1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2018 Cavium, Inc 3 */ 4 5 #include <rte_alarm.h> 6 #include <rte_bus_pci.h> 7 #include <rte_cryptodev.h> 8 #include <cryptodev_pmd.h> 9 #include <rte_eventdev.h> 10 #include <rte_event_crypto_adapter.h> 11 #include <rte_errno.h> 12 #include <rte_malloc.h> 13 #include <rte_mempool.h> 14 15 #include "otx_cryptodev.h" 16 #include "otx_cryptodev_capabilities.h" 17 #include "otx_cryptodev_hw_access.h" 18 #include "otx_cryptodev_mbox.h" 19 #include "otx_cryptodev_ops.h" 20 21 #include "cpt_pmd_logs.h" 22 #include "cpt_pmd_ops_helper.h" 23 #include "cpt_ucode.h" 24 #include "cpt_ucode_asym.h" 25 26 #include "ssovf_worker.h" 27 28 static uint64_t otx_fpm_iova[CPT_EC_ID_PMAX]; 29 30 /* Forward declarations */ 31 32 static int 33 otx_cpt_que_pair_release(struct rte_cryptodev *dev, uint16_t que_pair_id); 34 35 /* Alarm routines */ 36 37 static void 38 otx_cpt_alarm_cb(void *arg) 39 { 40 struct cpt_vf *cptvf = arg; 41 otx_cpt_poll_misc(cptvf); 42 rte_eal_alarm_set(CPT_INTR_POLL_INTERVAL_MS * 1000, 43 otx_cpt_alarm_cb, cptvf); 44 } 45 46 static int 47 otx_cpt_periodic_alarm_start(void *arg) 48 { 49 return rte_eal_alarm_set(CPT_INTR_POLL_INTERVAL_MS * 1000, 50 otx_cpt_alarm_cb, arg); 51 } 52 53 static int 54 otx_cpt_periodic_alarm_stop(void *arg) 55 { 56 return rte_eal_alarm_cancel(otx_cpt_alarm_cb, arg); 57 } 58 59 /* PMD ops */ 60 61 static int 62 otx_cpt_dev_config(struct rte_cryptodev *dev, 63 struct rte_cryptodev_config *config __rte_unused) 64 { 65 int ret = 0; 66 67 CPT_PMD_INIT_FUNC_TRACE(); 68 69 if (dev->feature_flags & RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO) 70 /* Initialize shared FPM table */ 71 ret = cpt_fpm_init(otx_fpm_iova); 72 73 return ret; 74 } 75 76 static int 77 otx_cpt_dev_start(struct rte_cryptodev *c_dev) 78 { 79 void *cptvf = c_dev->data->dev_private; 80 81 CPT_PMD_INIT_FUNC_TRACE(); 82 83 return otx_cpt_start_device(cptvf); 84 } 85 86 static void 87 otx_cpt_dev_stop(struct rte_cryptodev *c_dev) 88 { 89 void *cptvf = c_dev->data->dev_private; 90 91 CPT_PMD_INIT_FUNC_TRACE(); 92 93 if (c_dev->feature_flags & RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO) 94 cpt_fpm_clear(); 95 96 otx_cpt_stop_device(cptvf); 97 } 98 99 static int 100 otx_cpt_dev_close(struct rte_cryptodev *c_dev) 101 { 102 void *cptvf = c_dev->data->dev_private; 103 int i, ret; 104 105 CPT_PMD_INIT_FUNC_TRACE(); 106 107 for (i = 0; i < c_dev->data->nb_queue_pairs; i++) { 108 ret = otx_cpt_que_pair_release(c_dev, i); 109 if (ret) 110 return ret; 111 } 112 113 otx_cpt_periodic_alarm_stop(cptvf); 114 otx_cpt_deinit_device(cptvf); 115 116 return 0; 117 } 118 119 static void 120 otx_cpt_dev_info_get(struct rte_cryptodev *dev, struct rte_cryptodev_info *info) 121 { 122 CPT_PMD_INIT_FUNC_TRACE(); 123 if (info != NULL) { 124 info->max_nb_queue_pairs = CPT_NUM_QS_PER_VF; 125 info->feature_flags = dev->feature_flags; 126 info->capabilities = otx_get_capabilities(info->feature_flags); 127 info->sym.max_nb_sessions = 0; 128 info->driver_id = otx_cryptodev_driver_id; 129 info->min_mbuf_headroom_req = OTX_CPT_MIN_HEADROOM_REQ; 130 info->min_mbuf_tailroom_req = OTX_CPT_MIN_TAILROOM_REQ; 131 } 132 } 133 134 static int 135 otx_cpt_que_pair_setup(struct rte_cryptodev *dev, 136 uint16_t que_pair_id, 137 const struct rte_cryptodev_qp_conf *qp_conf, 138 int socket_id __rte_unused) 139 { 140 struct cpt_instance *instance = NULL; 141 struct rte_pci_device *pci_dev; 142 int ret = -1; 143 144 CPT_PMD_INIT_FUNC_TRACE(); 145 146 if (dev->data->queue_pairs[que_pair_id] != NULL) { 147 ret = otx_cpt_que_pair_release(dev, que_pair_id); 148 if (ret) 149 return ret; 150 } 151 152 if (qp_conf->nb_descriptors > DEFAULT_CMD_QLEN) { 153 CPT_LOG_INFO("Number of descriptors too big %d, using default " 154 "queue length of %d", qp_conf->nb_descriptors, 155 DEFAULT_CMD_QLEN); 156 } 157 158 pci_dev = RTE_DEV_TO_PCI(dev->device); 159 160 if (pci_dev->mem_resource[0].addr == NULL) { 161 CPT_LOG_ERR("PCI mem address null"); 162 return -EIO; 163 } 164 165 ret = otx_cpt_get_resource(dev, 0, &instance, que_pair_id); 166 if (ret != 0 || instance == NULL) { 167 CPT_LOG_ERR("Error getting instance handle from device %s : " 168 "ret = %d", dev->data->name, ret); 169 return ret; 170 } 171 172 instance->queue_id = que_pair_id; 173 instance->sess_mp = qp_conf->mp_session; 174 instance->sess_mp_priv = qp_conf->mp_session_private; 175 dev->data->queue_pairs[que_pair_id] = instance; 176 177 return 0; 178 } 179 180 static int 181 otx_cpt_que_pair_release(struct rte_cryptodev *dev, uint16_t que_pair_id) 182 { 183 struct cpt_instance *instance = dev->data->queue_pairs[que_pair_id]; 184 int ret; 185 186 CPT_PMD_INIT_FUNC_TRACE(); 187 188 ret = otx_cpt_put_resource(instance); 189 if (ret != 0) { 190 CPT_LOG_ERR("Error putting instance handle of device %s : " 191 "ret = %d", dev->data->name, ret); 192 return ret; 193 } 194 195 dev->data->queue_pairs[que_pair_id] = NULL; 196 197 return 0; 198 } 199 200 static unsigned int 201 otx_cpt_get_session_size(struct rte_cryptodev *dev __rte_unused) 202 { 203 return cpt_get_session_size(); 204 } 205 206 static int 207 sym_xform_verify(struct rte_crypto_sym_xform *xform) 208 { 209 if (xform->next) { 210 if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH && 211 xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER && 212 xform->next->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT && 213 (xform->auth.algo != RTE_CRYPTO_AUTH_SHA1_HMAC || 214 xform->next->cipher.algo != RTE_CRYPTO_CIPHER_AES_CBC)) 215 return -ENOTSUP; 216 217 if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER && 218 xform->cipher.op == RTE_CRYPTO_CIPHER_OP_DECRYPT && 219 xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH && 220 (xform->cipher.algo != RTE_CRYPTO_CIPHER_AES_CBC || 221 xform->next->auth.algo != RTE_CRYPTO_AUTH_SHA1_HMAC)) 222 return -ENOTSUP; 223 224 if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER && 225 xform->cipher.algo == RTE_CRYPTO_CIPHER_3DES_CBC && 226 xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH && 227 xform->next->auth.algo == RTE_CRYPTO_AUTH_SHA1) 228 return -ENOTSUP; 229 230 if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH && 231 xform->auth.algo == RTE_CRYPTO_AUTH_SHA1 && 232 xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER && 233 xform->next->cipher.algo == RTE_CRYPTO_CIPHER_3DES_CBC) 234 return -ENOTSUP; 235 236 } else { 237 if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH && 238 xform->auth.algo == RTE_CRYPTO_AUTH_NULL && 239 xform->auth.op == RTE_CRYPTO_AUTH_OP_VERIFY) 240 return -ENOTSUP; 241 } 242 return 0; 243 } 244 245 static int 246 sym_session_configure(int driver_id, struct rte_crypto_sym_xform *xform, 247 struct rte_cryptodev_sym_session *sess, 248 struct rte_mempool *pool) 249 { 250 struct rte_crypto_sym_xform *temp_xform = xform; 251 struct cpt_sess_misc *misc; 252 vq_cmd_word3_t vq_cmd_w3; 253 void *priv; 254 int ret; 255 256 ret = sym_xform_verify(xform); 257 if (unlikely(ret)) 258 return ret; 259 260 if (unlikely(rte_mempool_get(pool, &priv))) { 261 CPT_LOG_ERR("Could not allocate session private data"); 262 return -ENOMEM; 263 } 264 265 memset(priv, 0, sizeof(struct cpt_sess_misc) + 266 offsetof(struct cpt_ctx, mc_ctx)); 267 268 misc = priv; 269 270 for ( ; xform != NULL; xform = xform->next) { 271 switch (xform->type) { 272 case RTE_CRYPTO_SYM_XFORM_AEAD: 273 ret = fill_sess_aead(xform, misc); 274 break; 275 case RTE_CRYPTO_SYM_XFORM_CIPHER: 276 ret = fill_sess_cipher(xform, misc); 277 break; 278 case RTE_CRYPTO_SYM_XFORM_AUTH: 279 if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC) 280 ret = fill_sess_gmac(xform, misc); 281 else 282 ret = fill_sess_auth(xform, misc); 283 break; 284 default: 285 ret = -1; 286 } 287 288 if (ret) 289 goto priv_put; 290 } 291 292 if ((GET_SESS_FC_TYPE(misc) == HASH_HMAC) && 293 cpt_mac_len_verify(&temp_xform->auth)) { 294 CPT_LOG_ERR("MAC length is not supported"); 295 struct cpt_ctx *ctx = SESS_PRIV(misc); 296 if (ctx->auth_key != NULL) { 297 rte_free(ctx->auth_key); 298 ctx->auth_key = NULL; 299 } 300 ret = -ENOTSUP; 301 goto priv_put; 302 } 303 304 set_sym_session_private_data(sess, driver_id, priv); 305 306 misc->ctx_dma_addr = rte_mempool_virt2iova(misc) + 307 sizeof(struct cpt_sess_misc); 308 309 vq_cmd_w3.u64 = 0; 310 vq_cmd_w3.s.grp = 0; 311 vq_cmd_w3.s.cptr = misc->ctx_dma_addr + offsetof(struct cpt_ctx, 312 mc_ctx); 313 314 misc->cpt_inst_w7 = vq_cmd_w3.u64; 315 316 return 0; 317 318 priv_put: 319 if (priv) 320 rte_mempool_put(pool, priv); 321 return -ENOTSUP; 322 } 323 324 static void 325 sym_session_clear(int driver_id, struct rte_cryptodev_sym_session *sess) 326 { 327 void *priv = get_sym_session_private_data(sess, driver_id); 328 struct cpt_sess_misc *misc; 329 struct rte_mempool *pool; 330 struct cpt_ctx *ctx; 331 332 if (priv == NULL) 333 return; 334 335 misc = priv; 336 ctx = SESS_PRIV(misc); 337 338 rte_free(ctx->auth_key); 339 340 memset(priv, 0, cpt_get_session_size()); 341 342 pool = rte_mempool_from_obj(priv); 343 344 set_sym_session_private_data(sess, driver_id, NULL); 345 346 rte_mempool_put(pool, priv); 347 } 348 349 static int 350 otx_cpt_session_cfg(struct rte_cryptodev *dev, 351 struct rte_crypto_sym_xform *xform, 352 struct rte_cryptodev_sym_session *sess, 353 struct rte_mempool *pool) 354 { 355 CPT_PMD_INIT_FUNC_TRACE(); 356 357 return sym_session_configure(dev->driver_id, xform, sess, pool); 358 } 359 360 361 static void 362 otx_cpt_session_clear(struct rte_cryptodev *dev, 363 struct rte_cryptodev_sym_session *sess) 364 { 365 CPT_PMD_INIT_FUNC_TRACE(); 366 367 return sym_session_clear(dev->driver_id, sess); 368 } 369 370 static unsigned int 371 otx_cpt_asym_session_size_get(struct rte_cryptodev *dev __rte_unused) 372 { 373 return sizeof(struct cpt_asym_sess_misc); 374 } 375 376 static int 377 otx_cpt_asym_session_cfg(struct rte_cryptodev *dev __rte_unused, 378 struct rte_crypto_asym_xform *xform __rte_unused, 379 struct rte_cryptodev_asym_session *sess) 380 { 381 struct cpt_asym_sess_misc *priv = (struct cpt_asym_sess_misc *) 382 sess->sess_private_data; 383 int ret; 384 385 CPT_PMD_INIT_FUNC_TRACE(); 386 387 ret = cpt_fill_asym_session_parameters(priv, xform); 388 if (ret) { 389 CPT_LOG_ERR("Could not configure session parameters"); 390 return ret; 391 } 392 393 priv->cpt_inst_w7 = 0; 394 395 return 0; 396 } 397 398 static void 399 otx_cpt_asym_session_clear(struct rte_cryptodev *dev, 400 struct rte_cryptodev_asym_session *sess) 401 { 402 struct cpt_asym_sess_misc *priv; 403 404 CPT_PMD_INIT_FUNC_TRACE(); 405 406 priv = (struct cpt_asym_sess_misc *) sess->sess_private_data; 407 408 if (priv == NULL) 409 return; 410 411 /* Free resources allocated during session configure */ 412 cpt_free_asym_session_parameters(priv); 413 memset(priv, 0, otx_cpt_asym_session_size_get(dev)); 414 } 415 416 static __rte_always_inline void * __rte_hot 417 otx_cpt_request_enqueue(struct cpt_instance *instance, 418 void *req, uint64_t cpt_inst_w7) 419 { 420 struct cpt_request_info *user_req = (struct cpt_request_info *)req; 421 422 fill_cpt_inst(instance, req, cpt_inst_w7); 423 424 CPT_LOG_DP_DEBUG("req: %p op: %p ", req, user_req->op); 425 426 /* Fill time_out cycles */ 427 user_req->time_out = rte_get_timer_cycles() + 428 DEFAULT_COMMAND_TIMEOUT * rte_get_timer_hz(); 429 user_req->extra_time = 0; 430 431 /* Default mode of software queue */ 432 mark_cpt_inst(instance); 433 434 CPT_LOG_DP_DEBUG("Submitted NB cmd with request: %p " 435 "op: %p", user_req, user_req->op); 436 return req; 437 } 438 439 static __rte_always_inline void * __rte_hot 440 otx_cpt_enq_single_asym(struct cpt_instance *instance, 441 struct rte_crypto_op *op) 442 { 443 struct cpt_qp_meta_info *minfo = &instance->meta_info; 444 struct rte_crypto_asym_op *asym_op = op->asym; 445 struct asym_op_params params = {0}; 446 struct cpt_asym_sess_misc *sess; 447 uintptr_t *cop; 448 void *mdata; 449 void *req; 450 int ret; 451 452 if (unlikely(rte_mempool_get(minfo->pool, &mdata) < 0)) { 453 CPT_LOG_DP_ERR("Could not allocate meta buffer for request"); 454 rte_errno = ENOMEM; 455 return NULL; 456 } 457 458 sess = (struct cpt_asym_sess_misc *) 459 asym_op->session->sess_private_data; 460 461 /* Store phys_addr of the mdata to meta_buf */ 462 params.meta_buf = rte_mempool_virt2iova(mdata); 463 464 cop = mdata; 465 cop[0] = (uintptr_t)mdata; 466 cop[1] = (uintptr_t)op; 467 cop[2] = cop[3] = 0ULL; 468 469 params.req = RTE_PTR_ADD(cop, 4 * sizeof(uintptr_t)); 470 params.req->op = cop; 471 472 /* Adjust meta_buf by crypto_op data and request_info struct */ 473 params.meta_buf += (4 * sizeof(uintptr_t)) + 474 sizeof(struct cpt_request_info); 475 476 switch (sess->xfrm_type) { 477 case RTE_CRYPTO_ASYM_XFORM_MODEX: 478 ret = cpt_modex_prep(¶ms, &sess->mod_ctx); 479 if (unlikely(ret)) 480 goto req_fail; 481 break; 482 case RTE_CRYPTO_ASYM_XFORM_RSA: 483 ret = cpt_enqueue_rsa_op(op, ¶ms, sess); 484 if (unlikely(ret)) 485 goto req_fail; 486 break; 487 case RTE_CRYPTO_ASYM_XFORM_ECDSA: 488 ret = cpt_enqueue_ecdsa_op(op, ¶ms, sess, otx_fpm_iova); 489 if (unlikely(ret)) 490 goto req_fail; 491 break; 492 case RTE_CRYPTO_ASYM_XFORM_ECPM: 493 ret = cpt_ecpm_prep(&asym_op->ecpm, ¶ms, 494 sess->ec_ctx.curveid); 495 if (unlikely(ret)) 496 goto req_fail; 497 break; 498 499 default: 500 op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS; 501 rte_errno = EINVAL; 502 goto req_fail; 503 } 504 505 req = otx_cpt_request_enqueue(instance, params.req, sess->cpt_inst_w7); 506 if (unlikely(req == NULL)) { 507 CPT_LOG_DP_ERR("Could not enqueue crypto req"); 508 goto req_fail; 509 } 510 511 return req; 512 513 req_fail: 514 free_op_meta(mdata, minfo->pool); 515 516 return NULL; 517 } 518 519 static __rte_always_inline void * __rte_hot 520 otx_cpt_enq_single_sym(struct cpt_instance *instance, 521 struct rte_crypto_op *op) 522 { 523 struct cpt_sess_misc *sess; 524 struct rte_crypto_sym_op *sym_op = op->sym; 525 struct cpt_request_info *prep_req; 526 void *mdata = NULL; 527 int ret = 0; 528 void *req; 529 uint64_t cpt_op; 530 531 sess = (struct cpt_sess_misc *) 532 get_sym_session_private_data(sym_op->session, 533 otx_cryptodev_driver_id); 534 535 cpt_op = sess->cpt_op; 536 537 if (likely(cpt_op & CPT_OP_CIPHER_MASK)) 538 ret = fill_fc_params(op, sess, &instance->meta_info, &mdata, 539 (void **)&prep_req); 540 else 541 ret = fill_digest_params(op, sess, &instance->meta_info, 542 &mdata, (void **)&prep_req); 543 544 if (unlikely(ret)) { 545 CPT_LOG_DP_ERR("prep crypto req : op %p, cpt_op 0x%x " 546 "ret 0x%x", op, (unsigned int)cpt_op, ret); 547 return NULL; 548 } 549 550 /* Enqueue prepared instruction to h/w */ 551 req = otx_cpt_request_enqueue(instance, prep_req, sess->cpt_inst_w7); 552 if (unlikely(req == NULL)) 553 /* Buffer allocated for request preparation need to be freed */ 554 free_op_meta(mdata, instance->meta_info.pool); 555 556 return req; 557 } 558 559 static __rte_always_inline void * __rte_hot 560 otx_cpt_enq_single_sym_sessless(struct cpt_instance *instance, 561 struct rte_crypto_op *op) 562 { 563 const int driver_id = otx_cryptodev_driver_id; 564 struct rte_crypto_sym_op *sym_op = op->sym; 565 struct rte_cryptodev_sym_session *sess; 566 void *req; 567 int ret; 568 569 /* Create temporary session */ 570 sess = rte_cryptodev_sym_session_create(instance->sess_mp); 571 if (sess == NULL) { 572 rte_errno = ENOMEM; 573 return NULL; 574 } 575 576 ret = sym_session_configure(driver_id, sym_op->xform, sess, 577 instance->sess_mp_priv); 578 if (ret) 579 goto sess_put; 580 581 sym_op->session = sess; 582 583 /* Enqueue op with the tmp session set */ 584 req = otx_cpt_enq_single_sym(instance, op); 585 if (unlikely(req == NULL)) 586 goto priv_put; 587 588 return req; 589 590 priv_put: 591 sym_session_clear(driver_id, sess); 592 sess_put: 593 rte_mempool_put(instance->sess_mp, sess); 594 return NULL; 595 } 596 597 #define OP_TYPE_SYM 0 598 #define OP_TYPE_ASYM 1 599 600 static __rte_always_inline void *__rte_hot 601 otx_cpt_enq_single(struct cpt_instance *inst, 602 struct rte_crypto_op *op, 603 const uint8_t op_type) 604 { 605 /* Check for the type */ 606 607 if (op_type == OP_TYPE_SYM) { 608 if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) 609 return otx_cpt_enq_single_sym(inst, op); 610 else 611 return otx_cpt_enq_single_sym_sessless(inst, op); 612 } 613 614 if (op_type == OP_TYPE_ASYM) { 615 if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) 616 return otx_cpt_enq_single_asym(inst, op); 617 } 618 619 /* Should not reach here */ 620 rte_errno = ENOTSUP; 621 return NULL; 622 } 623 624 static __rte_always_inline uint16_t __rte_hot 625 otx_cpt_pkt_enqueue(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops, 626 const uint8_t op_type) 627 { 628 struct cpt_instance *instance = (struct cpt_instance *)qptr; 629 uint16_t count, free_slots; 630 void *req; 631 struct cpt_vf *cptvf = (struct cpt_vf *)instance; 632 struct pending_queue *pqueue = &cptvf->pqueue; 633 634 free_slots = pending_queue_free_slots(pqueue, DEFAULT_CMD_QLEN, 635 DEFAULT_CMD_QRSVD_SLOTS); 636 if (nb_ops > free_slots) 637 nb_ops = free_slots; 638 639 count = 0; 640 while (likely(count < nb_ops)) { 641 642 /* Enqueue single op */ 643 req = otx_cpt_enq_single(instance, ops[count], op_type); 644 645 if (unlikely(req == NULL)) 646 break; 647 648 pending_queue_push(pqueue, req, count, DEFAULT_CMD_QLEN); 649 count++; 650 } 651 652 if (likely(count)) { 653 pending_queue_commit(pqueue, count, DEFAULT_CMD_QLEN); 654 otx_cpt_ring_dbell(instance, count); 655 } 656 return count; 657 } 658 659 static uint16_t 660 otx_cpt_enqueue_asym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops) 661 { 662 return otx_cpt_pkt_enqueue(qptr, ops, nb_ops, OP_TYPE_ASYM); 663 } 664 665 static uint16_t 666 otx_cpt_enqueue_sym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops) 667 { 668 return otx_cpt_pkt_enqueue(qptr, ops, nb_ops, OP_TYPE_SYM); 669 } 670 671 static __rte_always_inline void 672 submit_request_to_sso(struct ssows *ws, uintptr_t req, 673 struct rte_event *rsp_info) 674 { 675 uint64_t add_work; 676 677 add_work = rsp_info->flow_id | (RTE_EVENT_TYPE_CRYPTODEV << 28) | 678 ((uint64_t)(rsp_info->sched_type) << 32); 679 680 if (!rsp_info->sched_type) 681 ssows_head_wait(ws); 682 683 rte_atomic_thread_fence(__ATOMIC_RELEASE); 684 ssovf_store_pair(add_work, req, ws->grps[rsp_info->queue_id]); 685 } 686 687 static inline union rte_event_crypto_metadata * 688 get_event_crypto_mdata(struct rte_crypto_op *op) 689 { 690 union rte_event_crypto_metadata *ec_mdata; 691 692 if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) 693 ec_mdata = rte_cryptodev_sym_session_get_user_data( 694 op->sym->session); 695 else if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS && 696 op->private_data_offset) 697 ec_mdata = (union rte_event_crypto_metadata *) 698 ((uint8_t *)op + op->private_data_offset); 699 else 700 return NULL; 701 702 return ec_mdata; 703 } 704 705 uint16_t __rte_hot 706 otx_crypto_adapter_enqueue(void *port, struct rte_crypto_op *op) 707 { 708 union rte_event_crypto_metadata *ec_mdata; 709 struct cpt_instance *instance; 710 struct cpt_request_info *req; 711 struct rte_event *rsp_info; 712 uint8_t op_type, cdev_id; 713 uint16_t qp_id; 714 715 ec_mdata = get_event_crypto_mdata(op); 716 if (unlikely(ec_mdata == NULL)) { 717 rte_errno = EINVAL; 718 return 0; 719 } 720 721 cdev_id = ec_mdata->request_info.cdev_id; 722 qp_id = ec_mdata->request_info.queue_pair_id; 723 rsp_info = &ec_mdata->response_info; 724 instance = rte_cryptodevs[cdev_id].data->queue_pairs[qp_id]; 725 726 if (unlikely(!instance->ca_enabled)) { 727 rte_errno = EINVAL; 728 return 0; 729 } 730 731 op_type = op->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC ? OP_TYPE_SYM : 732 OP_TYPE_ASYM; 733 req = otx_cpt_enq_single(instance, op, op_type); 734 if (unlikely(req == NULL)) 735 return 0; 736 737 otx_cpt_ring_dbell(instance, 1); 738 req->qp = instance; 739 submit_request_to_sso(port, (uintptr_t)req, rsp_info); 740 741 return 1; 742 } 743 744 static inline void 745 otx_cpt_asym_rsa_op(struct rte_crypto_op *cop, struct cpt_request_info *req, 746 struct rte_crypto_rsa_xform *rsa_ctx) 747 748 { 749 struct rte_crypto_rsa_op_param *rsa = &cop->asym->rsa; 750 751 switch (rsa->op_type) { 752 case RTE_CRYPTO_ASYM_OP_ENCRYPT: 753 rsa->cipher.length = rsa_ctx->n.length; 754 memcpy(rsa->cipher.data, req->rptr, rsa->cipher.length); 755 break; 756 case RTE_CRYPTO_ASYM_OP_DECRYPT: 757 if (rsa->pad == RTE_CRYPTO_RSA_PADDING_NONE) 758 rsa->message.length = rsa_ctx->n.length; 759 else { 760 /* Get length of decrypted output */ 761 rsa->message.length = rte_cpu_to_be_16 762 (*((uint16_t *)req->rptr)); 763 764 /* Offset data pointer by length fields */ 765 req->rptr += 2; 766 } 767 memcpy(rsa->message.data, req->rptr, rsa->message.length); 768 break; 769 case RTE_CRYPTO_ASYM_OP_SIGN: 770 rsa->sign.length = rsa_ctx->n.length; 771 memcpy(rsa->sign.data, req->rptr, rsa->sign.length); 772 break; 773 case RTE_CRYPTO_ASYM_OP_VERIFY: 774 if (rsa->pad == RTE_CRYPTO_RSA_PADDING_NONE) 775 rsa->sign.length = rsa_ctx->n.length; 776 else { 777 /* Get length of decrypted output */ 778 rsa->sign.length = rte_cpu_to_be_16 779 (*((uint16_t *)req->rptr)); 780 781 /* Offset data pointer by length fields */ 782 req->rptr += 2; 783 } 784 memcpy(rsa->sign.data, req->rptr, rsa->sign.length); 785 786 if (memcmp(rsa->sign.data, rsa->message.data, 787 rsa->message.length)) { 788 CPT_LOG_DP_ERR("RSA verification failed"); 789 cop->status = RTE_CRYPTO_OP_STATUS_ERROR; 790 } 791 break; 792 default: 793 CPT_LOG_DP_DEBUG("Invalid RSA operation type"); 794 cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS; 795 break; 796 } 797 } 798 799 static __rte_always_inline void 800 otx_cpt_asym_dequeue_ecdsa_op(struct rte_crypto_ecdsa_op_param *ecdsa, 801 struct cpt_request_info *req, 802 struct cpt_asym_ec_ctx *ec) 803 804 { 805 int prime_len = ec_grp[ec->curveid].prime.length; 806 807 if (ecdsa->op_type == RTE_CRYPTO_ASYM_OP_VERIFY) 808 return; 809 810 /* Separate out sign r and s components */ 811 memcpy(ecdsa->r.data, req->rptr, prime_len); 812 memcpy(ecdsa->s.data, req->rptr + RTE_ALIGN_CEIL(prime_len, 8), 813 prime_len); 814 ecdsa->r.length = prime_len; 815 ecdsa->s.length = prime_len; 816 } 817 818 static __rte_always_inline void 819 otx_cpt_asym_dequeue_ecpm_op(struct rte_crypto_ecpm_op_param *ecpm, 820 struct cpt_request_info *req, 821 struct cpt_asym_ec_ctx *ec) 822 { 823 int prime_len = ec_grp[ec->curveid].prime.length; 824 825 memcpy(ecpm->r.x.data, req->rptr, prime_len); 826 memcpy(ecpm->r.y.data, req->rptr + RTE_ALIGN_CEIL(prime_len, 8), 827 prime_len); 828 ecpm->r.x.length = prime_len; 829 ecpm->r.y.length = prime_len; 830 } 831 832 static __rte_always_inline void __rte_hot 833 otx_cpt_asym_post_process(struct rte_crypto_op *cop, 834 struct cpt_request_info *req) 835 { 836 struct rte_crypto_asym_op *op = cop->asym; 837 struct cpt_asym_sess_misc *sess; 838 839 sess = (struct cpt_asym_sess_misc *) op->session->sess_private_data; 840 841 switch (sess->xfrm_type) { 842 case RTE_CRYPTO_ASYM_XFORM_RSA: 843 otx_cpt_asym_rsa_op(cop, req, &sess->rsa_ctx); 844 break; 845 case RTE_CRYPTO_ASYM_XFORM_MODEX: 846 op->modex.result.length = sess->mod_ctx.modulus.length; 847 memcpy(op->modex.result.data, req->rptr, 848 op->modex.result.length); 849 break; 850 case RTE_CRYPTO_ASYM_XFORM_ECDSA: 851 otx_cpt_asym_dequeue_ecdsa_op(&op->ecdsa, req, &sess->ec_ctx); 852 break; 853 case RTE_CRYPTO_ASYM_XFORM_ECPM: 854 otx_cpt_asym_dequeue_ecpm_op(&op->ecpm, req, &sess->ec_ctx); 855 break; 856 default: 857 CPT_LOG_DP_DEBUG("Invalid crypto xform type"); 858 cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS; 859 break; 860 } 861 } 862 863 static __rte_always_inline void __rte_hot 864 otx_cpt_dequeue_post_process(struct rte_crypto_op *cop, uintptr_t *rsp, 865 const uint8_t op_type) 866 { 867 /* H/w has returned success */ 868 cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS; 869 870 /* Perform further post processing */ 871 872 if ((op_type == OP_TYPE_SYM) && 873 (cop->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC)) { 874 /* Check if auth verify need to be completed */ 875 if (unlikely(rsp[2])) 876 compl_auth_verify(cop, (uint8_t *)rsp[2], rsp[3]); 877 return; 878 } 879 880 if ((op_type == OP_TYPE_ASYM) && 881 (cop->type == RTE_CRYPTO_OP_TYPE_ASYMMETRIC)) { 882 rsp = RTE_PTR_ADD(rsp, 4 * sizeof(uintptr_t)); 883 otx_cpt_asym_post_process(cop, (struct cpt_request_info *)rsp); 884 } 885 886 return; 887 } 888 889 static inline void 890 free_sym_session_data(const struct cpt_instance *instance, 891 struct rte_crypto_op *cop) 892 { 893 void *sess_private_data_t = get_sym_session_private_data( 894 cop->sym->session, otx_cryptodev_driver_id); 895 memset(sess_private_data_t, 0, cpt_get_session_size()); 896 memset(cop->sym->session, 0, 897 rte_cryptodev_sym_get_existing_header_session_size( 898 cop->sym->session)); 899 rte_mempool_put(instance->sess_mp_priv, sess_private_data_t); 900 rte_mempool_put(instance->sess_mp, cop->sym->session); 901 cop->sym->session = NULL; 902 } 903 904 static __rte_always_inline struct rte_crypto_op * 905 otx_cpt_process_response(const struct cpt_instance *instance, uintptr_t *rsp, 906 uint8_t cc, const uint8_t op_type) 907 { 908 struct rte_crypto_op *cop; 909 void *metabuf; 910 911 metabuf = (void *)rsp[0]; 912 cop = (void *)rsp[1]; 913 914 /* Check completion code */ 915 if (likely(cc == 0)) { 916 /* H/w success pkt. Post process */ 917 otx_cpt_dequeue_post_process(cop, rsp, op_type); 918 } else if (cc == ERR_GC_ICV_MISCOMPARE) { 919 /* auth data mismatch */ 920 cop->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED; 921 } else { 922 /* Error */ 923 cop->status = RTE_CRYPTO_OP_STATUS_ERROR; 924 } 925 926 if (unlikely(cop->sess_type == RTE_CRYPTO_OP_SESSIONLESS)) 927 free_sym_session_data(instance, cop); 928 free_op_meta(metabuf, instance->meta_info.pool); 929 930 return cop; 931 } 932 933 static __rte_always_inline uint16_t __rte_hot 934 otx_cpt_pkt_dequeue(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops, 935 const uint8_t op_type) 936 { 937 struct cpt_instance *instance = (struct cpt_instance *)qptr; 938 struct cpt_request_info *user_req; 939 struct cpt_vf *cptvf = (struct cpt_vf *)instance; 940 uint8_t cc[nb_ops]; 941 int i, count, pcount; 942 uint8_t ret; 943 int nb_completed; 944 struct pending_queue *pqueue = &cptvf->pqueue; 945 946 pcount = pending_queue_level(pqueue, DEFAULT_CMD_QLEN); 947 948 /* Ensure pcount isn't read before data lands */ 949 rte_atomic_thread_fence(__ATOMIC_ACQUIRE); 950 951 count = (nb_ops > pcount) ? pcount : nb_ops; 952 953 for (i = 0; i < count; i++) { 954 pending_queue_peek(pqueue, (void **) &user_req, 955 DEFAULT_CMD_QLEN, i + 1 < count); 956 957 ret = check_nb_command_id(user_req, instance); 958 959 if (unlikely(ret == ERR_REQ_PENDING)) { 960 /* Stop checking for completions */ 961 break; 962 } 963 964 /* Return completion code and op handle */ 965 cc[i] = ret; 966 ops[i] = user_req->op; 967 968 CPT_LOG_DP_DEBUG("Request %p Op %p completed with code %d", 969 user_req, user_req->op, ret); 970 971 pending_queue_pop(pqueue, DEFAULT_CMD_QLEN); 972 } 973 974 nb_completed = i; 975 976 for (i = 0; i < nb_completed; i++) { 977 if (likely((i + 1) < nb_completed)) 978 rte_prefetch0(ops[i+1]); 979 980 ops[i] = otx_cpt_process_response(instance, (void *)ops[i], 981 cc[i], op_type); 982 } 983 984 return nb_completed; 985 } 986 987 static uint16_t 988 otx_cpt_dequeue_asym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops) 989 { 990 return otx_cpt_pkt_dequeue(qptr, ops, nb_ops, OP_TYPE_ASYM); 991 } 992 993 static uint16_t 994 otx_cpt_dequeue_sym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops) 995 { 996 return otx_cpt_pkt_dequeue(qptr, ops, nb_ops, OP_TYPE_SYM); 997 } 998 999 uintptr_t __rte_hot 1000 otx_crypto_adapter_dequeue(uintptr_t get_work1) 1001 { 1002 const struct cpt_instance *instance; 1003 struct cpt_request_info *req; 1004 struct rte_crypto_op *cop; 1005 uint8_t cc, op_type; 1006 uintptr_t *rsp; 1007 1008 req = (struct cpt_request_info *)get_work1; 1009 instance = req->qp; 1010 rsp = req->op; 1011 cop = (void *)rsp[1]; 1012 op_type = cop->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC ? OP_TYPE_SYM : 1013 OP_TYPE_ASYM; 1014 1015 do { 1016 cc = check_nb_command_id( 1017 req, (struct cpt_instance *)(uintptr_t)instance); 1018 } while (cc == ERR_REQ_PENDING); 1019 1020 cop = otx_cpt_process_response(instance, (void *)req->op, cc, op_type); 1021 1022 return (uintptr_t)(cop); 1023 } 1024 1025 static struct rte_cryptodev_ops cptvf_ops = { 1026 /* Device related operations */ 1027 .dev_configure = otx_cpt_dev_config, 1028 .dev_start = otx_cpt_dev_start, 1029 .dev_stop = otx_cpt_dev_stop, 1030 .dev_close = otx_cpt_dev_close, 1031 .dev_infos_get = otx_cpt_dev_info_get, 1032 1033 .stats_get = NULL, 1034 .stats_reset = NULL, 1035 .queue_pair_setup = otx_cpt_que_pair_setup, 1036 .queue_pair_release = otx_cpt_que_pair_release, 1037 1038 /* Crypto related operations */ 1039 .sym_session_get_size = otx_cpt_get_session_size, 1040 .sym_session_configure = otx_cpt_session_cfg, 1041 .sym_session_clear = otx_cpt_session_clear, 1042 1043 .asym_session_get_size = otx_cpt_asym_session_size_get, 1044 .asym_session_configure = otx_cpt_asym_session_cfg, 1045 .asym_session_clear = otx_cpt_asym_session_clear, 1046 }; 1047 1048 int 1049 otx_cpt_dev_create(struct rte_cryptodev *c_dev) 1050 { 1051 struct rte_pci_device *pdev = RTE_DEV_TO_PCI(c_dev->device); 1052 struct cpt_vf *cptvf = NULL; 1053 void *reg_base; 1054 char dev_name[32]; 1055 int ret; 1056 1057 if (pdev->mem_resource[0].phys_addr == 0ULL) 1058 return -EIO; 1059 1060 /* for secondary processes, we don't initialise any further as primary 1061 * has already done this work. 1062 */ 1063 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 1064 return 0; 1065 1066 cptvf = rte_zmalloc_socket("otx_cryptodev_private_mem", 1067 sizeof(struct cpt_vf), RTE_CACHE_LINE_SIZE, 1068 rte_socket_id()); 1069 1070 if (cptvf == NULL) { 1071 CPT_LOG_ERR("Cannot allocate memory for device private data"); 1072 return -ENOMEM; 1073 } 1074 1075 snprintf(dev_name, 32, "%02x:%02x.%x", 1076 pdev->addr.bus, pdev->addr.devid, pdev->addr.function); 1077 1078 reg_base = pdev->mem_resource[0].addr; 1079 if (!reg_base) { 1080 CPT_LOG_ERR("Failed to map BAR0 of %s", dev_name); 1081 ret = -ENODEV; 1082 goto fail; 1083 } 1084 1085 ret = otx_cpt_hw_init(cptvf, pdev, reg_base, dev_name); 1086 if (ret) { 1087 CPT_LOG_ERR("Failed to init cptvf %s", dev_name); 1088 ret = -EIO; 1089 goto fail; 1090 } 1091 1092 switch (cptvf->vftype) { 1093 case OTX_CPT_VF_TYPE_AE: 1094 /* Set asymmetric cpt feature flags */ 1095 c_dev->feature_flags = RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO | 1096 RTE_CRYPTODEV_FF_HW_ACCELERATED | 1097 RTE_CRYPTODEV_FF_RSA_PRIV_OP_KEY_QT; 1098 break; 1099 case OTX_CPT_VF_TYPE_SE: 1100 /* Set symmetric cpt feature flags */ 1101 c_dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO | 1102 RTE_CRYPTODEV_FF_HW_ACCELERATED | 1103 RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING | 1104 RTE_CRYPTODEV_FF_IN_PLACE_SGL | 1105 RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT | 1106 RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT | 1107 RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT | 1108 RTE_CRYPTODEV_FF_SYM_SESSIONLESS | 1109 RTE_CRYPTODEV_FF_DIGEST_ENCRYPTED; 1110 break; 1111 default: 1112 /* Feature not supported. Abort */ 1113 CPT_LOG_ERR("VF type not supported by %s", dev_name); 1114 ret = -EIO; 1115 goto deinit_dev; 1116 } 1117 1118 /* Start off timer for mailbox interrupts */ 1119 otx_cpt_periodic_alarm_start(cptvf); 1120 1121 c_dev->dev_ops = &cptvf_ops; 1122 1123 if (c_dev->feature_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) { 1124 c_dev->enqueue_burst = otx_cpt_enqueue_sym; 1125 c_dev->dequeue_burst = otx_cpt_dequeue_sym; 1126 } else { 1127 c_dev->enqueue_burst = otx_cpt_enqueue_asym; 1128 c_dev->dequeue_burst = otx_cpt_dequeue_asym; 1129 } 1130 1131 /* Save dev private data */ 1132 c_dev->data->dev_private = cptvf; 1133 1134 return 0; 1135 1136 deinit_dev: 1137 otx_cpt_deinit_device(cptvf); 1138 1139 fail: 1140 if (cptvf) { 1141 /* Free private data allocated */ 1142 rte_free(cptvf); 1143 } 1144 1145 return ret; 1146 } 1147