1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2018 Cavium, Inc 3 */ 4 5 #include <rte_alarm.h> 6 #include <rte_bus_pci.h> 7 #include <rte_cryptodev.h> 8 #include <cryptodev_pmd.h> 9 #include <rte_eventdev.h> 10 #include <rte_event_crypto_adapter.h> 11 #include <rte_errno.h> 12 #include <rte_malloc.h> 13 #include <rte_mempool.h> 14 15 #include "otx_cryptodev.h" 16 #include "otx_cryptodev_capabilities.h" 17 #include "otx_cryptodev_hw_access.h" 18 #include "otx_cryptodev_mbox.h" 19 #include "otx_cryptodev_ops.h" 20 21 #include "cpt_pmd_logs.h" 22 #include "cpt_pmd_ops_helper.h" 23 #include "cpt_ucode.h" 24 #include "cpt_ucode_asym.h" 25 26 #include "ssovf_worker.h" 27 28 static uint64_t otx_fpm_iova[CPT_EC_ID_PMAX]; 29 30 /* Forward declarations */ 31 32 static int 33 otx_cpt_que_pair_release(struct rte_cryptodev *dev, uint16_t que_pair_id); 34 35 /* Alarm routines */ 36 37 static void 38 otx_cpt_alarm_cb(void *arg) 39 { 40 struct cpt_vf *cptvf = arg; 41 otx_cpt_poll_misc(cptvf); 42 rte_eal_alarm_set(CPT_INTR_POLL_INTERVAL_MS * 1000, 43 otx_cpt_alarm_cb, cptvf); 44 } 45 46 static int 47 otx_cpt_periodic_alarm_start(void *arg) 48 { 49 return rte_eal_alarm_set(CPT_INTR_POLL_INTERVAL_MS * 1000, 50 otx_cpt_alarm_cb, arg); 51 } 52 53 static int 54 otx_cpt_periodic_alarm_stop(void *arg) 55 { 56 return rte_eal_alarm_cancel(otx_cpt_alarm_cb, arg); 57 } 58 59 /* PMD ops */ 60 61 static int 62 otx_cpt_dev_config(struct rte_cryptodev *dev, 63 struct rte_cryptodev_config *config __rte_unused) 64 { 65 int ret = 0; 66 67 CPT_PMD_INIT_FUNC_TRACE(); 68 69 if (dev->feature_flags & RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO) 70 /* Initialize shared FPM table */ 71 ret = cpt_fpm_init(otx_fpm_iova); 72 73 return ret; 74 } 75 76 static int 77 otx_cpt_dev_start(struct rte_cryptodev *c_dev) 78 { 79 void *cptvf = c_dev->data->dev_private; 80 81 CPT_PMD_INIT_FUNC_TRACE(); 82 83 return otx_cpt_start_device(cptvf); 84 } 85 86 static void 87 otx_cpt_dev_stop(struct rte_cryptodev *c_dev) 88 { 89 void *cptvf = c_dev->data->dev_private; 90 91 CPT_PMD_INIT_FUNC_TRACE(); 92 93 if (c_dev->feature_flags & RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO) 94 cpt_fpm_clear(); 95 96 otx_cpt_stop_device(cptvf); 97 } 98 99 static int 100 otx_cpt_dev_close(struct rte_cryptodev *c_dev) 101 { 102 void *cptvf = c_dev->data->dev_private; 103 int i, ret; 104 105 CPT_PMD_INIT_FUNC_TRACE(); 106 107 for (i = 0; i < c_dev->data->nb_queue_pairs; i++) { 108 ret = otx_cpt_que_pair_release(c_dev, i); 109 if (ret) 110 return ret; 111 } 112 113 otx_cpt_periodic_alarm_stop(cptvf); 114 otx_cpt_deinit_device(cptvf); 115 116 return 0; 117 } 118 119 static void 120 otx_cpt_dev_info_get(struct rte_cryptodev *dev, struct rte_cryptodev_info *info) 121 { 122 CPT_PMD_INIT_FUNC_TRACE(); 123 if (info != NULL) { 124 info->max_nb_queue_pairs = CPT_NUM_QS_PER_VF; 125 info->feature_flags = dev->feature_flags; 126 info->capabilities = otx_get_capabilities(info->feature_flags); 127 info->sym.max_nb_sessions = 0; 128 info->driver_id = otx_cryptodev_driver_id; 129 info->min_mbuf_headroom_req = OTX_CPT_MIN_HEADROOM_REQ; 130 info->min_mbuf_tailroom_req = OTX_CPT_MIN_TAILROOM_REQ; 131 } 132 } 133 134 static int 135 otx_cpt_que_pair_setup(struct rte_cryptodev *dev, 136 uint16_t que_pair_id, 137 const struct rte_cryptodev_qp_conf *qp_conf, 138 int socket_id __rte_unused) 139 { 140 struct cpt_instance *instance = NULL; 141 struct rte_pci_device *pci_dev; 142 int ret = -1; 143 144 CPT_PMD_INIT_FUNC_TRACE(); 145 146 if (dev->data->queue_pairs[que_pair_id] != NULL) { 147 ret = otx_cpt_que_pair_release(dev, que_pair_id); 148 if (ret) 149 return ret; 150 } 151 152 if (qp_conf->nb_descriptors > DEFAULT_CMD_QLEN) { 153 CPT_LOG_INFO("Number of descriptors too big %d, using default " 154 "queue length of %d", qp_conf->nb_descriptors, 155 DEFAULT_CMD_QLEN); 156 } 157 158 pci_dev = RTE_DEV_TO_PCI(dev->device); 159 160 if (pci_dev->mem_resource[0].addr == NULL) { 161 CPT_LOG_ERR("PCI mem address null"); 162 return -EIO; 163 } 164 165 ret = otx_cpt_get_resource(dev, 0, &instance, que_pair_id); 166 if (ret != 0 || instance == NULL) { 167 CPT_LOG_ERR("Error getting instance handle from device %s : " 168 "ret = %d", dev->data->name, ret); 169 return ret; 170 } 171 172 instance->queue_id = que_pair_id; 173 instance->sess_mp = qp_conf->mp_session; 174 instance->sess_mp_priv = qp_conf->mp_session_private; 175 dev->data->queue_pairs[que_pair_id] = instance; 176 177 return 0; 178 } 179 180 static int 181 otx_cpt_que_pair_release(struct rte_cryptodev *dev, uint16_t que_pair_id) 182 { 183 struct cpt_instance *instance = dev->data->queue_pairs[que_pair_id]; 184 int ret; 185 186 CPT_PMD_INIT_FUNC_TRACE(); 187 188 ret = otx_cpt_put_resource(instance); 189 if (ret != 0) { 190 CPT_LOG_ERR("Error putting instance handle of device %s : " 191 "ret = %d", dev->data->name, ret); 192 return ret; 193 } 194 195 dev->data->queue_pairs[que_pair_id] = NULL; 196 197 return 0; 198 } 199 200 static unsigned int 201 otx_cpt_get_session_size(struct rte_cryptodev *dev __rte_unused) 202 { 203 return cpt_get_session_size(); 204 } 205 206 static int 207 sym_xform_verify(struct rte_crypto_sym_xform *xform) 208 { 209 if (xform->next) { 210 if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH && 211 xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER && 212 xform->next->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT && 213 (xform->auth.algo != RTE_CRYPTO_AUTH_SHA1_HMAC || 214 xform->next->cipher.algo != RTE_CRYPTO_CIPHER_AES_CBC)) 215 return -ENOTSUP; 216 217 if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER && 218 xform->cipher.op == RTE_CRYPTO_CIPHER_OP_DECRYPT && 219 xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH && 220 (xform->cipher.algo != RTE_CRYPTO_CIPHER_AES_CBC || 221 xform->next->auth.algo != RTE_CRYPTO_AUTH_SHA1_HMAC)) 222 return -ENOTSUP; 223 224 if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER && 225 xform->cipher.algo == RTE_CRYPTO_CIPHER_3DES_CBC && 226 xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH && 227 xform->next->auth.algo == RTE_CRYPTO_AUTH_SHA1) 228 return -ENOTSUP; 229 230 if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH && 231 xform->auth.algo == RTE_CRYPTO_AUTH_SHA1 && 232 xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER && 233 xform->next->cipher.algo == RTE_CRYPTO_CIPHER_3DES_CBC) 234 return -ENOTSUP; 235 236 } else { 237 if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH && 238 xform->auth.algo == RTE_CRYPTO_AUTH_NULL && 239 xform->auth.op == RTE_CRYPTO_AUTH_OP_VERIFY) 240 return -ENOTSUP; 241 } 242 return 0; 243 } 244 245 static int 246 sym_session_configure(int driver_id, struct rte_crypto_sym_xform *xform, 247 struct rte_cryptodev_sym_session *sess, 248 struct rte_mempool *pool) 249 { 250 struct rte_crypto_sym_xform *temp_xform = xform; 251 struct cpt_sess_misc *misc; 252 vq_cmd_word3_t vq_cmd_w3; 253 void *priv; 254 int ret; 255 256 ret = sym_xform_verify(xform); 257 if (unlikely(ret)) 258 return ret; 259 260 if (unlikely(rte_mempool_get(pool, &priv))) { 261 CPT_LOG_ERR("Could not allocate session private data"); 262 return -ENOMEM; 263 } 264 265 memset(priv, 0, sizeof(struct cpt_sess_misc) + 266 offsetof(struct cpt_ctx, mc_ctx)); 267 268 misc = priv; 269 270 for ( ; xform != NULL; xform = xform->next) { 271 switch (xform->type) { 272 case RTE_CRYPTO_SYM_XFORM_AEAD: 273 ret = fill_sess_aead(xform, misc); 274 break; 275 case RTE_CRYPTO_SYM_XFORM_CIPHER: 276 ret = fill_sess_cipher(xform, misc); 277 break; 278 case RTE_CRYPTO_SYM_XFORM_AUTH: 279 if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC) 280 ret = fill_sess_gmac(xform, misc); 281 else 282 ret = fill_sess_auth(xform, misc); 283 break; 284 default: 285 ret = -1; 286 } 287 288 if (ret) 289 goto priv_put; 290 } 291 292 if ((GET_SESS_FC_TYPE(misc) == HASH_HMAC) && 293 cpt_mac_len_verify(&temp_xform->auth)) { 294 CPT_LOG_ERR("MAC length is not supported"); 295 struct cpt_ctx *ctx = SESS_PRIV(misc); 296 if (ctx->auth_key != NULL) { 297 rte_free(ctx->auth_key); 298 ctx->auth_key = NULL; 299 } 300 ret = -ENOTSUP; 301 goto priv_put; 302 } 303 304 set_sym_session_private_data(sess, driver_id, priv); 305 306 misc->ctx_dma_addr = rte_mempool_virt2iova(misc) + 307 sizeof(struct cpt_sess_misc); 308 309 vq_cmd_w3.u64 = 0; 310 vq_cmd_w3.s.grp = 0; 311 vq_cmd_w3.s.cptr = misc->ctx_dma_addr + offsetof(struct cpt_ctx, 312 mc_ctx); 313 314 misc->cpt_inst_w7 = vq_cmd_w3.u64; 315 316 return 0; 317 318 priv_put: 319 if (priv) 320 rte_mempool_put(pool, priv); 321 return -ENOTSUP; 322 } 323 324 static void 325 sym_session_clear(int driver_id, struct rte_cryptodev_sym_session *sess) 326 { 327 void *priv = get_sym_session_private_data(sess, driver_id); 328 struct cpt_sess_misc *misc; 329 struct rte_mempool *pool; 330 struct cpt_ctx *ctx; 331 332 if (priv == NULL) 333 return; 334 335 misc = priv; 336 ctx = SESS_PRIV(misc); 337 338 rte_free(ctx->auth_key); 339 340 memset(priv, 0, cpt_get_session_size()); 341 342 pool = rte_mempool_from_obj(priv); 343 344 set_sym_session_private_data(sess, driver_id, NULL); 345 346 rte_mempool_put(pool, priv); 347 } 348 349 static int 350 otx_cpt_session_cfg(struct rte_cryptodev *dev, 351 struct rte_crypto_sym_xform *xform, 352 struct rte_cryptodev_sym_session *sess, 353 struct rte_mempool *pool) 354 { 355 CPT_PMD_INIT_FUNC_TRACE(); 356 357 return sym_session_configure(dev->driver_id, xform, sess, pool); 358 } 359 360 361 static void 362 otx_cpt_session_clear(struct rte_cryptodev *dev, 363 struct rte_cryptodev_sym_session *sess) 364 { 365 CPT_PMD_INIT_FUNC_TRACE(); 366 367 return sym_session_clear(dev->driver_id, sess); 368 } 369 370 static unsigned int 371 otx_cpt_asym_session_size_get(struct rte_cryptodev *dev __rte_unused) 372 { 373 return sizeof(struct cpt_asym_sess_misc); 374 } 375 376 static int 377 otx_cpt_asym_session_cfg(struct rte_cryptodev *dev __rte_unused, 378 struct rte_crypto_asym_xform *xform __rte_unused, 379 struct rte_cryptodev_asym_session *sess) 380 { 381 struct cpt_asym_sess_misc *priv = (struct cpt_asym_sess_misc *) 382 sess->sess_private_data; 383 int ret; 384 385 CPT_PMD_INIT_FUNC_TRACE(); 386 387 ret = cpt_fill_asym_session_parameters(priv, xform); 388 if (ret) { 389 CPT_LOG_ERR("Could not configure session parameters"); 390 return ret; 391 } 392 393 priv->cpt_inst_w7 = 0; 394 395 return 0; 396 } 397 398 static void 399 otx_cpt_asym_session_clear(struct rte_cryptodev *dev, 400 struct rte_cryptodev_asym_session *sess) 401 { 402 struct cpt_asym_sess_misc *priv; 403 404 CPT_PMD_INIT_FUNC_TRACE(); 405 406 priv = (struct cpt_asym_sess_misc *) sess->sess_private_data; 407 408 if (priv == NULL) 409 return; 410 411 /* Free resources allocated during session configure */ 412 cpt_free_asym_session_parameters(priv); 413 memset(priv, 0, otx_cpt_asym_session_size_get(dev)); 414 } 415 416 static __rte_always_inline void * __rte_hot 417 otx_cpt_request_enqueue(struct cpt_instance *instance, 418 void *req, uint64_t cpt_inst_w7) 419 { 420 struct cpt_request_info *user_req = (struct cpt_request_info *)req; 421 422 fill_cpt_inst(instance, req, cpt_inst_w7); 423 424 CPT_LOG_DP_DEBUG("req: %p op: %p ", req, user_req->op); 425 426 /* Fill time_out cycles */ 427 user_req->time_out = rte_get_timer_cycles() + 428 DEFAULT_COMMAND_TIMEOUT * rte_get_timer_hz(); 429 user_req->extra_time = 0; 430 431 /* Default mode of software queue */ 432 mark_cpt_inst(instance); 433 434 CPT_LOG_DP_DEBUG("Submitted NB cmd with request: %p " 435 "op: %p", user_req, user_req->op); 436 return req; 437 } 438 439 static __rte_always_inline void * __rte_hot 440 otx_cpt_enq_single_asym(struct cpt_instance *instance, 441 struct rte_crypto_op *op) 442 { 443 struct cpt_qp_meta_info *minfo = &instance->meta_info; 444 struct rte_crypto_asym_op *asym_op = op->asym; 445 struct asym_op_params params = {0}; 446 struct cpt_asym_sess_misc *sess; 447 uintptr_t *cop; 448 void *mdata; 449 void *req; 450 int ret; 451 452 if (unlikely(rte_mempool_get(minfo->pool, &mdata) < 0)) { 453 CPT_LOG_DP_ERR("Could not allocate meta buffer for request"); 454 rte_errno = ENOMEM; 455 return NULL; 456 } 457 458 sess = (struct cpt_asym_sess_misc *) 459 asym_op->session->sess_private_data; 460 461 /* Store phys_addr of the mdata to meta_buf */ 462 params.meta_buf = rte_mempool_virt2iova(mdata); 463 464 cop = mdata; 465 cop[0] = (uintptr_t)mdata; 466 cop[1] = (uintptr_t)op; 467 cop[2] = cop[3] = 0ULL; 468 469 params.req = RTE_PTR_ADD(cop, 4 * sizeof(uintptr_t)); 470 params.req->op = cop; 471 472 /* Adjust meta_buf by crypto_op data and request_info struct */ 473 params.meta_buf += (4 * sizeof(uintptr_t)) + 474 sizeof(struct cpt_request_info); 475 476 switch (sess->xfrm_type) { 477 case RTE_CRYPTO_ASYM_XFORM_MODEX: 478 ret = cpt_modex_prep(¶ms, &sess->mod_ctx); 479 if (unlikely(ret)) 480 goto req_fail; 481 break; 482 case RTE_CRYPTO_ASYM_XFORM_RSA: 483 ret = cpt_enqueue_rsa_op(op, ¶ms, sess); 484 if (unlikely(ret)) 485 goto req_fail; 486 break; 487 case RTE_CRYPTO_ASYM_XFORM_ECDSA: 488 ret = cpt_enqueue_ecdsa_op(op, ¶ms, sess, otx_fpm_iova); 489 if (unlikely(ret)) 490 goto req_fail; 491 break; 492 case RTE_CRYPTO_ASYM_XFORM_ECPM: 493 ret = cpt_ecpm_prep(&asym_op->ecpm, ¶ms, 494 sess->ec_ctx.curveid); 495 if (unlikely(ret)) 496 goto req_fail; 497 break; 498 499 default: 500 op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS; 501 rte_errno = EINVAL; 502 goto req_fail; 503 } 504 505 req = otx_cpt_request_enqueue(instance, params.req, sess->cpt_inst_w7); 506 if (unlikely(req == NULL)) { 507 CPT_LOG_DP_ERR("Could not enqueue crypto req"); 508 goto req_fail; 509 } 510 511 return req; 512 513 req_fail: 514 free_op_meta(mdata, minfo->pool); 515 516 return NULL; 517 } 518 519 static __rte_always_inline void * __rte_hot 520 otx_cpt_enq_single_sym(struct cpt_instance *instance, 521 struct rte_crypto_op *op) 522 { 523 struct cpt_sess_misc *sess; 524 struct rte_crypto_sym_op *sym_op = op->sym; 525 struct cpt_request_info *prep_req; 526 void *mdata = NULL; 527 int ret = 0; 528 void *req; 529 uint64_t cpt_op; 530 531 sess = (struct cpt_sess_misc *) 532 get_sym_session_private_data(sym_op->session, 533 otx_cryptodev_driver_id); 534 535 cpt_op = sess->cpt_op; 536 537 if (likely(cpt_op & CPT_OP_CIPHER_MASK)) 538 ret = fill_fc_params(op, sess, &instance->meta_info, &mdata, 539 (void **)&prep_req); 540 else 541 ret = fill_digest_params(op, sess, &instance->meta_info, 542 &mdata, (void **)&prep_req); 543 544 if (unlikely(ret)) { 545 CPT_LOG_DP_ERR("prep crypto req : op %p, cpt_op 0x%x " 546 "ret 0x%x", op, (unsigned int)cpt_op, ret); 547 return NULL; 548 } 549 550 /* Enqueue prepared instruction to h/w */ 551 req = otx_cpt_request_enqueue(instance, prep_req, sess->cpt_inst_w7); 552 if (unlikely(req == NULL)) 553 /* Buffer allocated for request preparation need to be freed */ 554 free_op_meta(mdata, instance->meta_info.pool); 555 556 return req; 557 } 558 559 static __rte_always_inline void * __rte_hot 560 otx_cpt_enq_single_sym_sessless(struct cpt_instance *instance, 561 struct rte_crypto_op *op) 562 { 563 const int driver_id = otx_cryptodev_driver_id; 564 struct rte_crypto_sym_op *sym_op = op->sym; 565 struct rte_cryptodev_sym_session *sess; 566 void *req; 567 int ret; 568 569 /* Create temporary session */ 570 sess = rte_cryptodev_sym_session_create(instance->sess_mp); 571 if (sess == NULL) { 572 rte_errno = ENOMEM; 573 return NULL; 574 } 575 576 ret = sym_session_configure(driver_id, sym_op->xform, sess, 577 instance->sess_mp_priv); 578 if (ret) 579 goto sess_put; 580 581 sym_op->session = sess; 582 583 /* Enqueue op with the tmp session set */ 584 req = otx_cpt_enq_single_sym(instance, op); 585 if (unlikely(req == NULL)) 586 goto priv_put; 587 588 return req; 589 590 priv_put: 591 sym_session_clear(driver_id, sess); 592 sess_put: 593 rte_mempool_put(instance->sess_mp, sess); 594 return NULL; 595 } 596 597 #define OP_TYPE_SYM 0 598 #define OP_TYPE_ASYM 1 599 600 static __rte_always_inline void *__rte_hot 601 otx_cpt_enq_single(struct cpt_instance *inst, 602 struct rte_crypto_op *op, 603 const uint8_t op_type) 604 { 605 /* Check for the type */ 606 607 if (op_type == OP_TYPE_SYM) { 608 if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) 609 return otx_cpt_enq_single_sym(inst, op); 610 else 611 return otx_cpt_enq_single_sym_sessless(inst, op); 612 } 613 614 if (op_type == OP_TYPE_ASYM) { 615 if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) 616 return otx_cpt_enq_single_asym(inst, op); 617 } 618 619 /* Should not reach here */ 620 rte_errno = ENOTSUP; 621 return NULL; 622 } 623 624 static __rte_always_inline uint16_t __rte_hot 625 otx_cpt_pkt_enqueue(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops, 626 const uint8_t op_type) 627 { 628 struct cpt_instance *instance = (struct cpt_instance *)qptr; 629 uint16_t count, free_slots; 630 void *req; 631 struct cpt_vf *cptvf = (struct cpt_vf *)instance; 632 struct pending_queue *pqueue = &cptvf->pqueue; 633 634 free_slots = pending_queue_free_slots(pqueue, DEFAULT_CMD_QLEN, 635 DEFAULT_CMD_QRSVD_SLOTS); 636 if (nb_ops > free_slots) 637 nb_ops = free_slots; 638 639 count = 0; 640 while (likely(count < nb_ops)) { 641 642 /* Enqueue single op */ 643 req = otx_cpt_enq_single(instance, ops[count], op_type); 644 645 if (unlikely(req == NULL)) 646 break; 647 648 pending_queue_push(pqueue, req, count, DEFAULT_CMD_QLEN); 649 count++; 650 } 651 652 if (likely(count)) { 653 pending_queue_commit(pqueue, count, DEFAULT_CMD_QLEN); 654 otx_cpt_ring_dbell(instance, count); 655 } 656 return count; 657 } 658 659 static uint16_t 660 otx_cpt_enqueue_asym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops) 661 { 662 return otx_cpt_pkt_enqueue(qptr, ops, nb_ops, OP_TYPE_ASYM); 663 } 664 665 static uint16_t 666 otx_cpt_enqueue_sym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops) 667 { 668 return otx_cpt_pkt_enqueue(qptr, ops, nb_ops, OP_TYPE_SYM); 669 } 670 671 static __rte_always_inline void 672 submit_request_to_sso(struct ssows *ws, uintptr_t req, 673 struct rte_event *rsp_info) 674 { 675 uint64_t add_work; 676 677 add_work = rsp_info->flow_id | (RTE_EVENT_TYPE_CRYPTODEV << 28) | 678 (rsp_info->sub_event_type << 20) | 679 ((uint64_t)(rsp_info->sched_type) << 32); 680 681 if (!rsp_info->sched_type) 682 ssows_head_wait(ws); 683 684 rte_atomic_thread_fence(__ATOMIC_RELEASE); 685 ssovf_store_pair(add_work, req, ws->grps[rsp_info->queue_id]); 686 } 687 688 uint16_t __rte_hot 689 otx_crypto_adapter_enqueue(void *port, struct rte_crypto_op *op) 690 { 691 union rte_event_crypto_metadata *ec_mdata; 692 struct cpt_instance *instance; 693 struct cpt_request_info *req; 694 struct rte_event *rsp_info; 695 uint8_t op_type, cdev_id; 696 uint16_t qp_id; 697 698 ec_mdata = rte_cryptodev_session_event_mdata_get(op); 699 if (unlikely(ec_mdata == NULL)) { 700 rte_errno = EINVAL; 701 return 0; 702 } 703 704 cdev_id = ec_mdata->request_info.cdev_id; 705 qp_id = ec_mdata->request_info.queue_pair_id; 706 rsp_info = &ec_mdata->response_info; 707 instance = rte_cryptodevs[cdev_id].data->queue_pairs[qp_id]; 708 709 if (unlikely(!instance->ca_enabled)) { 710 rte_errno = EINVAL; 711 return 0; 712 } 713 714 op_type = op->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC ? OP_TYPE_SYM : 715 OP_TYPE_ASYM; 716 req = otx_cpt_enq_single(instance, op, op_type); 717 if (unlikely(req == NULL)) 718 return 0; 719 720 otx_cpt_ring_dbell(instance, 1); 721 req->qp = instance; 722 submit_request_to_sso(port, (uintptr_t)req, rsp_info); 723 724 return 1; 725 } 726 727 static inline void 728 otx_cpt_asym_rsa_op(struct rte_crypto_op *cop, struct cpt_request_info *req, 729 struct rte_crypto_rsa_xform *rsa_ctx) 730 731 { 732 struct rte_crypto_rsa_op_param *rsa = &cop->asym->rsa; 733 734 switch (rsa->op_type) { 735 case RTE_CRYPTO_ASYM_OP_ENCRYPT: 736 rsa->cipher.length = rsa_ctx->n.length; 737 memcpy(rsa->cipher.data, req->rptr, rsa->cipher.length); 738 break; 739 case RTE_CRYPTO_ASYM_OP_DECRYPT: 740 if (rsa->padding.type == RTE_CRYPTO_RSA_PADDING_NONE) 741 rsa->message.length = rsa_ctx->n.length; 742 else { 743 /* Get length of decrypted output */ 744 rsa->message.length = rte_cpu_to_be_16 745 (*((uint16_t *)req->rptr)); 746 747 /* Offset data pointer by length fields */ 748 req->rptr += 2; 749 } 750 memcpy(rsa->message.data, req->rptr, rsa->message.length); 751 break; 752 case RTE_CRYPTO_ASYM_OP_SIGN: 753 rsa->sign.length = rsa_ctx->n.length; 754 memcpy(rsa->sign.data, req->rptr, rsa->sign.length); 755 break; 756 case RTE_CRYPTO_ASYM_OP_VERIFY: 757 if (rsa->padding.type == RTE_CRYPTO_RSA_PADDING_NONE) 758 rsa->sign.length = rsa_ctx->n.length; 759 else { 760 /* Get length of decrypted output */ 761 rsa->sign.length = rte_cpu_to_be_16 762 (*((uint16_t *)req->rptr)); 763 764 /* Offset data pointer by length fields */ 765 req->rptr += 2; 766 } 767 memcpy(rsa->sign.data, req->rptr, rsa->sign.length); 768 769 if (memcmp(rsa->sign.data, rsa->message.data, 770 rsa->message.length)) { 771 CPT_LOG_DP_ERR("RSA verification failed"); 772 cop->status = RTE_CRYPTO_OP_STATUS_ERROR; 773 } 774 break; 775 default: 776 CPT_LOG_DP_DEBUG("Invalid RSA operation type"); 777 cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS; 778 break; 779 } 780 } 781 782 static __rte_always_inline void 783 otx_cpt_asym_dequeue_ecdsa_op(struct rte_crypto_ecdsa_op_param *ecdsa, 784 struct cpt_request_info *req, 785 struct cpt_asym_ec_ctx *ec) 786 787 { 788 int prime_len = ec_grp[ec->curveid].prime.length; 789 790 if (ecdsa->op_type == RTE_CRYPTO_ASYM_OP_VERIFY) 791 return; 792 793 /* Separate out sign r and s components */ 794 memcpy(ecdsa->r.data, req->rptr, prime_len); 795 memcpy(ecdsa->s.data, req->rptr + RTE_ALIGN_CEIL(prime_len, 8), 796 prime_len); 797 ecdsa->r.length = prime_len; 798 ecdsa->s.length = prime_len; 799 } 800 801 static __rte_always_inline void 802 otx_cpt_asym_dequeue_ecpm_op(struct rte_crypto_ecpm_op_param *ecpm, 803 struct cpt_request_info *req, 804 struct cpt_asym_ec_ctx *ec) 805 { 806 int prime_len = ec_grp[ec->curveid].prime.length; 807 808 memcpy(ecpm->r.x.data, req->rptr, prime_len); 809 memcpy(ecpm->r.y.data, req->rptr + RTE_ALIGN_CEIL(prime_len, 8), 810 prime_len); 811 ecpm->r.x.length = prime_len; 812 ecpm->r.y.length = prime_len; 813 } 814 815 static __rte_always_inline void __rte_hot 816 otx_cpt_asym_post_process(struct rte_crypto_op *cop, 817 struct cpt_request_info *req) 818 { 819 struct rte_crypto_asym_op *op = cop->asym; 820 struct cpt_asym_sess_misc *sess; 821 822 sess = (struct cpt_asym_sess_misc *) op->session->sess_private_data; 823 824 switch (sess->xfrm_type) { 825 case RTE_CRYPTO_ASYM_XFORM_RSA: 826 otx_cpt_asym_rsa_op(cop, req, &sess->rsa_ctx); 827 break; 828 case RTE_CRYPTO_ASYM_XFORM_MODEX: 829 op->modex.result.length = sess->mod_ctx.modulus.length; 830 memcpy(op->modex.result.data, req->rptr, 831 op->modex.result.length); 832 break; 833 case RTE_CRYPTO_ASYM_XFORM_ECDSA: 834 otx_cpt_asym_dequeue_ecdsa_op(&op->ecdsa, req, &sess->ec_ctx); 835 break; 836 case RTE_CRYPTO_ASYM_XFORM_ECPM: 837 otx_cpt_asym_dequeue_ecpm_op(&op->ecpm, req, &sess->ec_ctx); 838 break; 839 default: 840 CPT_LOG_DP_DEBUG("Invalid crypto xform type"); 841 cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS; 842 break; 843 } 844 } 845 846 static __rte_always_inline void __rte_hot 847 otx_cpt_dequeue_post_process(struct rte_crypto_op *cop, uintptr_t *rsp, 848 const uint8_t op_type) 849 { 850 /* H/w has returned success */ 851 cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS; 852 853 /* Perform further post processing */ 854 855 if ((op_type == OP_TYPE_SYM) && 856 (cop->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC)) { 857 /* Check if auth verify need to be completed */ 858 if (unlikely(rsp[2])) 859 compl_auth_verify(cop, (uint8_t *)rsp[2], rsp[3]); 860 return; 861 } 862 863 if ((op_type == OP_TYPE_ASYM) && 864 (cop->type == RTE_CRYPTO_OP_TYPE_ASYMMETRIC)) { 865 rsp = RTE_PTR_ADD(rsp, 4 * sizeof(uintptr_t)); 866 otx_cpt_asym_post_process(cop, (struct cpt_request_info *)rsp); 867 } 868 869 return; 870 } 871 872 static inline void 873 free_sym_session_data(const struct cpt_instance *instance, 874 struct rte_crypto_op *cop) 875 { 876 void *sess_private_data_t = get_sym_session_private_data( 877 cop->sym->session, otx_cryptodev_driver_id); 878 memset(sess_private_data_t, 0, cpt_get_session_size()); 879 memset(cop->sym->session, 0, 880 rte_cryptodev_sym_get_existing_header_session_size( 881 cop->sym->session)); 882 rte_mempool_put(instance->sess_mp_priv, sess_private_data_t); 883 rte_mempool_put(instance->sess_mp, cop->sym->session); 884 cop->sym->session = NULL; 885 } 886 887 static __rte_always_inline struct rte_crypto_op * 888 otx_cpt_process_response(const struct cpt_instance *instance, uintptr_t *rsp, 889 uint8_t cc, const uint8_t op_type) 890 { 891 struct rte_crypto_op *cop; 892 void *metabuf; 893 894 metabuf = (void *)rsp[0]; 895 cop = (void *)rsp[1]; 896 897 /* Check completion code */ 898 if (likely(cc == 0)) { 899 /* H/w success pkt. Post process */ 900 otx_cpt_dequeue_post_process(cop, rsp, op_type); 901 } else if (cc == ERR_GC_ICV_MISCOMPARE) { 902 /* auth data mismatch */ 903 cop->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED; 904 } else { 905 /* Error */ 906 cop->status = RTE_CRYPTO_OP_STATUS_ERROR; 907 } 908 909 if (unlikely(cop->sess_type == RTE_CRYPTO_OP_SESSIONLESS)) 910 free_sym_session_data(instance, cop); 911 free_op_meta(metabuf, instance->meta_info.pool); 912 913 return cop; 914 } 915 916 static __rte_always_inline uint16_t __rte_hot 917 otx_cpt_pkt_dequeue(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops, 918 const uint8_t op_type) 919 { 920 struct cpt_instance *instance = (struct cpt_instance *)qptr; 921 struct cpt_request_info *user_req; 922 struct cpt_vf *cptvf = (struct cpt_vf *)instance; 923 uint8_t cc[nb_ops]; 924 int i, count, pcount; 925 uint8_t ret; 926 int nb_completed; 927 struct pending_queue *pqueue = &cptvf->pqueue; 928 929 pcount = pending_queue_level(pqueue, DEFAULT_CMD_QLEN); 930 931 /* Ensure pcount isn't read before data lands */ 932 rte_atomic_thread_fence(__ATOMIC_ACQUIRE); 933 934 count = (nb_ops > pcount) ? pcount : nb_ops; 935 936 for (i = 0; i < count; i++) { 937 pending_queue_peek(pqueue, (void **) &user_req, 938 DEFAULT_CMD_QLEN, i + 1 < count); 939 940 ret = check_nb_command_id(user_req, instance); 941 942 if (unlikely(ret == ERR_REQ_PENDING)) { 943 /* Stop checking for completions */ 944 break; 945 } 946 947 /* Return completion code and op handle */ 948 cc[i] = ret; 949 ops[i] = user_req->op; 950 951 CPT_LOG_DP_DEBUG("Request %p Op %p completed with code %d", 952 user_req, user_req->op, ret); 953 954 pending_queue_pop(pqueue, DEFAULT_CMD_QLEN); 955 } 956 957 nb_completed = i; 958 959 for (i = 0; i < nb_completed; i++) { 960 if (likely((i + 1) < nb_completed)) 961 rte_prefetch0(ops[i+1]); 962 963 ops[i] = otx_cpt_process_response(instance, (void *)ops[i], 964 cc[i], op_type); 965 } 966 967 return nb_completed; 968 } 969 970 static uint16_t 971 otx_cpt_dequeue_asym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops) 972 { 973 return otx_cpt_pkt_dequeue(qptr, ops, nb_ops, OP_TYPE_ASYM); 974 } 975 976 static uint16_t 977 otx_cpt_dequeue_sym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops) 978 { 979 return otx_cpt_pkt_dequeue(qptr, ops, nb_ops, OP_TYPE_SYM); 980 } 981 982 uintptr_t __rte_hot 983 otx_crypto_adapter_dequeue(uintptr_t get_work1) 984 { 985 const struct cpt_instance *instance; 986 struct cpt_request_info *req; 987 struct rte_crypto_op *cop; 988 uint8_t cc, op_type; 989 uintptr_t *rsp; 990 991 req = (struct cpt_request_info *)get_work1; 992 instance = req->qp; 993 rsp = req->op; 994 cop = (void *)rsp[1]; 995 op_type = cop->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC ? OP_TYPE_SYM : 996 OP_TYPE_ASYM; 997 998 do { 999 cc = check_nb_command_id( 1000 req, (struct cpt_instance *)(uintptr_t)instance); 1001 } while (cc == ERR_REQ_PENDING); 1002 1003 cop = otx_cpt_process_response(instance, (void *)req->op, cc, op_type); 1004 1005 return (uintptr_t)(cop); 1006 } 1007 1008 static struct rte_cryptodev_ops cptvf_ops = { 1009 /* Device related operations */ 1010 .dev_configure = otx_cpt_dev_config, 1011 .dev_start = otx_cpt_dev_start, 1012 .dev_stop = otx_cpt_dev_stop, 1013 .dev_close = otx_cpt_dev_close, 1014 .dev_infos_get = otx_cpt_dev_info_get, 1015 1016 .stats_get = NULL, 1017 .stats_reset = NULL, 1018 .queue_pair_setup = otx_cpt_que_pair_setup, 1019 .queue_pair_release = otx_cpt_que_pair_release, 1020 1021 /* Crypto related operations */ 1022 .sym_session_get_size = otx_cpt_get_session_size, 1023 .sym_session_configure = otx_cpt_session_cfg, 1024 .sym_session_clear = otx_cpt_session_clear, 1025 1026 .asym_session_get_size = otx_cpt_asym_session_size_get, 1027 .asym_session_configure = otx_cpt_asym_session_cfg, 1028 .asym_session_clear = otx_cpt_asym_session_clear, 1029 }; 1030 1031 int 1032 otx_cpt_dev_create(struct rte_cryptodev *c_dev) 1033 { 1034 struct rte_pci_device *pdev = RTE_DEV_TO_PCI(c_dev->device); 1035 struct cpt_vf *cptvf = NULL; 1036 void *reg_base; 1037 char dev_name[32]; 1038 int ret; 1039 1040 if (pdev->mem_resource[0].phys_addr == 0ULL) 1041 return -EIO; 1042 1043 /* for secondary processes, we don't initialise any further as primary 1044 * has already done this work. 1045 */ 1046 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 1047 return 0; 1048 1049 cptvf = rte_zmalloc_socket("otx_cryptodev_private_mem", 1050 sizeof(struct cpt_vf), RTE_CACHE_LINE_SIZE, 1051 rte_socket_id()); 1052 1053 if (cptvf == NULL) { 1054 CPT_LOG_ERR("Cannot allocate memory for device private data"); 1055 return -ENOMEM; 1056 } 1057 1058 snprintf(dev_name, 32, "%02x:%02x.%x", 1059 pdev->addr.bus, pdev->addr.devid, pdev->addr.function); 1060 1061 reg_base = pdev->mem_resource[0].addr; 1062 if (!reg_base) { 1063 CPT_LOG_ERR("Failed to map BAR0 of %s", dev_name); 1064 ret = -ENODEV; 1065 goto fail; 1066 } 1067 1068 ret = otx_cpt_hw_init(cptvf, pdev, reg_base, dev_name); 1069 if (ret) { 1070 CPT_LOG_ERR("Failed to init cptvf %s", dev_name); 1071 ret = -EIO; 1072 goto fail; 1073 } 1074 1075 switch (cptvf->vftype) { 1076 case OTX_CPT_VF_TYPE_AE: 1077 /* Set asymmetric cpt feature flags */ 1078 c_dev->feature_flags = RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO | 1079 RTE_CRYPTODEV_FF_HW_ACCELERATED | 1080 RTE_CRYPTODEV_FF_RSA_PRIV_OP_KEY_QT; 1081 break; 1082 case OTX_CPT_VF_TYPE_SE: 1083 /* Set symmetric cpt feature flags */ 1084 c_dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO | 1085 RTE_CRYPTODEV_FF_HW_ACCELERATED | 1086 RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING | 1087 RTE_CRYPTODEV_FF_IN_PLACE_SGL | 1088 RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT | 1089 RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT | 1090 RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT | 1091 RTE_CRYPTODEV_FF_SYM_SESSIONLESS | 1092 RTE_CRYPTODEV_FF_DIGEST_ENCRYPTED; 1093 break; 1094 default: 1095 /* Feature not supported. Abort */ 1096 CPT_LOG_ERR("VF type not supported by %s", dev_name); 1097 ret = -EIO; 1098 goto deinit_dev; 1099 } 1100 1101 /* Start off timer for mailbox interrupts */ 1102 otx_cpt_periodic_alarm_start(cptvf); 1103 1104 c_dev->dev_ops = &cptvf_ops; 1105 1106 if (c_dev->feature_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) { 1107 c_dev->enqueue_burst = otx_cpt_enqueue_sym; 1108 c_dev->dequeue_burst = otx_cpt_dequeue_sym; 1109 } else { 1110 c_dev->enqueue_burst = otx_cpt_enqueue_asym; 1111 c_dev->dequeue_burst = otx_cpt_dequeue_asym; 1112 } 1113 1114 /* Save dev private data */ 1115 c_dev->data->dev_private = cptvf; 1116 1117 return 0; 1118 1119 deinit_dev: 1120 otx_cpt_deinit_device(cptvf); 1121 1122 fail: 1123 if (cptvf) { 1124 /* Free private data allocated */ 1125 rte_free(cptvf); 1126 } 1127 1128 return ret; 1129 } 1130