xref: /dpdk/drivers/crypto/octeontx/otx_cryptodev_ops.c (revision efb1a06bb3f8dbcce5e43b49d23d73aaf80b2c8f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Cavium, Inc
3  */
4 
5 #include <rte_alarm.h>
6 #include <rte_bus_pci.h>
7 #include <rte_cryptodev.h>
8 #include <cryptodev_pmd.h>
9 #include <rte_eventdev.h>
10 #include <rte_event_crypto_adapter.h>
11 #include <rte_errno.h>
12 #include <rte_malloc.h>
13 #include <rte_mempool.h>
14 
15 #include "otx_cryptodev.h"
16 #include "otx_cryptodev_capabilities.h"
17 #include "otx_cryptodev_hw_access.h"
18 #include "otx_cryptodev_mbox.h"
19 #include "otx_cryptodev_ops.h"
20 
21 #include "cpt_pmd_logs.h"
22 #include "cpt_pmd_ops_helper.h"
23 #include "cpt_ucode.h"
24 #include "cpt_ucode_asym.h"
25 
26 #include "ssovf_worker.h"
27 
28 static uint64_t otx_fpm_iova[CPT_EC_ID_PMAX];
29 
30 /* Forward declarations */
31 
32 static int
33 otx_cpt_que_pair_release(struct rte_cryptodev *dev, uint16_t que_pair_id);
34 
35 /* Alarm routines */
36 
37 static void
38 otx_cpt_alarm_cb(void *arg)
39 {
40 	struct cpt_vf *cptvf = arg;
41 	otx_cpt_poll_misc(cptvf);
42 	rte_eal_alarm_set(CPT_INTR_POLL_INTERVAL_MS * 1000,
43 			  otx_cpt_alarm_cb, cptvf);
44 }
45 
46 static int
47 otx_cpt_periodic_alarm_start(void *arg)
48 {
49 	return rte_eal_alarm_set(CPT_INTR_POLL_INTERVAL_MS * 1000,
50 				 otx_cpt_alarm_cb, arg);
51 }
52 
53 static int
54 otx_cpt_periodic_alarm_stop(void *arg)
55 {
56 	return rte_eal_alarm_cancel(otx_cpt_alarm_cb, arg);
57 }
58 
59 /* PMD ops */
60 
61 static int
62 otx_cpt_dev_config(struct rte_cryptodev *dev,
63 		   struct rte_cryptodev_config *config __rte_unused)
64 {
65 	int ret = 0;
66 
67 	CPT_PMD_INIT_FUNC_TRACE();
68 
69 	if (dev->feature_flags & RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO)
70 		/* Initialize shared FPM table */
71 		ret = cpt_fpm_init(otx_fpm_iova);
72 
73 	return ret;
74 }
75 
76 static int
77 otx_cpt_dev_start(struct rte_cryptodev *c_dev)
78 {
79 	void *cptvf = c_dev->data->dev_private;
80 
81 	CPT_PMD_INIT_FUNC_TRACE();
82 
83 	return otx_cpt_start_device(cptvf);
84 }
85 
86 static void
87 otx_cpt_dev_stop(struct rte_cryptodev *c_dev)
88 {
89 	void *cptvf = c_dev->data->dev_private;
90 
91 	CPT_PMD_INIT_FUNC_TRACE();
92 
93 	if (c_dev->feature_flags & RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO)
94 		cpt_fpm_clear();
95 
96 	otx_cpt_stop_device(cptvf);
97 }
98 
99 static int
100 otx_cpt_dev_close(struct rte_cryptodev *c_dev)
101 {
102 	void *cptvf = c_dev->data->dev_private;
103 	int i, ret;
104 
105 	CPT_PMD_INIT_FUNC_TRACE();
106 
107 	for (i = 0; i < c_dev->data->nb_queue_pairs; i++) {
108 		ret = otx_cpt_que_pair_release(c_dev, i);
109 		if (ret)
110 			return ret;
111 	}
112 
113 	otx_cpt_periodic_alarm_stop(cptvf);
114 	otx_cpt_deinit_device(cptvf);
115 
116 	return 0;
117 }
118 
119 static void
120 otx_cpt_dev_info_get(struct rte_cryptodev *dev, struct rte_cryptodev_info *info)
121 {
122 	CPT_PMD_INIT_FUNC_TRACE();
123 	if (info != NULL) {
124 		info->max_nb_queue_pairs = CPT_NUM_QS_PER_VF;
125 		info->feature_flags = dev->feature_flags;
126 		info->capabilities = otx_get_capabilities(info->feature_flags);
127 		info->sym.max_nb_sessions = 0;
128 		info->driver_id = otx_cryptodev_driver_id;
129 		info->min_mbuf_headroom_req = OTX_CPT_MIN_HEADROOM_REQ;
130 		info->min_mbuf_tailroom_req = OTX_CPT_MIN_TAILROOM_REQ;
131 	}
132 }
133 
134 static int
135 otx_cpt_que_pair_setup(struct rte_cryptodev *dev,
136 		       uint16_t que_pair_id,
137 		       const struct rte_cryptodev_qp_conf *qp_conf,
138 		       int socket_id __rte_unused)
139 {
140 	struct cpt_instance *instance = NULL;
141 	struct rte_pci_device *pci_dev;
142 	int ret = -1;
143 
144 	CPT_PMD_INIT_FUNC_TRACE();
145 
146 	if (dev->data->queue_pairs[que_pair_id] != NULL) {
147 		ret = otx_cpt_que_pair_release(dev, que_pair_id);
148 		if (ret)
149 			return ret;
150 	}
151 
152 	if (qp_conf->nb_descriptors > DEFAULT_CMD_QLEN) {
153 		CPT_LOG_INFO("Number of descriptors too big %d, using default "
154 			     "queue length of %d", qp_conf->nb_descriptors,
155 			     DEFAULT_CMD_QLEN);
156 	}
157 
158 	pci_dev = RTE_DEV_TO_PCI(dev->device);
159 
160 	if (pci_dev->mem_resource[0].addr == NULL) {
161 		CPT_LOG_ERR("PCI mem address null");
162 		return -EIO;
163 	}
164 
165 	ret = otx_cpt_get_resource(dev, 0, &instance, que_pair_id);
166 	if (ret != 0 || instance == NULL) {
167 		CPT_LOG_ERR("Error getting instance handle from device %s : "
168 			    "ret = %d", dev->data->name, ret);
169 		return ret;
170 	}
171 
172 	instance->queue_id = que_pair_id;
173 	instance->sess_mp = qp_conf->mp_session;
174 	instance->sess_mp_priv = qp_conf->mp_session_private;
175 	dev->data->queue_pairs[que_pair_id] = instance;
176 
177 	return 0;
178 }
179 
180 static int
181 otx_cpt_que_pair_release(struct rte_cryptodev *dev, uint16_t que_pair_id)
182 {
183 	struct cpt_instance *instance = dev->data->queue_pairs[que_pair_id];
184 	int ret;
185 
186 	CPT_PMD_INIT_FUNC_TRACE();
187 
188 	ret = otx_cpt_put_resource(instance);
189 	if (ret != 0) {
190 		CPT_LOG_ERR("Error putting instance handle of device %s : "
191 			    "ret = %d", dev->data->name, ret);
192 		return ret;
193 	}
194 
195 	dev->data->queue_pairs[que_pair_id] = NULL;
196 
197 	return 0;
198 }
199 
200 static unsigned int
201 otx_cpt_get_session_size(struct rte_cryptodev *dev __rte_unused)
202 {
203 	return cpt_get_session_size();
204 }
205 
206 static int
207 sym_xform_verify(struct rte_crypto_sym_xform *xform)
208 {
209 	if (xform->next) {
210 		if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
211 		    xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
212 		    xform->next->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT &&
213 		    (xform->auth.algo != RTE_CRYPTO_AUTH_SHA1_HMAC ||
214 		     xform->next->cipher.algo != RTE_CRYPTO_CIPHER_AES_CBC))
215 			return -ENOTSUP;
216 
217 		if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
218 		    xform->cipher.op == RTE_CRYPTO_CIPHER_OP_DECRYPT &&
219 		    xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
220 		    (xform->cipher.algo != RTE_CRYPTO_CIPHER_AES_CBC ||
221 		     xform->next->auth.algo != RTE_CRYPTO_AUTH_SHA1_HMAC))
222 			return -ENOTSUP;
223 
224 		if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
225 		    xform->cipher.algo == RTE_CRYPTO_CIPHER_3DES_CBC &&
226 		    xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
227 		    xform->next->auth.algo == RTE_CRYPTO_AUTH_SHA1)
228 			return -ENOTSUP;
229 
230 		if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
231 		    xform->auth.algo == RTE_CRYPTO_AUTH_SHA1 &&
232 		    xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
233 		    xform->next->cipher.algo == RTE_CRYPTO_CIPHER_3DES_CBC)
234 			return -ENOTSUP;
235 
236 	} else {
237 		if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
238 		    xform->auth.algo == RTE_CRYPTO_AUTH_NULL &&
239 		    xform->auth.op == RTE_CRYPTO_AUTH_OP_VERIFY)
240 			return -ENOTSUP;
241 	}
242 	return 0;
243 }
244 
245 static int
246 sym_session_configure(int driver_id, struct rte_crypto_sym_xform *xform,
247 		      struct rte_cryptodev_sym_session *sess,
248 		      struct rte_mempool *pool)
249 {
250 	struct rte_crypto_sym_xform *temp_xform = xform;
251 	struct cpt_sess_misc *misc;
252 	vq_cmd_word3_t vq_cmd_w3;
253 	void *priv;
254 	int ret;
255 
256 	ret = sym_xform_verify(xform);
257 	if (unlikely(ret))
258 		return ret;
259 
260 	if (unlikely(rte_mempool_get(pool, &priv))) {
261 		CPT_LOG_ERR("Could not allocate session private data");
262 		return -ENOMEM;
263 	}
264 
265 	memset(priv, 0, sizeof(struct cpt_sess_misc) +
266 			offsetof(struct cpt_ctx, mc_ctx));
267 
268 	misc = priv;
269 
270 	for ( ; xform != NULL; xform = xform->next) {
271 		switch (xform->type) {
272 		case RTE_CRYPTO_SYM_XFORM_AEAD:
273 			ret = fill_sess_aead(xform, misc);
274 			break;
275 		case RTE_CRYPTO_SYM_XFORM_CIPHER:
276 			ret = fill_sess_cipher(xform, misc);
277 			break;
278 		case RTE_CRYPTO_SYM_XFORM_AUTH:
279 			if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC)
280 				ret = fill_sess_gmac(xform, misc);
281 			else
282 				ret = fill_sess_auth(xform, misc);
283 			break;
284 		default:
285 			ret = -1;
286 		}
287 
288 		if (ret)
289 			goto priv_put;
290 	}
291 
292 	if ((GET_SESS_FC_TYPE(misc) == HASH_HMAC) &&
293 			cpt_mac_len_verify(&temp_xform->auth)) {
294 		CPT_LOG_ERR("MAC length is not supported");
295 		struct cpt_ctx *ctx = SESS_PRIV(misc);
296 		if (ctx->auth_key != NULL) {
297 			rte_free(ctx->auth_key);
298 			ctx->auth_key = NULL;
299 		}
300 		ret = -ENOTSUP;
301 		goto priv_put;
302 	}
303 
304 	set_sym_session_private_data(sess, driver_id, priv);
305 
306 	misc->ctx_dma_addr = rte_mempool_virt2iova(misc) +
307 			     sizeof(struct cpt_sess_misc);
308 
309 	vq_cmd_w3.u64 = 0;
310 	vq_cmd_w3.s.grp = 0;
311 	vq_cmd_w3.s.cptr = misc->ctx_dma_addr + offsetof(struct cpt_ctx,
312 							 mc_ctx);
313 
314 	misc->cpt_inst_w7 = vq_cmd_w3.u64;
315 
316 	return 0;
317 
318 priv_put:
319 	if (priv)
320 		rte_mempool_put(pool, priv);
321 	return -ENOTSUP;
322 }
323 
324 static void
325 sym_session_clear(int driver_id, struct rte_cryptodev_sym_session *sess)
326 {
327 	void *priv = get_sym_session_private_data(sess, driver_id);
328 	struct cpt_sess_misc *misc;
329 	struct rte_mempool *pool;
330 	struct cpt_ctx *ctx;
331 
332 	if (priv == NULL)
333 		return;
334 
335 	misc = priv;
336 	ctx = SESS_PRIV(misc);
337 
338 	rte_free(ctx->auth_key);
339 
340 	memset(priv, 0, cpt_get_session_size());
341 
342 	pool = rte_mempool_from_obj(priv);
343 
344 	set_sym_session_private_data(sess, driver_id, NULL);
345 
346 	rte_mempool_put(pool, priv);
347 }
348 
349 static int
350 otx_cpt_session_cfg(struct rte_cryptodev *dev,
351 		    struct rte_crypto_sym_xform *xform,
352 		    struct rte_cryptodev_sym_session *sess,
353 		    struct rte_mempool *pool)
354 {
355 	CPT_PMD_INIT_FUNC_TRACE();
356 
357 	return sym_session_configure(dev->driver_id, xform, sess, pool);
358 }
359 
360 
361 static void
362 otx_cpt_session_clear(struct rte_cryptodev *dev,
363 		  struct rte_cryptodev_sym_session *sess)
364 {
365 	CPT_PMD_INIT_FUNC_TRACE();
366 
367 	return sym_session_clear(dev->driver_id, sess);
368 }
369 
370 static unsigned int
371 otx_cpt_asym_session_size_get(struct rte_cryptodev *dev __rte_unused)
372 {
373 	return sizeof(struct cpt_asym_sess_misc);
374 }
375 
376 static int
377 otx_cpt_asym_session_cfg(struct rte_cryptodev *dev __rte_unused,
378 			 struct rte_crypto_asym_xform *xform __rte_unused,
379 			 struct rte_cryptodev_asym_session *sess)
380 {
381 	struct cpt_asym_sess_misc *priv = (struct cpt_asym_sess_misc *)
382 			sess->sess_private_data;
383 	int ret;
384 
385 	CPT_PMD_INIT_FUNC_TRACE();
386 
387 	ret = cpt_fill_asym_session_parameters(priv, xform);
388 	if (ret) {
389 		CPT_LOG_ERR("Could not configure session parameters");
390 		return ret;
391 	}
392 
393 	priv->cpt_inst_w7 = 0;
394 
395 	return 0;
396 }
397 
398 static void
399 otx_cpt_asym_session_clear(struct rte_cryptodev *dev,
400 			   struct rte_cryptodev_asym_session *sess)
401 {
402 	struct cpt_asym_sess_misc *priv;
403 
404 	CPT_PMD_INIT_FUNC_TRACE();
405 
406 	priv = (struct cpt_asym_sess_misc *) sess->sess_private_data;
407 
408 	if (priv == NULL)
409 		return;
410 
411 	/* Free resources allocated during session configure */
412 	cpt_free_asym_session_parameters(priv);
413 	memset(priv, 0, otx_cpt_asym_session_size_get(dev));
414 }
415 
416 static __rte_always_inline void * __rte_hot
417 otx_cpt_request_enqueue(struct cpt_instance *instance,
418 			void *req, uint64_t cpt_inst_w7)
419 {
420 	struct cpt_request_info *user_req = (struct cpt_request_info *)req;
421 
422 	fill_cpt_inst(instance, req, cpt_inst_w7);
423 
424 	CPT_LOG_DP_DEBUG("req: %p op: %p ", req, user_req->op);
425 
426 	/* Fill time_out cycles */
427 	user_req->time_out = rte_get_timer_cycles() +
428 			DEFAULT_COMMAND_TIMEOUT * rte_get_timer_hz();
429 	user_req->extra_time = 0;
430 
431 	/* Default mode of software queue */
432 	mark_cpt_inst(instance);
433 
434 	CPT_LOG_DP_DEBUG("Submitted NB cmd with request: %p "
435 			 "op: %p", user_req, user_req->op);
436 	return req;
437 }
438 
439 static __rte_always_inline void * __rte_hot
440 otx_cpt_enq_single_asym(struct cpt_instance *instance,
441 			struct rte_crypto_op *op)
442 {
443 	struct cpt_qp_meta_info *minfo = &instance->meta_info;
444 	struct rte_crypto_asym_op *asym_op = op->asym;
445 	struct asym_op_params params = {0};
446 	struct cpt_asym_sess_misc *sess;
447 	uintptr_t *cop;
448 	void *mdata;
449 	void *req;
450 	int ret;
451 
452 	if (unlikely(rte_mempool_get(minfo->pool, &mdata) < 0)) {
453 		CPT_LOG_DP_ERR("Could not allocate meta buffer for request");
454 		rte_errno = ENOMEM;
455 		return NULL;
456 	}
457 
458 	sess = (struct cpt_asym_sess_misc *)
459 			asym_op->session->sess_private_data;
460 
461 	/* Store phys_addr of the mdata to meta_buf */
462 	params.meta_buf = rte_mempool_virt2iova(mdata);
463 
464 	cop = mdata;
465 	cop[0] = (uintptr_t)mdata;
466 	cop[1] = (uintptr_t)op;
467 	cop[2] = cop[3] = 0ULL;
468 
469 	params.req = RTE_PTR_ADD(cop, 4 * sizeof(uintptr_t));
470 	params.req->op = cop;
471 
472 	/* Adjust meta_buf by crypto_op data  and request_info struct */
473 	params.meta_buf += (4 * sizeof(uintptr_t)) +
474 			   sizeof(struct cpt_request_info);
475 
476 	switch (sess->xfrm_type) {
477 	case RTE_CRYPTO_ASYM_XFORM_MODEX:
478 		ret = cpt_modex_prep(&params, &sess->mod_ctx);
479 		if (unlikely(ret))
480 			goto req_fail;
481 		break;
482 	case RTE_CRYPTO_ASYM_XFORM_RSA:
483 		ret = cpt_enqueue_rsa_op(op, &params, sess);
484 		if (unlikely(ret))
485 			goto req_fail;
486 		break;
487 	case RTE_CRYPTO_ASYM_XFORM_ECDSA:
488 		ret = cpt_enqueue_ecdsa_op(op, &params, sess, otx_fpm_iova);
489 		if (unlikely(ret))
490 			goto req_fail;
491 		break;
492 	case RTE_CRYPTO_ASYM_XFORM_ECPM:
493 		ret = cpt_ecpm_prep(&asym_op->ecpm, &params,
494 				    sess->ec_ctx.curveid);
495 		if (unlikely(ret))
496 			goto req_fail;
497 		break;
498 
499 	default:
500 		op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
501 		rte_errno = EINVAL;
502 		goto req_fail;
503 	}
504 
505 	req = otx_cpt_request_enqueue(instance, params.req, sess->cpt_inst_w7);
506 	if (unlikely(req == NULL)) {
507 		CPT_LOG_DP_ERR("Could not enqueue crypto req");
508 		goto req_fail;
509 	}
510 
511 	return req;
512 
513 req_fail:
514 	free_op_meta(mdata, minfo->pool);
515 
516 	return NULL;
517 }
518 
519 static __rte_always_inline void * __rte_hot
520 otx_cpt_enq_single_sym(struct cpt_instance *instance,
521 		       struct rte_crypto_op *op)
522 {
523 	struct cpt_sess_misc *sess;
524 	struct rte_crypto_sym_op *sym_op = op->sym;
525 	struct cpt_request_info *prep_req;
526 	void *mdata = NULL;
527 	int ret = 0;
528 	void *req;
529 	uint64_t cpt_op;
530 
531 	sess = (struct cpt_sess_misc *)
532 			get_sym_session_private_data(sym_op->session,
533 						     otx_cryptodev_driver_id);
534 
535 	cpt_op = sess->cpt_op;
536 
537 	if (likely(cpt_op & CPT_OP_CIPHER_MASK))
538 		ret = fill_fc_params(op, sess, &instance->meta_info, &mdata,
539 				     (void **)&prep_req);
540 	else
541 		ret = fill_digest_params(op, sess, &instance->meta_info,
542 					 &mdata, (void **)&prep_req);
543 
544 	if (unlikely(ret)) {
545 		CPT_LOG_DP_ERR("prep crypto req : op %p, cpt_op 0x%x "
546 			       "ret 0x%x", op, (unsigned int)cpt_op, ret);
547 		return NULL;
548 	}
549 
550 	/* Enqueue prepared instruction to h/w */
551 	req = otx_cpt_request_enqueue(instance, prep_req, sess->cpt_inst_w7);
552 	if (unlikely(req == NULL))
553 		/* Buffer allocated for request preparation need to be freed */
554 		free_op_meta(mdata, instance->meta_info.pool);
555 
556 	return req;
557 }
558 
559 static __rte_always_inline void * __rte_hot
560 otx_cpt_enq_single_sym_sessless(struct cpt_instance *instance,
561 				struct rte_crypto_op *op)
562 {
563 	const int driver_id = otx_cryptodev_driver_id;
564 	struct rte_crypto_sym_op *sym_op = op->sym;
565 	struct rte_cryptodev_sym_session *sess;
566 	void *req;
567 	int ret;
568 
569 	/* Create temporary session */
570 	sess = rte_cryptodev_sym_session_create(instance->sess_mp);
571 	if (sess == NULL) {
572 		rte_errno = ENOMEM;
573 		return NULL;
574 	}
575 
576 	ret = sym_session_configure(driver_id, sym_op->xform, sess,
577 				    instance->sess_mp_priv);
578 	if (ret)
579 		goto sess_put;
580 
581 	sym_op->session = sess;
582 
583 	/* Enqueue op with the tmp session set */
584 	req = otx_cpt_enq_single_sym(instance, op);
585 	if (unlikely(req == NULL))
586 		goto priv_put;
587 
588 	return req;
589 
590 priv_put:
591 	sym_session_clear(driver_id, sess);
592 sess_put:
593 	rte_mempool_put(instance->sess_mp, sess);
594 	return NULL;
595 }
596 
597 #define OP_TYPE_SYM		0
598 #define OP_TYPE_ASYM		1
599 
600 static __rte_always_inline void *__rte_hot
601 otx_cpt_enq_single(struct cpt_instance *inst,
602 		   struct rte_crypto_op *op,
603 		   const uint8_t op_type)
604 {
605 	/* Check for the type */
606 
607 	if (op_type == OP_TYPE_SYM) {
608 		if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
609 			return otx_cpt_enq_single_sym(inst, op);
610 		else
611 			return otx_cpt_enq_single_sym_sessless(inst, op);
612 	}
613 
614 	if (op_type == OP_TYPE_ASYM) {
615 		if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
616 			return otx_cpt_enq_single_asym(inst, op);
617 	}
618 
619 	/* Should not reach here */
620 	rte_errno = ENOTSUP;
621 	return NULL;
622 }
623 
624 static  __rte_always_inline uint16_t __rte_hot
625 otx_cpt_pkt_enqueue(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops,
626 		    const uint8_t op_type)
627 {
628 	struct cpt_instance *instance = (struct cpt_instance *)qptr;
629 	uint16_t count, free_slots;
630 	void *req;
631 	struct cpt_vf *cptvf = (struct cpt_vf *)instance;
632 	struct pending_queue *pqueue = &cptvf->pqueue;
633 
634 	free_slots = pending_queue_free_slots(pqueue, DEFAULT_CMD_QLEN,
635 				DEFAULT_CMD_QRSVD_SLOTS);
636 	if (nb_ops > free_slots)
637 		nb_ops = free_slots;
638 
639 	count = 0;
640 	while (likely(count < nb_ops)) {
641 
642 		/* Enqueue single op */
643 		req = otx_cpt_enq_single(instance, ops[count], op_type);
644 
645 		if (unlikely(req == NULL))
646 			break;
647 
648 		pending_queue_push(pqueue, req, count, DEFAULT_CMD_QLEN);
649 		count++;
650 	}
651 
652 	if (likely(count)) {
653 		pending_queue_commit(pqueue, count, DEFAULT_CMD_QLEN);
654 		otx_cpt_ring_dbell(instance, count);
655 	}
656 	return count;
657 }
658 
659 static uint16_t
660 otx_cpt_enqueue_asym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
661 {
662 	return otx_cpt_pkt_enqueue(qptr, ops, nb_ops, OP_TYPE_ASYM);
663 }
664 
665 static uint16_t
666 otx_cpt_enqueue_sym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
667 {
668 	return otx_cpt_pkt_enqueue(qptr, ops, nb_ops, OP_TYPE_SYM);
669 }
670 
671 static __rte_always_inline void
672 submit_request_to_sso(struct ssows *ws, uintptr_t req,
673 		      struct rte_event *rsp_info)
674 {
675 	uint64_t add_work;
676 
677 	add_work = rsp_info->flow_id | (RTE_EVENT_TYPE_CRYPTODEV << 28) |
678 		   ((uint64_t)(rsp_info->sched_type) << 32);
679 
680 	if (!rsp_info->sched_type)
681 		ssows_head_wait(ws);
682 
683 	rte_atomic_thread_fence(__ATOMIC_RELEASE);
684 	ssovf_store_pair(add_work, req, ws->grps[rsp_info->queue_id]);
685 }
686 
687 uint16_t __rte_hot
688 otx_crypto_adapter_enqueue(void *port, struct rte_crypto_op *op)
689 {
690 	union rte_event_crypto_metadata *ec_mdata;
691 	struct cpt_instance *instance;
692 	struct cpt_request_info *req;
693 	struct rte_event *rsp_info;
694 	uint8_t op_type, cdev_id;
695 	uint16_t qp_id;
696 
697 	ec_mdata = rte_cryptodev_session_event_mdata_get(op);
698 	if (unlikely(ec_mdata == NULL)) {
699 		rte_errno = EINVAL;
700 		return 0;
701 	}
702 
703 	cdev_id = ec_mdata->request_info.cdev_id;
704 	qp_id = ec_mdata->request_info.queue_pair_id;
705 	rsp_info = &ec_mdata->response_info;
706 	instance = rte_cryptodevs[cdev_id].data->queue_pairs[qp_id];
707 
708 	if (unlikely(!instance->ca_enabled)) {
709 		rte_errno = EINVAL;
710 		return 0;
711 	}
712 
713 	op_type = op->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC ? OP_TYPE_SYM :
714 							     OP_TYPE_ASYM;
715 	req = otx_cpt_enq_single(instance, op, op_type);
716 	if (unlikely(req == NULL))
717 		return 0;
718 
719 	otx_cpt_ring_dbell(instance, 1);
720 	req->qp = instance;
721 	submit_request_to_sso(port, (uintptr_t)req, rsp_info);
722 
723 	return 1;
724 }
725 
726 static inline void
727 otx_cpt_asym_rsa_op(struct rte_crypto_op *cop, struct cpt_request_info *req,
728 		    struct rte_crypto_rsa_xform *rsa_ctx)
729 
730 {
731 	struct rte_crypto_rsa_op_param *rsa = &cop->asym->rsa;
732 
733 	switch (rsa->op_type) {
734 	case RTE_CRYPTO_ASYM_OP_ENCRYPT:
735 		rsa->cipher.length = rsa_ctx->n.length;
736 		memcpy(rsa->cipher.data, req->rptr, rsa->cipher.length);
737 		break;
738 	case RTE_CRYPTO_ASYM_OP_DECRYPT:
739 		if (rsa->pad == RTE_CRYPTO_RSA_PADDING_NONE)
740 			rsa->message.length = rsa_ctx->n.length;
741 		else {
742 			/* Get length of decrypted output */
743 			rsa->message.length = rte_cpu_to_be_16
744 					(*((uint16_t *)req->rptr));
745 
746 			/* Offset data pointer by length fields */
747 			req->rptr += 2;
748 		}
749 		memcpy(rsa->message.data, req->rptr, rsa->message.length);
750 		break;
751 	case RTE_CRYPTO_ASYM_OP_SIGN:
752 		rsa->sign.length = rsa_ctx->n.length;
753 		memcpy(rsa->sign.data, req->rptr, rsa->sign.length);
754 		break;
755 	case RTE_CRYPTO_ASYM_OP_VERIFY:
756 		if (rsa->pad == RTE_CRYPTO_RSA_PADDING_NONE)
757 			rsa->sign.length = rsa_ctx->n.length;
758 		else {
759 			/* Get length of decrypted output */
760 			rsa->sign.length = rte_cpu_to_be_16
761 					(*((uint16_t *)req->rptr));
762 
763 			/* Offset data pointer by length fields */
764 			req->rptr += 2;
765 		}
766 		memcpy(rsa->sign.data, req->rptr, rsa->sign.length);
767 
768 		if (memcmp(rsa->sign.data, rsa->message.data,
769 			   rsa->message.length)) {
770 			CPT_LOG_DP_ERR("RSA verification failed");
771 			cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
772 		}
773 		break;
774 	default:
775 		CPT_LOG_DP_DEBUG("Invalid RSA operation type");
776 		cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
777 		break;
778 	}
779 }
780 
781 static __rte_always_inline void
782 otx_cpt_asym_dequeue_ecdsa_op(struct rte_crypto_ecdsa_op_param *ecdsa,
783 			    struct cpt_request_info *req,
784 			    struct cpt_asym_ec_ctx *ec)
785 
786 {
787 	int prime_len = ec_grp[ec->curveid].prime.length;
788 
789 	if (ecdsa->op_type == RTE_CRYPTO_ASYM_OP_VERIFY)
790 		return;
791 
792 	/* Separate out sign r and s components */
793 	memcpy(ecdsa->r.data, req->rptr, prime_len);
794 	memcpy(ecdsa->s.data, req->rptr + RTE_ALIGN_CEIL(prime_len, 8),
795 	       prime_len);
796 	ecdsa->r.length = prime_len;
797 	ecdsa->s.length = prime_len;
798 }
799 
800 static __rte_always_inline void
801 otx_cpt_asym_dequeue_ecpm_op(struct rte_crypto_ecpm_op_param *ecpm,
802 			     struct cpt_request_info *req,
803 			     struct cpt_asym_ec_ctx *ec)
804 {
805 	int prime_len = ec_grp[ec->curveid].prime.length;
806 
807 	memcpy(ecpm->r.x.data, req->rptr, prime_len);
808 	memcpy(ecpm->r.y.data, req->rptr + RTE_ALIGN_CEIL(prime_len, 8),
809 	       prime_len);
810 	ecpm->r.x.length = prime_len;
811 	ecpm->r.y.length = prime_len;
812 }
813 
814 static __rte_always_inline void __rte_hot
815 otx_cpt_asym_post_process(struct rte_crypto_op *cop,
816 			  struct cpt_request_info *req)
817 {
818 	struct rte_crypto_asym_op *op = cop->asym;
819 	struct cpt_asym_sess_misc *sess;
820 
821 	sess = (struct cpt_asym_sess_misc *) op->session->sess_private_data;
822 
823 	switch (sess->xfrm_type) {
824 	case RTE_CRYPTO_ASYM_XFORM_RSA:
825 		otx_cpt_asym_rsa_op(cop, req, &sess->rsa_ctx);
826 		break;
827 	case RTE_CRYPTO_ASYM_XFORM_MODEX:
828 		op->modex.result.length = sess->mod_ctx.modulus.length;
829 		memcpy(op->modex.result.data, req->rptr,
830 		       op->modex.result.length);
831 		break;
832 	case RTE_CRYPTO_ASYM_XFORM_ECDSA:
833 		otx_cpt_asym_dequeue_ecdsa_op(&op->ecdsa, req, &sess->ec_ctx);
834 		break;
835 	case RTE_CRYPTO_ASYM_XFORM_ECPM:
836 		otx_cpt_asym_dequeue_ecpm_op(&op->ecpm, req, &sess->ec_ctx);
837 		break;
838 	default:
839 		CPT_LOG_DP_DEBUG("Invalid crypto xform type");
840 		cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
841 		break;
842 	}
843 }
844 
845 static __rte_always_inline void __rte_hot
846 otx_cpt_dequeue_post_process(struct rte_crypto_op *cop, uintptr_t *rsp,
847 			     const uint8_t op_type)
848 {
849 	/* H/w has returned success */
850 	cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
851 
852 	/* Perform further post processing */
853 
854 	if ((op_type == OP_TYPE_SYM) &&
855 	    (cop->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC)) {
856 		/* Check if auth verify need to be completed */
857 		if (unlikely(rsp[2]))
858 			compl_auth_verify(cop, (uint8_t *)rsp[2], rsp[3]);
859 		return;
860 	}
861 
862 	if ((op_type == OP_TYPE_ASYM) &&
863 	    (cop->type == RTE_CRYPTO_OP_TYPE_ASYMMETRIC)) {
864 		rsp = RTE_PTR_ADD(rsp, 4 * sizeof(uintptr_t));
865 		otx_cpt_asym_post_process(cop, (struct cpt_request_info *)rsp);
866 	}
867 
868 	return;
869 }
870 
871 static inline void
872 free_sym_session_data(const struct cpt_instance *instance,
873 		      struct rte_crypto_op *cop)
874 {
875 	void *sess_private_data_t = get_sym_session_private_data(
876 		cop->sym->session, otx_cryptodev_driver_id);
877 	memset(sess_private_data_t, 0, cpt_get_session_size());
878 	memset(cop->sym->session, 0,
879 	       rte_cryptodev_sym_get_existing_header_session_size(
880 		       cop->sym->session));
881 	rte_mempool_put(instance->sess_mp_priv, sess_private_data_t);
882 	rte_mempool_put(instance->sess_mp, cop->sym->session);
883 	cop->sym->session = NULL;
884 }
885 
886 static __rte_always_inline struct rte_crypto_op *
887 otx_cpt_process_response(const struct cpt_instance *instance, uintptr_t *rsp,
888 			 uint8_t cc, const uint8_t op_type)
889 {
890 	struct rte_crypto_op *cop;
891 	void *metabuf;
892 
893 	metabuf = (void *)rsp[0];
894 	cop = (void *)rsp[1];
895 
896 	/* Check completion code */
897 	if (likely(cc == 0)) {
898 		/* H/w success pkt. Post process */
899 		otx_cpt_dequeue_post_process(cop, rsp, op_type);
900 	} else if (cc == ERR_GC_ICV_MISCOMPARE) {
901 		/* auth data mismatch */
902 		cop->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
903 	} else {
904 		/* Error */
905 		cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
906 	}
907 
908 	if (unlikely(cop->sess_type == RTE_CRYPTO_OP_SESSIONLESS))
909 		free_sym_session_data(instance, cop);
910 	free_op_meta(metabuf, instance->meta_info.pool);
911 
912 	return cop;
913 }
914 
915 static __rte_always_inline uint16_t __rte_hot
916 otx_cpt_pkt_dequeue(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops,
917 		    const uint8_t op_type)
918 {
919 	struct cpt_instance *instance = (struct cpt_instance *)qptr;
920 	struct cpt_request_info *user_req;
921 	struct cpt_vf *cptvf = (struct cpt_vf *)instance;
922 	uint8_t cc[nb_ops];
923 	int i, count, pcount;
924 	uint8_t ret;
925 	int nb_completed;
926 	struct pending_queue *pqueue = &cptvf->pqueue;
927 
928 	pcount = pending_queue_level(pqueue, DEFAULT_CMD_QLEN);
929 
930 	/* Ensure pcount isn't read before data lands */
931 	rte_atomic_thread_fence(__ATOMIC_ACQUIRE);
932 
933 	count = (nb_ops > pcount) ? pcount : nb_ops;
934 
935 	for (i = 0; i < count; i++) {
936 		pending_queue_peek(pqueue, (void **) &user_req,
937 			DEFAULT_CMD_QLEN, i + 1 < count);
938 
939 		ret = check_nb_command_id(user_req, instance);
940 
941 		if (unlikely(ret == ERR_REQ_PENDING)) {
942 			/* Stop checking for completions */
943 			break;
944 		}
945 
946 		/* Return completion code and op handle */
947 		cc[i] = ret;
948 		ops[i] = user_req->op;
949 
950 		CPT_LOG_DP_DEBUG("Request %p Op %p completed with code %d",
951 				 user_req, user_req->op, ret);
952 
953 		pending_queue_pop(pqueue, DEFAULT_CMD_QLEN);
954 	}
955 
956 	nb_completed = i;
957 
958 	for (i = 0; i < nb_completed; i++) {
959 		if (likely((i + 1) < nb_completed))
960 			rte_prefetch0(ops[i+1]);
961 
962 		ops[i] = otx_cpt_process_response(instance, (void *)ops[i],
963 						  cc[i], op_type);
964 	}
965 
966 	return nb_completed;
967 }
968 
969 static uint16_t
970 otx_cpt_dequeue_asym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
971 {
972 	return otx_cpt_pkt_dequeue(qptr, ops, nb_ops, OP_TYPE_ASYM);
973 }
974 
975 static uint16_t
976 otx_cpt_dequeue_sym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
977 {
978 	return otx_cpt_pkt_dequeue(qptr, ops, nb_ops, OP_TYPE_SYM);
979 }
980 
981 uintptr_t __rte_hot
982 otx_crypto_adapter_dequeue(uintptr_t get_work1)
983 {
984 	const struct cpt_instance *instance;
985 	struct cpt_request_info *req;
986 	struct rte_crypto_op *cop;
987 	uint8_t cc, op_type;
988 	uintptr_t *rsp;
989 
990 	req = (struct cpt_request_info *)get_work1;
991 	instance = req->qp;
992 	rsp = req->op;
993 	cop = (void *)rsp[1];
994 	op_type = cop->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC ? OP_TYPE_SYM :
995 							      OP_TYPE_ASYM;
996 
997 	do {
998 		cc = check_nb_command_id(
999 			req, (struct cpt_instance *)(uintptr_t)instance);
1000 	} while (cc == ERR_REQ_PENDING);
1001 
1002 	cop = otx_cpt_process_response(instance, (void *)req->op, cc, op_type);
1003 
1004 	return (uintptr_t)(cop);
1005 }
1006 
1007 static struct rte_cryptodev_ops cptvf_ops = {
1008 	/* Device related operations */
1009 	.dev_configure = otx_cpt_dev_config,
1010 	.dev_start = otx_cpt_dev_start,
1011 	.dev_stop = otx_cpt_dev_stop,
1012 	.dev_close = otx_cpt_dev_close,
1013 	.dev_infos_get = otx_cpt_dev_info_get,
1014 
1015 	.stats_get = NULL,
1016 	.stats_reset = NULL,
1017 	.queue_pair_setup = otx_cpt_que_pair_setup,
1018 	.queue_pair_release = otx_cpt_que_pair_release,
1019 
1020 	/* Crypto related operations */
1021 	.sym_session_get_size = otx_cpt_get_session_size,
1022 	.sym_session_configure = otx_cpt_session_cfg,
1023 	.sym_session_clear = otx_cpt_session_clear,
1024 
1025 	.asym_session_get_size = otx_cpt_asym_session_size_get,
1026 	.asym_session_configure = otx_cpt_asym_session_cfg,
1027 	.asym_session_clear = otx_cpt_asym_session_clear,
1028 };
1029 
1030 int
1031 otx_cpt_dev_create(struct rte_cryptodev *c_dev)
1032 {
1033 	struct rte_pci_device *pdev = RTE_DEV_TO_PCI(c_dev->device);
1034 	struct cpt_vf *cptvf = NULL;
1035 	void *reg_base;
1036 	char dev_name[32];
1037 	int ret;
1038 
1039 	if (pdev->mem_resource[0].phys_addr == 0ULL)
1040 		return -EIO;
1041 
1042 	/* for secondary processes, we don't initialise any further as primary
1043 	 * has already done this work.
1044 	 */
1045 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1046 		return 0;
1047 
1048 	cptvf = rte_zmalloc_socket("otx_cryptodev_private_mem",
1049 			sizeof(struct cpt_vf), RTE_CACHE_LINE_SIZE,
1050 			rte_socket_id());
1051 
1052 	if (cptvf == NULL) {
1053 		CPT_LOG_ERR("Cannot allocate memory for device private data");
1054 		return -ENOMEM;
1055 	}
1056 
1057 	snprintf(dev_name, 32, "%02x:%02x.%x",
1058 			pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
1059 
1060 	reg_base = pdev->mem_resource[0].addr;
1061 	if (!reg_base) {
1062 		CPT_LOG_ERR("Failed to map BAR0 of %s", dev_name);
1063 		ret = -ENODEV;
1064 		goto fail;
1065 	}
1066 
1067 	ret = otx_cpt_hw_init(cptvf, pdev, reg_base, dev_name);
1068 	if (ret) {
1069 		CPT_LOG_ERR("Failed to init cptvf %s", dev_name);
1070 		ret = -EIO;
1071 		goto fail;
1072 	}
1073 
1074 	switch (cptvf->vftype) {
1075 	case OTX_CPT_VF_TYPE_AE:
1076 		/* Set asymmetric cpt feature flags */
1077 		c_dev->feature_flags = RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO |
1078 				RTE_CRYPTODEV_FF_HW_ACCELERATED |
1079 				RTE_CRYPTODEV_FF_RSA_PRIV_OP_KEY_QT;
1080 		break;
1081 	case OTX_CPT_VF_TYPE_SE:
1082 		/* Set symmetric cpt feature flags */
1083 		c_dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
1084 				RTE_CRYPTODEV_FF_HW_ACCELERATED |
1085 				RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
1086 				RTE_CRYPTODEV_FF_IN_PLACE_SGL |
1087 				RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT |
1088 				RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT |
1089 				RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT |
1090 				RTE_CRYPTODEV_FF_SYM_SESSIONLESS |
1091 				RTE_CRYPTODEV_FF_DIGEST_ENCRYPTED;
1092 		break;
1093 	default:
1094 		/* Feature not supported. Abort */
1095 		CPT_LOG_ERR("VF type not supported by %s", dev_name);
1096 		ret = -EIO;
1097 		goto deinit_dev;
1098 	}
1099 
1100 	/* Start off timer for mailbox interrupts */
1101 	otx_cpt_periodic_alarm_start(cptvf);
1102 
1103 	c_dev->dev_ops = &cptvf_ops;
1104 
1105 	if (c_dev->feature_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) {
1106 		c_dev->enqueue_burst = otx_cpt_enqueue_sym;
1107 		c_dev->dequeue_burst = otx_cpt_dequeue_sym;
1108 	} else {
1109 		c_dev->enqueue_burst = otx_cpt_enqueue_asym;
1110 		c_dev->dequeue_burst = otx_cpt_dequeue_asym;
1111 	}
1112 
1113 	/* Save dev private data */
1114 	c_dev->data->dev_private = cptvf;
1115 
1116 	return 0;
1117 
1118 deinit_dev:
1119 	otx_cpt_deinit_device(cptvf);
1120 
1121 fail:
1122 	if (cptvf) {
1123 		/* Free private data allocated */
1124 		rte_free(cptvf);
1125 	}
1126 
1127 	return ret;
1128 }
1129