xref: /dpdk/drivers/crypto/octeontx/otx_cryptodev_ops.c (revision ce6b8c31548b4d71a986d9807cd06cf3a616d1ab)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Cavium, Inc
3  */
4 
5 #include <rte_alarm.h>
6 #include <rte_bus_pci.h>
7 #include <rte_cryptodev.h>
8 #include <rte_cryptodev_pmd.h>
9 #include <rte_errno.h>
10 #include <rte_malloc.h>
11 #include <rte_mempool.h>
12 
13 #include "otx_cryptodev.h"
14 #include "otx_cryptodev_capabilities.h"
15 #include "otx_cryptodev_hw_access.h"
16 #include "otx_cryptodev_mbox.h"
17 #include "otx_cryptodev_ops.h"
18 
19 #include "cpt_pmd_logs.h"
20 #include "cpt_pmd_ops_helper.h"
21 #include "cpt_ucode.h"
22 #include "cpt_ucode_asym.h"
23 
24 static uint64_t otx_fpm_iova[CPT_EC_ID_PMAX];
25 
26 /* Forward declarations */
27 
28 static int
29 otx_cpt_que_pair_release(struct rte_cryptodev *dev, uint16_t que_pair_id);
30 
31 /* Alarm routines */
32 
33 static void
34 otx_cpt_alarm_cb(void *arg)
35 {
36 	struct cpt_vf *cptvf = arg;
37 	otx_cpt_poll_misc(cptvf);
38 	rte_eal_alarm_set(CPT_INTR_POLL_INTERVAL_MS * 1000,
39 			  otx_cpt_alarm_cb, cptvf);
40 }
41 
42 static int
43 otx_cpt_periodic_alarm_start(void *arg)
44 {
45 	return rte_eal_alarm_set(CPT_INTR_POLL_INTERVAL_MS * 1000,
46 				 otx_cpt_alarm_cb, arg);
47 }
48 
49 static int
50 otx_cpt_periodic_alarm_stop(void *arg)
51 {
52 	return rte_eal_alarm_cancel(otx_cpt_alarm_cb, arg);
53 }
54 
55 /* PMD ops */
56 
57 static int
58 otx_cpt_dev_config(struct rte_cryptodev *dev,
59 		   struct rte_cryptodev_config *config __rte_unused)
60 {
61 	int ret = 0;
62 
63 	CPT_PMD_INIT_FUNC_TRACE();
64 
65 	if (dev->feature_flags & RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO)
66 		/* Initialize shared FPM table */
67 		ret = cpt_fpm_init(otx_fpm_iova);
68 
69 	return ret;
70 }
71 
72 static int
73 otx_cpt_dev_start(struct rte_cryptodev *c_dev)
74 {
75 	void *cptvf = c_dev->data->dev_private;
76 
77 	CPT_PMD_INIT_FUNC_TRACE();
78 
79 	return otx_cpt_start_device(cptvf);
80 }
81 
82 static void
83 otx_cpt_dev_stop(struct rte_cryptodev *c_dev)
84 {
85 	void *cptvf = c_dev->data->dev_private;
86 
87 	CPT_PMD_INIT_FUNC_TRACE();
88 
89 	if (c_dev->feature_flags & RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO)
90 		cpt_fpm_clear();
91 
92 	otx_cpt_stop_device(cptvf);
93 }
94 
95 static int
96 otx_cpt_dev_close(struct rte_cryptodev *c_dev)
97 {
98 	void *cptvf = c_dev->data->dev_private;
99 	int i, ret;
100 
101 	CPT_PMD_INIT_FUNC_TRACE();
102 
103 	for (i = 0; i < c_dev->data->nb_queue_pairs; i++) {
104 		ret = otx_cpt_que_pair_release(c_dev, i);
105 		if (ret)
106 			return ret;
107 	}
108 
109 	otx_cpt_periodic_alarm_stop(cptvf);
110 	otx_cpt_deinit_device(cptvf);
111 
112 	return 0;
113 }
114 
115 static void
116 otx_cpt_dev_info_get(struct rte_cryptodev *dev, struct rte_cryptodev_info *info)
117 {
118 	CPT_PMD_INIT_FUNC_TRACE();
119 	if (info != NULL) {
120 		info->max_nb_queue_pairs = CPT_NUM_QS_PER_VF;
121 		info->feature_flags = dev->feature_flags;
122 		info->capabilities = otx_get_capabilities(info->feature_flags);
123 		info->sym.max_nb_sessions = 0;
124 		info->driver_id = otx_cryptodev_driver_id;
125 		info->min_mbuf_headroom_req = OTX_CPT_MIN_HEADROOM_REQ;
126 		info->min_mbuf_tailroom_req = OTX_CPT_MIN_TAILROOM_REQ;
127 	}
128 }
129 
130 static int
131 otx_cpt_que_pair_setup(struct rte_cryptodev *dev,
132 		       uint16_t que_pair_id,
133 		       const struct rte_cryptodev_qp_conf *qp_conf,
134 		       int socket_id __rte_unused)
135 {
136 	struct cpt_instance *instance = NULL;
137 	struct rte_pci_device *pci_dev;
138 	int ret = -1;
139 
140 	CPT_PMD_INIT_FUNC_TRACE();
141 
142 	if (dev->data->queue_pairs[que_pair_id] != NULL) {
143 		ret = otx_cpt_que_pair_release(dev, que_pair_id);
144 		if (ret)
145 			return ret;
146 	}
147 
148 	if (qp_conf->nb_descriptors > DEFAULT_CMD_QLEN) {
149 		CPT_LOG_INFO("Number of descriptors too big %d, using default "
150 			     "queue length of %d", qp_conf->nb_descriptors,
151 			     DEFAULT_CMD_QLEN);
152 	}
153 
154 	pci_dev = RTE_DEV_TO_PCI(dev->device);
155 
156 	if (pci_dev->mem_resource[0].addr == NULL) {
157 		CPT_LOG_ERR("PCI mem address null");
158 		return -EIO;
159 	}
160 
161 	ret = otx_cpt_get_resource(dev, 0, &instance, que_pair_id);
162 	if (ret != 0 || instance == NULL) {
163 		CPT_LOG_ERR("Error getting instance handle from device %s : "
164 			    "ret = %d", dev->data->name, ret);
165 		return ret;
166 	}
167 
168 	instance->queue_id = que_pair_id;
169 	instance->sess_mp = qp_conf->mp_session;
170 	instance->sess_mp_priv = qp_conf->mp_session_private;
171 	dev->data->queue_pairs[que_pair_id] = instance;
172 
173 	return 0;
174 }
175 
176 static int
177 otx_cpt_que_pair_release(struct rte_cryptodev *dev, uint16_t que_pair_id)
178 {
179 	struct cpt_instance *instance = dev->data->queue_pairs[que_pair_id];
180 	int ret;
181 
182 	CPT_PMD_INIT_FUNC_TRACE();
183 
184 	ret = otx_cpt_put_resource(instance);
185 	if (ret != 0) {
186 		CPT_LOG_ERR("Error putting instance handle of device %s : "
187 			    "ret = %d", dev->data->name, ret);
188 		return ret;
189 	}
190 
191 	dev->data->queue_pairs[que_pair_id] = NULL;
192 
193 	return 0;
194 }
195 
196 static unsigned int
197 otx_cpt_get_session_size(struct rte_cryptodev *dev __rte_unused)
198 {
199 	return cpt_get_session_size();
200 }
201 
202 static int
203 sym_xform_verify(struct rte_crypto_sym_xform *xform)
204 {
205 	if (xform->next) {
206 		if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
207 		    xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
208 		    xform->next->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
209 			return -ENOTSUP;
210 
211 		if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
212 		    xform->cipher.op == RTE_CRYPTO_CIPHER_OP_DECRYPT &&
213 		    xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH)
214 			return -ENOTSUP;
215 
216 		if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
217 		    xform->cipher.algo == RTE_CRYPTO_CIPHER_3DES_CBC &&
218 		    xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
219 		    xform->next->auth.algo == RTE_CRYPTO_AUTH_SHA1)
220 			return -ENOTSUP;
221 
222 		if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
223 		    xform->auth.algo == RTE_CRYPTO_AUTH_SHA1 &&
224 		    xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
225 		    xform->next->cipher.algo == RTE_CRYPTO_CIPHER_3DES_CBC)
226 			return -ENOTSUP;
227 
228 	} else {
229 		if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
230 		    xform->auth.algo == RTE_CRYPTO_AUTH_NULL &&
231 		    xform->auth.op == RTE_CRYPTO_AUTH_OP_VERIFY)
232 			return -ENOTSUP;
233 	}
234 	return 0;
235 }
236 
237 static int
238 sym_session_configure(int driver_id, struct rte_crypto_sym_xform *xform,
239 		      struct rte_cryptodev_sym_session *sess,
240 		      struct rte_mempool *pool)
241 {
242 	struct cpt_sess_misc *misc;
243 	void *priv;
244 	int ret;
245 
246 	ret = sym_xform_verify(xform);
247 	if (unlikely(ret))
248 		return ret;
249 
250 	if (unlikely(rte_mempool_get(pool, &priv))) {
251 		CPT_LOG_ERR("Could not allocate session private data");
252 		return -ENOMEM;
253 	}
254 
255 	memset(priv, 0, sizeof(struct cpt_sess_misc) +
256 			offsetof(struct cpt_ctx, fctx));
257 
258 	misc = priv;
259 
260 	for ( ; xform != NULL; xform = xform->next) {
261 		switch (xform->type) {
262 		case RTE_CRYPTO_SYM_XFORM_AEAD:
263 			ret = fill_sess_aead(xform, misc);
264 			break;
265 		case RTE_CRYPTO_SYM_XFORM_CIPHER:
266 			ret = fill_sess_cipher(xform, misc);
267 			break;
268 		case RTE_CRYPTO_SYM_XFORM_AUTH:
269 			if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC)
270 				ret = fill_sess_gmac(xform, misc);
271 			else
272 				ret = fill_sess_auth(xform, misc);
273 			break;
274 		default:
275 			ret = -1;
276 		}
277 
278 		if (ret)
279 			goto priv_put;
280 	}
281 
282 	set_sym_session_private_data(sess, driver_id, priv);
283 
284 	misc->ctx_dma_addr = rte_mempool_virt2iova(misc) +
285 			     sizeof(struct cpt_sess_misc);
286 
287 	return 0;
288 
289 priv_put:
290 	if (priv)
291 		rte_mempool_put(pool, priv);
292 	return -ENOTSUP;
293 }
294 
295 static void
296 sym_session_clear(int driver_id, struct rte_cryptodev_sym_session *sess)
297 {
298 	void *priv = get_sym_session_private_data(sess, driver_id);
299 	struct rte_mempool *pool;
300 
301 	if (priv == NULL)
302 		return;
303 
304 	memset(priv, 0, cpt_get_session_size());
305 
306 	pool = rte_mempool_from_obj(priv);
307 
308 	set_sym_session_private_data(sess, driver_id, NULL);
309 
310 	rte_mempool_put(pool, priv);
311 }
312 
313 static int
314 otx_cpt_session_cfg(struct rte_cryptodev *dev,
315 		    struct rte_crypto_sym_xform *xform,
316 		    struct rte_cryptodev_sym_session *sess,
317 		    struct rte_mempool *pool)
318 {
319 	CPT_PMD_INIT_FUNC_TRACE();
320 
321 	return sym_session_configure(dev->driver_id, xform, sess, pool);
322 }
323 
324 
325 static void
326 otx_cpt_session_clear(struct rte_cryptodev *dev,
327 		  struct rte_cryptodev_sym_session *sess)
328 {
329 	CPT_PMD_INIT_FUNC_TRACE();
330 
331 	return sym_session_clear(dev->driver_id, sess);
332 }
333 
334 static unsigned int
335 otx_cpt_asym_session_size_get(struct rte_cryptodev *dev __rte_unused)
336 {
337 	return sizeof(struct cpt_asym_sess_misc);
338 }
339 
340 static int
341 otx_cpt_asym_session_cfg(struct rte_cryptodev *dev,
342 			 struct rte_crypto_asym_xform *xform __rte_unused,
343 			 struct rte_cryptodev_asym_session *sess,
344 			 struct rte_mempool *pool)
345 {
346 	struct cpt_asym_sess_misc *priv;
347 	int ret;
348 
349 	CPT_PMD_INIT_FUNC_TRACE();
350 
351 	if (rte_mempool_get(pool, (void **)&priv)) {
352 		CPT_LOG_ERR("Could not allocate session private data");
353 		return -ENOMEM;
354 	}
355 
356 	memset(priv, 0, sizeof(struct cpt_asym_sess_misc));
357 
358 	ret = cpt_fill_asym_session_parameters(priv, xform);
359 	if (ret) {
360 		CPT_LOG_ERR("Could not configure session parameters");
361 
362 		/* Return session to mempool */
363 		rte_mempool_put(pool, priv);
364 		return ret;
365 	}
366 
367 	set_asym_session_private_data(sess, dev->driver_id, priv);
368 	return 0;
369 }
370 
371 static void
372 otx_cpt_asym_session_clear(struct rte_cryptodev *dev,
373 			   struct rte_cryptodev_asym_session *sess)
374 {
375 	struct cpt_asym_sess_misc *priv;
376 	struct rte_mempool *sess_mp;
377 
378 	CPT_PMD_INIT_FUNC_TRACE();
379 
380 	priv = get_asym_session_private_data(sess, dev->driver_id);
381 
382 	if (priv == NULL)
383 		return;
384 
385 	/* Free resources allocated during session configure */
386 	cpt_free_asym_session_parameters(priv);
387 	memset(priv, 0, otx_cpt_asym_session_size_get(dev));
388 	sess_mp = rte_mempool_from_obj(priv);
389 	set_asym_session_private_data(sess, dev->driver_id, NULL);
390 	rte_mempool_put(sess_mp, priv);
391 }
392 
393 static __rte_always_inline int32_t __rte_hot
394 otx_cpt_request_enqueue(struct cpt_instance *instance,
395 			struct pending_queue *pqueue,
396 			void *req)
397 {
398 	struct cpt_request_info *user_req = (struct cpt_request_info *)req;
399 
400 	if (unlikely(pqueue->pending_count >= DEFAULT_CMD_QLEN))
401 		return -EAGAIN;
402 
403 	fill_cpt_inst(instance, req);
404 
405 	CPT_LOG_DP_DEBUG("req: %p op: %p ", req, user_req->op);
406 
407 	/* Fill time_out cycles */
408 	user_req->time_out = rte_get_timer_cycles() +
409 			DEFAULT_COMMAND_TIMEOUT * rte_get_timer_hz();
410 	user_req->extra_time = 0;
411 
412 	/* Default mode of software queue */
413 	mark_cpt_inst(instance);
414 
415 	pqueue->rid_queue[pqueue->enq_tail].rid = (uintptr_t)user_req;
416 
417 	/* We will use soft queue length here to limit requests */
418 	MOD_INC(pqueue->enq_tail, DEFAULT_CMD_QLEN);
419 	pqueue->pending_count += 1;
420 
421 	CPT_LOG_DP_DEBUG("Submitted NB cmd with request: %p "
422 			 "op: %p", user_req, user_req->op);
423 	return 0;
424 }
425 
426 static __rte_always_inline int __rte_hot
427 otx_cpt_enq_single_asym(struct cpt_instance *instance,
428 			struct rte_crypto_op *op,
429 			struct pending_queue *pqueue)
430 {
431 	struct cpt_qp_meta_info *minfo = &instance->meta_info;
432 	struct rte_crypto_asym_op *asym_op = op->asym;
433 	struct asym_op_params params = {0};
434 	struct cpt_asym_sess_misc *sess;
435 	uintptr_t *cop;
436 	void *mdata;
437 	int ret;
438 
439 	if (unlikely(rte_mempool_get(minfo->pool, &mdata) < 0)) {
440 		CPT_LOG_DP_ERR("Could not allocate meta buffer for request");
441 		return -ENOMEM;
442 	}
443 
444 	sess = get_asym_session_private_data(asym_op->session,
445 					     otx_cryptodev_driver_id);
446 
447 	/* Store phys_addr of the mdata to meta_buf */
448 	params.meta_buf = rte_mempool_virt2iova(mdata);
449 
450 	cop = mdata;
451 	cop[0] = (uintptr_t)mdata;
452 	cop[1] = (uintptr_t)op;
453 	cop[2] = cop[3] = 0ULL;
454 
455 	params.req = RTE_PTR_ADD(cop, 4 * sizeof(uintptr_t));
456 	params.req->op = cop;
457 
458 	/* Adjust meta_buf by crypto_op data  and request_info struct */
459 	params.meta_buf += (4 * sizeof(uintptr_t)) +
460 			   sizeof(struct cpt_request_info);
461 
462 	switch (sess->xfrm_type) {
463 	case RTE_CRYPTO_ASYM_XFORM_MODEX:
464 		ret = cpt_modex_prep(&params, &sess->mod_ctx);
465 		if (unlikely(ret))
466 			goto req_fail;
467 		break;
468 	case RTE_CRYPTO_ASYM_XFORM_RSA:
469 		ret = cpt_enqueue_rsa_op(op, &params, sess);
470 		if (unlikely(ret))
471 			goto req_fail;
472 		break;
473 	case RTE_CRYPTO_ASYM_XFORM_ECDSA:
474 		ret = cpt_enqueue_ecdsa_op(op, &params, sess, otx_fpm_iova);
475 		if (unlikely(ret))
476 			goto req_fail;
477 		break;
478 	case RTE_CRYPTO_ASYM_XFORM_ECPM:
479 		ret = cpt_ecpm_prep(&asym_op->ecpm, &params,
480 				    sess->ec_ctx.curveid);
481 		if (unlikely(ret))
482 			goto req_fail;
483 		break;
484 
485 	default:
486 		op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
487 		ret = -EINVAL;
488 		goto req_fail;
489 	}
490 
491 	ret = otx_cpt_request_enqueue(instance, pqueue, params.req);
492 
493 	if (unlikely(ret)) {
494 		CPT_LOG_DP_ERR("Could not enqueue crypto req");
495 		goto req_fail;
496 	}
497 
498 	return 0;
499 
500 req_fail:
501 	free_op_meta(mdata, minfo->pool);
502 
503 	return ret;
504 }
505 
506 static __rte_always_inline int __rte_hot
507 otx_cpt_enq_single_sym(struct cpt_instance *instance,
508 		       struct rte_crypto_op *op,
509 		       struct pending_queue *pqueue)
510 {
511 	struct cpt_sess_misc *sess;
512 	struct rte_crypto_sym_op *sym_op = op->sym;
513 	void *prep_req, *mdata = NULL;
514 	int ret = 0;
515 	uint64_t cpt_op;
516 
517 	sess = (struct cpt_sess_misc *)
518 			get_sym_session_private_data(sym_op->session,
519 						     otx_cryptodev_driver_id);
520 
521 	cpt_op = sess->cpt_op;
522 
523 	if (likely(cpt_op & CPT_OP_CIPHER_MASK))
524 		ret = fill_fc_params(op, sess, &instance->meta_info, &mdata,
525 				     &prep_req);
526 	else
527 		ret = fill_digest_params(op, sess, &instance->meta_info,
528 					 &mdata, &prep_req);
529 
530 	if (unlikely(ret)) {
531 		CPT_LOG_DP_ERR("prep cryto req : op %p, cpt_op 0x%x "
532 			       "ret 0x%x", op, (unsigned int)cpt_op, ret);
533 		return ret;
534 	}
535 
536 	/* Enqueue prepared instruction to h/w */
537 	ret = otx_cpt_request_enqueue(instance, pqueue, prep_req);
538 
539 	if (unlikely(ret)) {
540 		/* Buffer allocated for request preparation need to be freed */
541 		free_op_meta(mdata, instance->meta_info.pool);
542 		return ret;
543 	}
544 
545 	return 0;
546 }
547 
548 static __rte_always_inline int __rte_hot
549 otx_cpt_enq_single_sym_sessless(struct cpt_instance *instance,
550 				struct rte_crypto_op *op,
551 				struct pending_queue *pend_q)
552 {
553 	const int driver_id = otx_cryptodev_driver_id;
554 	struct rte_crypto_sym_op *sym_op = op->sym;
555 	struct rte_cryptodev_sym_session *sess;
556 	int ret;
557 
558 	/* Create temporary session */
559 
560 	if (rte_mempool_get(instance->sess_mp, (void **)&sess))
561 		return -ENOMEM;
562 
563 	ret = sym_session_configure(driver_id, sym_op->xform, sess,
564 				    instance->sess_mp_priv);
565 	if (ret)
566 		goto sess_put;
567 
568 	sym_op->session = sess;
569 
570 	ret = otx_cpt_enq_single_sym(instance, op, pend_q);
571 
572 	if (unlikely(ret))
573 		goto priv_put;
574 
575 	return 0;
576 
577 priv_put:
578 	sym_session_clear(driver_id, sess);
579 sess_put:
580 	rte_mempool_put(instance->sess_mp, sess);
581 	return ret;
582 }
583 
584 #define OP_TYPE_SYM		0
585 #define OP_TYPE_ASYM		1
586 
587 static __rte_always_inline int __rte_hot
588 otx_cpt_enq_single(struct cpt_instance *inst,
589 		   struct rte_crypto_op *op,
590 		   struct pending_queue *pqueue,
591 		   const uint8_t op_type)
592 {
593 	/* Check for the type */
594 
595 	if (op_type == OP_TYPE_SYM) {
596 		if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
597 			return otx_cpt_enq_single_sym(inst, op, pqueue);
598 		else
599 			return otx_cpt_enq_single_sym_sessless(inst, op,
600 							       pqueue);
601 	}
602 
603 	if (op_type == OP_TYPE_ASYM) {
604 		if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
605 			return otx_cpt_enq_single_asym(inst, op, pqueue);
606 	}
607 
608 	/* Should not reach here */
609 	return -ENOTSUP;
610 }
611 
612 static  __rte_always_inline uint16_t __rte_hot
613 otx_cpt_pkt_enqueue(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops,
614 		    const uint8_t op_type)
615 {
616 	struct cpt_instance *instance = (struct cpt_instance *)qptr;
617 	uint16_t count;
618 	int ret;
619 	struct cpt_vf *cptvf = (struct cpt_vf *)instance;
620 	struct pending_queue *pqueue = &cptvf->pqueue;
621 
622 	count = DEFAULT_CMD_QLEN - pqueue->pending_count;
623 	if (nb_ops > count)
624 		nb_ops = count;
625 
626 	count = 0;
627 	while (likely(count < nb_ops)) {
628 
629 		/* Enqueue single op */
630 		ret = otx_cpt_enq_single(instance, ops[count], pqueue, op_type);
631 
632 		if (unlikely(ret))
633 			break;
634 		count++;
635 	}
636 	otx_cpt_ring_dbell(instance, count);
637 	return count;
638 }
639 
640 static uint16_t
641 otx_cpt_enqueue_asym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
642 {
643 	return otx_cpt_pkt_enqueue(qptr, ops, nb_ops, OP_TYPE_ASYM);
644 }
645 
646 static uint16_t
647 otx_cpt_enqueue_sym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
648 {
649 	return otx_cpt_pkt_enqueue(qptr, ops, nb_ops, OP_TYPE_SYM);
650 }
651 
652 static inline void
653 otx_cpt_asym_rsa_op(struct rte_crypto_op *cop, struct cpt_request_info *req,
654 		    struct rte_crypto_rsa_xform *rsa_ctx)
655 
656 {
657 	struct rte_crypto_rsa_op_param *rsa = &cop->asym->rsa;
658 
659 	switch (rsa->op_type) {
660 	case RTE_CRYPTO_ASYM_OP_ENCRYPT:
661 		rsa->cipher.length = rsa_ctx->n.length;
662 		memcpy(rsa->cipher.data, req->rptr, rsa->cipher.length);
663 		break;
664 	case RTE_CRYPTO_ASYM_OP_DECRYPT:
665 		if (rsa->pad == RTE_CRYPTO_RSA_PADDING_NONE)
666 			rsa->message.length = rsa_ctx->n.length;
667 		else {
668 			/* Get length of decrypted output */
669 			rsa->message.length = rte_cpu_to_be_16
670 					(*((uint16_t *)req->rptr));
671 
672 			/* Offset data pointer by length fields */
673 			req->rptr += 2;
674 		}
675 		memcpy(rsa->message.data, req->rptr, rsa->message.length);
676 		break;
677 	case RTE_CRYPTO_ASYM_OP_SIGN:
678 		rsa->sign.length = rsa_ctx->n.length;
679 		memcpy(rsa->sign.data, req->rptr, rsa->sign.length);
680 		break;
681 	case RTE_CRYPTO_ASYM_OP_VERIFY:
682 		if (rsa->pad == RTE_CRYPTO_RSA_PADDING_NONE)
683 			rsa->sign.length = rsa_ctx->n.length;
684 		else {
685 			/* Get length of decrypted output */
686 			rsa->sign.length = rte_cpu_to_be_16
687 					(*((uint16_t *)req->rptr));
688 
689 			/* Offset data pointer by length fields */
690 			req->rptr += 2;
691 		}
692 		memcpy(rsa->sign.data, req->rptr, rsa->sign.length);
693 
694 		if (memcmp(rsa->sign.data, rsa->message.data,
695 			   rsa->message.length)) {
696 			CPT_LOG_DP_ERR("RSA verification failed");
697 			cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
698 		}
699 		break;
700 	default:
701 		CPT_LOG_DP_DEBUG("Invalid RSA operation type");
702 		cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
703 		break;
704 	}
705 }
706 
707 static __rte_always_inline void
708 otx_cpt_asym_dequeue_ecdsa_op(struct rte_crypto_ecdsa_op_param *ecdsa,
709 			    struct cpt_request_info *req,
710 			    struct cpt_asym_ec_ctx *ec)
711 
712 {
713 	int prime_len = ec_grp[ec->curveid].prime.length;
714 
715 	if (ecdsa->op_type == RTE_CRYPTO_ASYM_OP_VERIFY)
716 		return;
717 
718 	/* Separate out sign r and s components */
719 	memcpy(ecdsa->r.data, req->rptr, prime_len);
720 	memcpy(ecdsa->s.data, req->rptr + ROUNDUP8(prime_len), prime_len);
721 	ecdsa->r.length = prime_len;
722 	ecdsa->s.length = prime_len;
723 }
724 
725 static __rte_always_inline void
726 otx_cpt_asym_dequeue_ecpm_op(struct rte_crypto_ecpm_op_param *ecpm,
727 			     struct cpt_request_info *req,
728 			     struct cpt_asym_ec_ctx *ec)
729 {
730 	int prime_len = ec_grp[ec->curveid].prime.length;
731 
732 	memcpy(ecpm->r.x.data, req->rptr, prime_len);
733 	memcpy(ecpm->r.y.data, req->rptr + ROUNDUP8(prime_len), prime_len);
734 	ecpm->r.x.length = prime_len;
735 	ecpm->r.y.length = prime_len;
736 }
737 
738 static __rte_always_inline void __rte_hot
739 otx_cpt_asym_post_process(struct rte_crypto_op *cop,
740 			  struct cpt_request_info *req)
741 {
742 	struct rte_crypto_asym_op *op = cop->asym;
743 	struct cpt_asym_sess_misc *sess;
744 
745 	sess = get_asym_session_private_data(op->session,
746 					     otx_cryptodev_driver_id);
747 
748 	switch (sess->xfrm_type) {
749 	case RTE_CRYPTO_ASYM_XFORM_RSA:
750 		otx_cpt_asym_rsa_op(cop, req, &sess->rsa_ctx);
751 		break;
752 	case RTE_CRYPTO_ASYM_XFORM_MODEX:
753 		op->modex.result.length = sess->mod_ctx.modulus.length;
754 		memcpy(op->modex.result.data, req->rptr,
755 		       op->modex.result.length);
756 		break;
757 	case RTE_CRYPTO_ASYM_XFORM_ECDSA:
758 		otx_cpt_asym_dequeue_ecdsa_op(&op->ecdsa, req, &sess->ec_ctx);
759 		break;
760 	case RTE_CRYPTO_ASYM_XFORM_ECPM:
761 		otx_cpt_asym_dequeue_ecpm_op(&op->ecpm, req, &sess->ec_ctx);
762 		break;
763 	default:
764 		CPT_LOG_DP_DEBUG("Invalid crypto xform type");
765 		cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
766 		break;
767 	}
768 }
769 
770 static __rte_always_inline void __rte_hot
771 otx_cpt_dequeue_post_process(struct rte_crypto_op *cop, uintptr_t *rsp,
772 			     const uint8_t op_type)
773 {
774 	/* H/w has returned success */
775 	cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
776 
777 	/* Perform further post processing */
778 
779 	if ((op_type == OP_TYPE_SYM) &&
780 	    (cop->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC)) {
781 		/* Check if auth verify need to be completed */
782 		if (unlikely(rsp[2]))
783 			compl_auth_verify(cop, (uint8_t *)rsp[2], rsp[3]);
784 		return;
785 	}
786 
787 	if ((op_type == OP_TYPE_ASYM) &&
788 	    (cop->type == RTE_CRYPTO_OP_TYPE_ASYMMETRIC)) {
789 		rsp = RTE_PTR_ADD(rsp, 4 * sizeof(uintptr_t));
790 		otx_cpt_asym_post_process(cop, (struct cpt_request_info *)rsp);
791 	}
792 
793 	return;
794 }
795 
796 static __rte_always_inline uint16_t __rte_hot
797 otx_cpt_pkt_dequeue(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops,
798 		    const uint8_t op_type)
799 {
800 	struct cpt_instance *instance = (struct cpt_instance *)qptr;
801 	struct cpt_request_info *user_req;
802 	struct cpt_vf *cptvf = (struct cpt_vf *)instance;
803 	struct rid *rid_e;
804 	uint8_t cc[nb_ops];
805 	int i, count, pcount;
806 	uint8_t ret;
807 	int nb_completed;
808 	struct pending_queue *pqueue = &cptvf->pqueue;
809 	struct rte_crypto_op *cop;
810 	void *metabuf;
811 	uintptr_t *rsp;
812 
813 	pcount = pqueue->pending_count;
814 	count = (nb_ops > pcount) ? pcount : nb_ops;
815 
816 	for (i = 0; i < count; i++) {
817 		rid_e = &pqueue->rid_queue[pqueue->deq_head];
818 		user_req = (struct cpt_request_info *)(rid_e->rid);
819 
820 		if (likely((i+1) < count))
821 			rte_prefetch_non_temporal((void *)rid_e[1].rid);
822 
823 		ret = check_nb_command_id(user_req, instance);
824 
825 		if (unlikely(ret == ERR_REQ_PENDING)) {
826 			/* Stop checking for completions */
827 			break;
828 		}
829 
830 		/* Return completion code and op handle */
831 		cc[i] = ret;
832 		ops[i] = user_req->op;
833 
834 		CPT_LOG_DP_DEBUG("Request %p Op %p completed with code %d",
835 				 user_req, user_req->op, ret);
836 
837 		MOD_INC(pqueue->deq_head, DEFAULT_CMD_QLEN);
838 		pqueue->pending_count -= 1;
839 	}
840 
841 	nb_completed = i;
842 
843 	for (i = 0; i < nb_completed; i++) {
844 
845 		rsp = (void *)ops[i];
846 
847 		if (likely((i + 1) < nb_completed))
848 			rte_prefetch0(ops[i+1]);
849 
850 		metabuf = (void *)rsp[0];
851 		cop = (void *)rsp[1];
852 
853 		ops[i] = cop;
854 
855 		/* Check completion code */
856 
857 		if (likely(cc[i] == 0)) {
858 			/* H/w success pkt. Post process */
859 			otx_cpt_dequeue_post_process(cop, rsp, op_type);
860 		} else if (cc[i] == ERR_GC_ICV_MISCOMPARE) {
861 			/* auth data mismatch */
862 			cop->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
863 		} else {
864 			/* Error */
865 			cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
866 		}
867 
868 		if (unlikely(cop->sess_type == RTE_CRYPTO_OP_SESSIONLESS)) {
869 			void *sess_private_data_t =
870 				get_sym_session_private_data(cop->sym->session,
871 						otx_cryptodev_driver_id);
872 			memset(sess_private_data_t, 0,
873 					cpt_get_session_size());
874 			memset(cop->sym->session, 0,
875 			rte_cryptodev_sym_get_existing_header_session_size(
876 					cop->sym->session));
877 			rte_mempool_put(instance->sess_mp_priv,
878 					sess_private_data_t);
879 			rte_mempool_put(instance->sess_mp, cop->sym->session);
880 			cop->sym->session = NULL;
881 		}
882 		free_op_meta(metabuf, instance->meta_info.pool);
883 	}
884 
885 	return nb_completed;
886 }
887 
888 static uint16_t
889 otx_cpt_dequeue_asym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
890 {
891 	return otx_cpt_pkt_dequeue(qptr, ops, nb_ops, OP_TYPE_ASYM);
892 }
893 
894 static uint16_t
895 otx_cpt_dequeue_sym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
896 {
897 	return otx_cpt_pkt_dequeue(qptr, ops, nb_ops, OP_TYPE_SYM);
898 }
899 
900 static struct rte_cryptodev_ops cptvf_ops = {
901 	/* Device related operations */
902 	.dev_configure = otx_cpt_dev_config,
903 	.dev_start = otx_cpt_dev_start,
904 	.dev_stop = otx_cpt_dev_stop,
905 	.dev_close = otx_cpt_dev_close,
906 	.dev_infos_get = otx_cpt_dev_info_get,
907 
908 	.stats_get = NULL,
909 	.stats_reset = NULL,
910 	.queue_pair_setup = otx_cpt_que_pair_setup,
911 	.queue_pair_release = otx_cpt_que_pair_release,
912 
913 	/* Crypto related operations */
914 	.sym_session_get_size = otx_cpt_get_session_size,
915 	.sym_session_configure = otx_cpt_session_cfg,
916 	.sym_session_clear = otx_cpt_session_clear,
917 
918 	.asym_session_get_size = otx_cpt_asym_session_size_get,
919 	.asym_session_configure = otx_cpt_asym_session_cfg,
920 	.asym_session_clear = otx_cpt_asym_session_clear,
921 };
922 
923 int
924 otx_cpt_dev_create(struct rte_cryptodev *c_dev)
925 {
926 	struct rte_pci_device *pdev = RTE_DEV_TO_PCI(c_dev->device);
927 	struct cpt_vf *cptvf = NULL;
928 	void *reg_base;
929 	char dev_name[32];
930 	int ret;
931 
932 	if (pdev->mem_resource[0].phys_addr == 0ULL)
933 		return -EIO;
934 
935 	/* for secondary processes, we don't initialise any further as primary
936 	 * has already done this work.
937 	 */
938 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
939 		return 0;
940 
941 	cptvf = rte_zmalloc_socket("otx_cryptodev_private_mem",
942 			sizeof(struct cpt_vf), RTE_CACHE_LINE_SIZE,
943 			rte_socket_id());
944 
945 	if (cptvf == NULL) {
946 		CPT_LOG_ERR("Cannot allocate memory for device private data");
947 		return -ENOMEM;
948 	}
949 
950 	snprintf(dev_name, 32, "%02x:%02x.%x",
951 			pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
952 
953 	reg_base = pdev->mem_resource[0].addr;
954 	if (!reg_base) {
955 		CPT_LOG_ERR("Failed to map BAR0 of %s", dev_name);
956 		ret = -ENODEV;
957 		goto fail;
958 	}
959 
960 	ret = otx_cpt_hw_init(cptvf, pdev, reg_base, dev_name);
961 	if (ret) {
962 		CPT_LOG_ERR("Failed to init cptvf %s", dev_name);
963 		ret = -EIO;
964 		goto fail;
965 	}
966 
967 	switch (cptvf->vftype) {
968 	case OTX_CPT_VF_TYPE_AE:
969 		/* Set asymmetric cpt feature flags */
970 		c_dev->feature_flags = RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO |
971 				RTE_CRYPTODEV_FF_HW_ACCELERATED |
972 				RTE_CRYPTODEV_FF_RSA_PRIV_OP_KEY_QT;
973 		break;
974 	case OTX_CPT_VF_TYPE_SE:
975 		/* Set symmetric cpt feature flags */
976 		c_dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
977 				RTE_CRYPTODEV_FF_HW_ACCELERATED |
978 				RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
979 				RTE_CRYPTODEV_FF_IN_PLACE_SGL |
980 				RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT |
981 				RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT |
982 				RTE_CRYPTODEV_FF_SYM_SESSIONLESS;
983 		break;
984 	default:
985 		/* Feature not supported. Abort */
986 		CPT_LOG_ERR("VF type not supported by %s", dev_name);
987 		ret = -EIO;
988 		goto deinit_dev;
989 	}
990 
991 	/* Start off timer for mailbox interrupts */
992 	otx_cpt_periodic_alarm_start(cptvf);
993 
994 	c_dev->dev_ops = &cptvf_ops;
995 
996 	if (c_dev->feature_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) {
997 		c_dev->enqueue_burst = otx_cpt_enqueue_sym;
998 		c_dev->dequeue_burst = otx_cpt_dequeue_sym;
999 	} else {
1000 		c_dev->enqueue_burst = otx_cpt_enqueue_asym;
1001 		c_dev->dequeue_burst = otx_cpt_dequeue_asym;
1002 	}
1003 
1004 	/* Save dev private data */
1005 	c_dev->data->dev_private = cptvf;
1006 
1007 	return 0;
1008 
1009 deinit_dev:
1010 	otx_cpt_deinit_device(cptvf);
1011 
1012 fail:
1013 	if (cptvf) {
1014 		/* Free private data allocated */
1015 		rte_free(cptvf);
1016 	}
1017 
1018 	return ret;
1019 }
1020