774 			     struct cpt_request_info *req,
775 			     struct cpt_asym_ec_ctx *ec)
776 {
777 	int prime_len = ec_grp[ec->curveid].prime.length;
778 
779 	memcpy(ecpm->r.x.data, req->rptr, prime_len);
780 	memcpy(ecpm->r.y.data, req->rptr + RTE_ALIGN_CEIL(prime_len, 8),
781 	       prime_len);
782 	ecpm->r.x.length = prime_len;
783 	ecpm->r.y.length = prime_len;
784 }
785 
786 static __rte_always_inline void __rte_hot
787 otx_cpt_asym_post_process(struct rte_crypto_op *cop,
788 			  struct cpt_request_info *req)
789 {
790 	struct rte_crypto_asym_op *op = cop->asym;
791 	struct cpt_asym_sess_misc *sess;
792 
793 	sess = (struct cpt_asym_sess_misc *) op->session->sess_private_data;
794 
795 	switch (sess->xfrm_type) {
796 	case RTE_CRYPTO_ASYM_XFORM_RSA:
797 		otx_cpt_asym_rsa_op(cop, req, &sess->rsa_ctx);
798 		break;
799 	case RTE_CRYPTO_ASYM_XFORM_MODEX:
800 		op->modex.result.length = sess->mod_ctx.modulus.length;
801 		memcpy(op->modex.result.data, req->rptr,
802 		       op->modex.result.length);
803 		break;
804 	case RTE_CRYPTO_ASYM_XFORM_ECDSA:
805 		otx_cpt_asym_dequeue_ecdsa_op(&op->ecdsa, req, &sess->ec_ctx);
806 		break;
807 	case RTE_CRYPTO_ASYM_XFORM_ECPM:
808 		otx_cpt_asym_dequeue_ecpm_op(&op->ecpm, req, &sess->ec_ctx);
809 		break;
810 	default:
811 		CPT_LOG_DP_DEBUG("Invalid crypto xform type");
812 		cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
813 		break;
814 	}
815 }
816 
817 static __rte_always_inline void __rte_hot
818 otx_cpt_dequeue_post_process(struct rte_crypto_op *cop, uintptr_t *rsp,
819 			     const uint8_t op_type)
820 {
821 	/* H/w has returned success */
822 	cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
823 
824 	/* Perform further post processing */
825 
826 	if ((op_type == OP_TYPE_SYM) &&
827 	    (cop->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC)) {
828 		/* Check if auth verify need to be completed */
829 		if (unlikely(rsp[2]))
830 			compl_auth_verify(cop, (uint8_t *)rsp[2], rsp[3]);
831 		return;
832 	}
833 
834 	if ((op_type == OP_TYPE_ASYM) &&
835 	    (cop->type == RTE_CRYPTO_OP_TYPE_ASYMMETRIC)) {
836 		rsp = RTE_PTR_ADD(rsp, 4 * sizeof(uintptr_t));
837 		otx_cpt_asym_post_process(cop, (struct cpt_request_info *)rsp);
838 	}
839 
840 	return;
841 }
842 
843 static inline void
844 free_sym_session_data(const struct cpt_instance *instance,
845 		      struct rte_crypto_op *cop)
846 {
847 	void *sess_private_data_t = CRYPTODEV_GET_SYM_SESS_PRIV(cop->sym->session);
848 
849 	memset(sess_private_data_t, 0, cpt_get_session_size());
850 	rte_mempool_put(instance->sess_mp, cop->sym->session);
851 	cop->sym->session = NULL;
852 }
853 
854 static __rte_always_inline struct rte_crypto_op *
855 otx_cpt_process_response(const struct cpt_instance *instance, uintptr_t *rsp,
856 			 uint8_t cc, const uint8_t op_type)
857 {
858 	struct rte_crypto_op *cop;
859 	void *metabuf;
860 
861 	metabuf = (void *)rsp[0];
862 	cop = (void *)rsp[1];
863 
864 	/* Check completion code */
865 	if (likely(cc == 0)) {
866 		/* H/w success pkt. Post process */
867 		otx_cpt_dequeue_post_process(cop, rsp, op_type);
868 	} else if (cc == ERR_GC_ICV_MISCOMPARE) {
869 		/* auth data mismatch */
870 		cop->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
871 	} else {
872 		/* Error */
873 		cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
874 	}
875 
876 	if (unlikely(cop->sess_type == RTE_CRYPTO_OP_SESSIONLESS))
877 		free_sym_session_data(instance, cop);
878 	free_op_meta(metabuf, instance->meta_info.pool);
879 
880 	return cop;
881 }
882 
883 static __rte_always_inline uint16_t __rte_hot
884 otx_cpt_pkt_dequeue(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops,
885 		    const uint8_t op_type)
886 {
887 	struct cpt_instance *instance = (struct cpt_instance *)qptr;
888 	struct cpt_request_info *user_req;
889 	struct cpt_vf *cptvf = (struct cpt_vf *)instance;
890 	uint8_t cc[nb_ops];
891 	int i, count, pcount;
892 	uint8_t ret;
893 	int nb_completed;
894 	struct pending_queue *pqueue = &cptvf->pqueue;
895 
896 	pcount = pending_queue_level(pqueue, DEFAULT_CMD_QLEN);
897 
898 	/* Ensure pcount isn't read before data lands */
899 	rte_atomic_thread_fence(rte_memory_order_acquire);
900 
901 	count = (nb_ops > pcount) ? pcount : nb_ops;
902 
903 	for (i = 0; i < count; i++) {
904 		pending_queue_peek(pqueue, (void **) &user_req,
905 			DEFAULT_CMD_QLEN, i + 1 < count);
906 
907 		ret = check_nb_command_id(user_req, instance);
908 
909 		if (unlikely(ret == ERR_REQ_PENDING)) {
910 			/* Stop checking for completions */
911 			break;
912 		}
913 
914 		/* Return completion code and op handle */
915 		cc[i] = ret;
916 		ops[i] = user_req->op;
917 
918 		CPT_LOG_DP_DEBUG("Request %p Op %p completed with code %d",
919 				 user_req, user_req->op, ret);
920 
921 		pending_queue_pop(pqueue, DEFAULT_CMD_QLEN);
922 	}
923 
924 	nb_completed = i;
925 
926 	for (i = 0; i < nb_completed; i++) {
927 		if (likely((i + 1) < nb_completed))
928 			rte_prefetch0(ops[i+1]);
929 
930 		ops[i] = otx_cpt_process_response(instance, (void *)ops[i],
931 						  cc[i], op_type);
932 	}
933 
934 	return nb_completed;
935 }
936 
937 static uint16_t
938 otx_cpt_dequeue_asym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
939 {
940 	return otx_cpt_pkt_dequeue(qptr, ops, nb_ops, OP_TYPE_ASYM);
941 }
942 
943 static uint16_t
944 otx_cpt_dequeue_sym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
945 {
946 	return otx_cpt_pkt_dequeue(qptr, ops, nb_ops, OP_TYPE_SYM);
947 }
948 
949 uintptr_t __rte_hot
950 otx_crypto_adapter_dequeue(uintptr_t get_work1)
951 {
952 	const struct cpt_instance *instance;
953 	struct cpt_request_info *req;
954 	struct rte_crypto_op *cop;
955 	uint8_t cc, op_type;
956 	uintptr_t *rsp;
957 
958 	req = (struct cpt_request_info *)get_work1;
959 	instance = req->qp;
960 	rsp = req->op;
961 	cop = (void *)rsp[1];
962 	op_type = cop->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC ? OP_TYPE_SYM :
963 							      OP_TYPE_ASYM;
964 
965 	do {
966 		cc = check_nb_command_id(
967 			req, (struct cpt_instance *)(uintptr_t)instance);
968 	} while (cc == ERR_REQ_PENDING);
969 
970 	cop = otx_cpt_process_response(instance, (void *)req->op, cc, op_type);
971 
972 	return (uintptr_t)(cop);
973 }
974 
975 static struct rte_cryptodev_ops cptvf_ops = {
976 	/* Device related operations */
977 	.dev_configure = otx_cpt_dev_config,
978 	.dev_start = otx_cpt_dev_start,
979 	.dev_stop = otx_cpt_dev_stop,
980 	.dev_close = otx_cpt_dev_close,
981 	.dev_infos_get = otx_cpt_dev_info_get,
982 
983 	.stats_get = NULL,
984 	.stats_reset = NULL,
985 	.queue_pair_setup = otx_cpt_que_pair_setup,
986 	.queue_pair_release = otx_cpt_que_pair_release,
987 
988 	/* Crypto related operations */
989 	.sym_session_get_size = otx_cpt_get_session_size,
990 	.sym_session_configure = otx_cpt_session_cfg,
991 	.sym_session_clear = otx_cpt_session_clear,
992 
993 	.asym_session_get_size = otx_cpt_asym_session_size_get,
994 	.asym_session_configure = otx_cpt_asym_session_cfg,
995 	.asym_session_clear = otx_cpt_asym_session_clear,
996 };
997 
998 int
999 otx_cpt_dev_create(struct rte_cryptodev *c_dev)
1000 {
1001 	struct rte_pci_device *pdev = RTE_DEV_TO_PCI(c_dev->device);
1002 	struct cpt_vf *cptvf = NULL;
1003 	void *reg_base;
1004 	char dev_name[32];
1005 	int ret;
1006 
1007 	if (pdev->mem_resource[0].phys_addr == 0ULL)
1008 		return -EIO;
1009 
1010 	/* for secondary processes, we don't initialise any further as primary
1011 	 * has already done this work.
1012 	 */
1013 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1014 		return 0;
1015 
1016 	cptvf = rte_zmalloc_socket("otx_cryptodev_private_mem",
1017 			sizeof(struct cpt_vf), RTE_CACHE_LINE_SIZE,
1018 			rte_socket_id());
1019 
1020 	if (cptvf == NULL) {
1021 		CPT_LOG_ERR("Cannot allocate memory for device private data");
1022 		return -ENOMEM;
1023 	}
1024 
1025 	snprintf(dev_name, 32, "%02x:%02x.%x",
1026 			pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
1027 
1028 	reg_base = pdev->mem_resource[0].addr;
1029 	if (!reg_base) {
1030 		CPT_LOG_ERR("Failed to map BAR0 of %s", dev_name);
1031 		ret = -ENODEV;
1032 		goto fail;
1033 	}
1034 
1035 	ret = otx_cpt_hw_init(cptvf, pdev, reg_base, dev_name);
1036 	if (ret) {
1037 		CPT_LOG_ERR("Failed to init cptvf %s", dev_name);
1038 		ret = -EIO;
1039 		goto fail;
1040 	}
1041 
1042 	switch (cptvf->vftype) {
1043 	case OTX_CPT_VF_TYPE_AE:
1044 		/* Set asymmetric cpt feature flags */
1045 		c_dev->feature_flags = RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO |
1046 				RTE_CRYPTODEV_FF_HW_ACCELERATED |
1047 				RTE_CRYPTODEV_FF_RSA_PRIV_OP_KEY_QT;
1048 		break;
1049 	case OTX_CPT_VF_TYPE_SE:
1050 		/* Set symmetric cpt feature flags */
1051 		c_dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
1052 				RTE_CRYPTODEV_FF_HW_ACCELERATED |
1053 				RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
1054 				RTE_CRYPTODEV_FF_IN_PLACE_SGL |
1055 				RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT |
1056 				RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT |
1057 				RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT |
1058 				RTE_CRYPTODEV_FF_SYM_SESSIONLESS |
1059 				RTE_CRYPTODEV_FF_DIGEST_ENCRYPTED;
1060 		break;
1061 	default:
1062 		/* Feature not supported. Abort */
1063 		CPT_LOG_ERR("VF type not supported by %s", dev_name);
1064 		ret = -EIO;
1065 		goto deinit_dev;
1066 	}
1067 
1068 	/* Start off timer for mailbox interrupts */
1069 	otx_cpt_periodic_alarm_start(cptvf);
1070 
1071 	c_dev->dev_ops = &cptvf_ops;
1072 
1073 	if (c_dev->feature_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) {
1074 		c_dev->enqueue_burst = otx_cpt_enqueue_sym;
1075 		c_dev->dequeue_burst = otx_cpt_dequeue_sym;
1076 	} else {
1077 		c_dev->enqueue_burst = otx_cpt_enqueue_asym;
1078 		c_dev->dequeue_burst = otx_cpt_dequeue_asym;
1079 	}
1080 
1081 	/* Save dev private data */
1082 	c_dev->data->dev_private = cptvf;
1083 
1084 	return 0;
1085 
1086 deinit_dev:
1087 	otx_cpt_deinit_device(cptvf);
1088 
1089 fail:
1090 	if (cptvf) {
1091 		/* Free private data allocated */
1092 		rte_free(cptvf);
1093 	}
1094 
1095 	return ret;
1096 }
1097