xref: /dpdk/drivers/common/sfc_efx/base/ef10_ev.c (revision daa02b5cddbb8e11b31d41e2bf7bb1ae64dcae2f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2012-2019 Solarflare Communications Inc.
5  */
6 
7 #include "efx.h"
8 #include "efx_impl.h"
9 #if EFSYS_OPT_MON_STATS
10 #include "mcdi_mon.h"
11 #endif
12 
13 #if EFX_OPTS_EF10()
14 
15 /*
16  * Non-interrupting event queue requires interrrupting event queue to
17  * refer to for wake-up events even if wake ups are never used.
18  * It could be even non-allocated event queue.
19  */
20 #define	EFX_EF10_ALWAYS_INTERRUPTING_EVQ_INDEX	(0)
21 
22 static	__checkReturn	boolean_t
23 ef10_ev_rx(
24 	__in		efx_evq_t *eep,
25 	__in		efx_qword_t *eqp,
26 	__in		const efx_ev_callbacks_t *eecp,
27 	__in_opt	void *arg);
28 
29 static	__checkReturn	boolean_t
30 ef10_ev_tx(
31 	__in		efx_evq_t *eep,
32 	__in		efx_qword_t *eqp,
33 	__in		const efx_ev_callbacks_t *eecp,
34 	__in_opt	void *arg);
35 
36 static	__checkReturn	boolean_t
37 ef10_ev_driver(
38 	__in		efx_evq_t *eep,
39 	__in		efx_qword_t *eqp,
40 	__in		const efx_ev_callbacks_t *eecp,
41 	__in_opt	void *arg);
42 
43 static	__checkReturn	boolean_t
44 ef10_ev_drv_gen(
45 	__in		efx_evq_t *eep,
46 	__in		efx_qword_t *eqp,
47 	__in		const efx_ev_callbacks_t *eecp,
48 	__in_opt	void *arg);
49 
50 
51 static	__checkReturn	efx_rc_t
52 efx_mcdi_set_evq_tmr(
53 	__in		efx_nic_t *enp,
54 	__in		uint32_t instance,
55 	__in		uint32_t mode,
56 	__in		uint32_t timer_ns)
57 {
58 	efx_mcdi_req_t req;
59 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_SET_EVQ_TMR_IN_LEN,
60 		MC_CMD_SET_EVQ_TMR_OUT_LEN);
61 	efx_rc_t rc;
62 
63 	req.emr_cmd = MC_CMD_SET_EVQ_TMR;
64 	req.emr_in_buf = payload;
65 	req.emr_in_length = MC_CMD_SET_EVQ_TMR_IN_LEN;
66 	req.emr_out_buf = payload;
67 	req.emr_out_length = MC_CMD_SET_EVQ_TMR_OUT_LEN;
68 
69 	MCDI_IN_SET_DWORD(req, SET_EVQ_TMR_IN_INSTANCE, instance);
70 	MCDI_IN_SET_DWORD(req, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, timer_ns);
71 	MCDI_IN_SET_DWORD(req, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, timer_ns);
72 	MCDI_IN_SET_DWORD(req, SET_EVQ_TMR_IN_TMR_MODE, mode);
73 
74 	efx_mcdi_execute(enp, &req);
75 
76 	if (req.emr_rc != 0) {
77 		rc = req.emr_rc;
78 		goto fail1;
79 	}
80 
81 	if (req.emr_out_length_used < MC_CMD_SET_EVQ_TMR_OUT_LEN) {
82 		rc = EMSGSIZE;
83 		goto fail2;
84 	}
85 
86 	return (0);
87 
88 fail2:
89 	EFSYS_PROBE(fail2);
90 fail1:
91 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
92 
93 	return (rc);
94 }
95 
96 
97 	__checkReturn	efx_rc_t
98 ef10_ev_init(
99 	__in		efx_nic_t *enp)
100 {
101 	_NOTE(ARGUNUSED(enp))
102 	return (0);
103 }
104 
105 			void
106 ef10_ev_fini(
107 	__in		efx_nic_t *enp)
108 {
109 	_NOTE(ARGUNUSED(enp))
110 }
111 
112 	__checkReturn	efx_rc_t
113 ef10_ev_qcreate(
114 	__in		efx_nic_t *enp,
115 	__in		unsigned int index,
116 	__in		efsys_mem_t *esmp,
117 	__in		size_t ndescs,
118 	__in		uint32_t id,
119 	__in		uint32_t us,
120 	__in		uint32_t flags,
121 	__in		uint32_t irq,
122 	__in		efx_evq_t *eep)
123 {
124 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
125 	uint32_t target_evq = 0;
126 	efx_rc_t rc;
127 	boolean_t low_latency;
128 
129 	_NOTE(ARGUNUSED(id))	/* buftbl id managed by MC */
130 
131 	EFSYS_ASSERT((flags & EFX_EVQ_FLAGS_EXTENDED_WIDTH) == 0);
132 
133 	/*
134 	 * NO_CONT_EV mode is only requested from the firmware when creating
135 	 * receive queues, but here it needs to be specified at event queue
136 	 * creation, as the event handler needs to know which format is in use.
137 	 *
138 	 * If EFX_EVQ_FLAGS_NO_CONT_EV is specified, all receive queues for this
139 	 * event queue will be created in NO_CONT_EV mode.
140 	 *
141 	 * See SF-109306-TC 5.11 "Events for RXQs in NO_CONT_EV mode".
142 	 */
143 	if (flags & EFX_EVQ_FLAGS_NO_CONT_EV) {
144 		if (enp->en_nic_cfg.enc_no_cont_ev_mode_supported == B_FALSE) {
145 			rc = EINVAL;
146 			goto fail1;
147 		}
148 	}
149 
150 	/* Set up the handler table */
151 	eep->ee_rx	= ef10_ev_rx;
152 	eep->ee_tx	= ef10_ev_tx;
153 	eep->ee_driver	= ef10_ev_driver;
154 	eep->ee_drv_gen	= ef10_ev_drv_gen;
155 	eep->ee_mcdi	= ef10_ev_mcdi;
156 
157 	/* Set up the event queue */
158 	/* INIT_EVQ expects function-relative vector number */
159 	if ((flags & EFX_EVQ_FLAGS_NOTIFY_MASK) ==
160 	    EFX_EVQ_FLAGS_NOTIFY_INTERRUPT) {
161 		/* IRQ number is specified by caller */
162 	} else if (index == EFX_EF10_ALWAYS_INTERRUPTING_EVQ_INDEX) {
163 		/* Use the first interrupt for always interrupting EvQ */
164 		irq = 0;
165 		flags = (flags & ~EFX_EVQ_FLAGS_NOTIFY_MASK) |
166 		    EFX_EVQ_FLAGS_NOTIFY_INTERRUPT;
167 	} else {
168 		target_evq = EFX_EF10_ALWAYS_INTERRUPTING_EVQ_INDEX;
169 	}
170 
171 	/*
172 	 * Interrupts may be raised for events immediately after the queue is
173 	 * created. See bug58606.
174 	 */
175 
176 	/*
177 	 * On Huntington we need to specify the settings to use.
178 	 * If event queue type in flags is auto, we favour throughput
179 	 * if the adapter is running virtualization supporting firmware
180 	 * (i.e. the full featured firmware variant)
181 	 * and latency otherwise. The Ethernet Virtual Bridging
182 	 * capability is used to make this decision. (Note though that
183 	 * the low latency firmware variant is also best for
184 	 * throughput and corresponding type should be specified
185 	 * to choose it.)
186 	 *
187 	 * If FW supports EvQ types (e.g. on Medford and Medford2) the
188 	 * type which is specified in flags is passed to FW to make the
189 	 * decision and low_latency hint is ignored.
190 	 */
191 	low_latency = encp->enc_datapath_cap_evb ? 0 : 1;
192 	rc = efx_mcdi_init_evq(enp, index, esmp, ndescs, irq, target_evq, us,
193 	    flags, low_latency);
194 	if (rc != 0)
195 		goto fail2;
196 
197 	return (0);
198 
199 fail2:
200 	EFSYS_PROBE(fail2);
201 fail1:
202 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
203 
204 	return (rc);
205 }
206 
207 			void
208 ef10_ev_qdestroy(
209 	__in		efx_evq_t *eep)
210 {
211 	efx_nic_t *enp = eep->ee_enp;
212 
213 	EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
214 
215 	(void) efx_mcdi_fini_evq(enp, eep->ee_index);
216 }
217 
218 	__checkReturn	efx_rc_t
219 ef10_ev_qprime(
220 	__in		efx_evq_t *eep,
221 	__in		unsigned int count)
222 {
223 	efx_nic_t *enp = eep->ee_enp;
224 	uint32_t rptr;
225 	efx_dword_t dword;
226 
227 	rptr = count & eep->ee_mask;
228 
229 	if (enp->en_nic_cfg.enc_bug35388_workaround) {
230 		EFX_STATIC_ASSERT(EF10_EVQ_MINNEVS >
231 		    (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
232 		EFX_STATIC_ASSERT(EF10_EVQ_MAXNEVS <
233 		    (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
234 
235 		EFX_POPULATE_DWORD_2(dword,
236 		    ERF_DD_EVQ_IND_RPTR_FLAGS,
237 		    EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
238 		    ERF_DD_EVQ_IND_RPTR,
239 		    (rptr >> ERF_DD_EVQ_IND_RPTR_WIDTH));
240 		EFX_BAR_VI_WRITED(enp, ER_DD_EVQ_INDIRECT, eep->ee_index,
241 		    &dword, B_FALSE);
242 
243 		EFX_POPULATE_DWORD_2(dword,
244 		    ERF_DD_EVQ_IND_RPTR_FLAGS,
245 		    EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
246 		    ERF_DD_EVQ_IND_RPTR,
247 		    rptr & ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
248 		EFX_BAR_VI_WRITED(enp, ER_DD_EVQ_INDIRECT, eep->ee_index,
249 		    &dword, B_FALSE);
250 	} else {
251 		EFX_POPULATE_DWORD_1(dword, ERF_DZ_EVQ_RPTR, rptr);
252 		EFX_BAR_VI_WRITED(enp, ER_DZ_EVQ_RPTR_REG, eep->ee_index,
253 		    &dword, B_FALSE);
254 	}
255 
256 	return (0);
257 }
258 
259 static	__checkReturn	efx_rc_t
260 efx_mcdi_driver_event(
261 	__in		efx_nic_t *enp,
262 	__in		uint32_t evq,
263 	__in		efx_qword_t data)
264 {
265 	efx_mcdi_req_t req;
266 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_DRIVER_EVENT_IN_LEN,
267 		MC_CMD_DRIVER_EVENT_OUT_LEN);
268 	efx_rc_t rc;
269 
270 	req.emr_cmd = MC_CMD_DRIVER_EVENT;
271 	req.emr_in_buf = payload;
272 	req.emr_in_length = MC_CMD_DRIVER_EVENT_IN_LEN;
273 	req.emr_out_buf = payload;
274 	req.emr_out_length = MC_CMD_DRIVER_EVENT_OUT_LEN;
275 
276 	MCDI_IN_SET_DWORD(req, DRIVER_EVENT_IN_EVQ, evq);
277 
278 	MCDI_IN_SET_DWORD(req, DRIVER_EVENT_IN_DATA_LO,
279 	    EFX_QWORD_FIELD(data, EFX_DWORD_0));
280 	MCDI_IN_SET_DWORD(req, DRIVER_EVENT_IN_DATA_HI,
281 	    EFX_QWORD_FIELD(data, EFX_DWORD_1));
282 
283 	efx_mcdi_execute(enp, &req);
284 
285 	if (req.emr_rc != 0) {
286 		rc = req.emr_rc;
287 		goto fail1;
288 	}
289 
290 	return (0);
291 
292 fail1:
293 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
294 
295 	return (rc);
296 }
297 
298 			void
299 ef10_ev_qpost(
300 	__in	efx_evq_t *eep,
301 	__in	uint16_t data)
302 {
303 	efx_nic_t *enp = eep->ee_enp;
304 	efx_qword_t event;
305 
306 	EFX_POPULATE_QWORD_3(event,
307 	    ESF_DZ_DRV_CODE, ESE_DZ_EV_CODE_DRV_GEN_EV,
308 	    ESF_DZ_DRV_SUB_CODE, 0,
309 	    ESF_DZ_DRV_SUB_DATA_DW0, (uint32_t)data);
310 
311 	(void) efx_mcdi_driver_event(enp, eep->ee_index, event);
312 }
313 
314 	__checkReturn	efx_rc_t
315 ef10_ev_qmoderate(
316 	__in		efx_evq_t *eep,
317 	__in		unsigned int us)
318 {
319 	efx_nic_t *enp = eep->ee_enp;
320 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
321 	efx_dword_t dword;
322 	uint32_t mode;
323 	efx_rc_t rc;
324 
325 	/* Check that hardware and MCDI use the same timer MODE values */
326 	EFX_STATIC_ASSERT(FFE_CZ_TIMER_MODE_DIS ==
327 	    MC_CMD_SET_EVQ_TMR_IN_TIMER_MODE_DIS);
328 	EFX_STATIC_ASSERT(FFE_CZ_TIMER_MODE_IMMED_START ==
329 	    MC_CMD_SET_EVQ_TMR_IN_TIMER_MODE_IMMED_START);
330 	EFX_STATIC_ASSERT(FFE_CZ_TIMER_MODE_TRIG_START ==
331 	    MC_CMD_SET_EVQ_TMR_IN_TIMER_MODE_TRIG_START);
332 	EFX_STATIC_ASSERT(FFE_CZ_TIMER_MODE_INT_HLDOFF ==
333 	    MC_CMD_SET_EVQ_TMR_IN_TIMER_MODE_INT_HLDOFF);
334 
335 	if (us > encp->enc_evq_timer_max_us) {
336 		rc = EINVAL;
337 		goto fail1;
338 	}
339 
340 	/* If the value is zero then disable the timer */
341 	if (us == 0) {
342 		mode = FFE_CZ_TIMER_MODE_DIS;
343 	} else {
344 		mode = FFE_CZ_TIMER_MODE_INT_HLDOFF;
345 	}
346 
347 	if (encp->enc_bug61265_workaround) {
348 		uint32_t ns = us * 1000;
349 
350 		rc = efx_mcdi_set_evq_tmr(enp, eep->ee_index, mode, ns);
351 		if (rc != 0)
352 			goto fail2;
353 	} else {
354 		unsigned int ticks;
355 
356 		if ((rc = efx_ev_usecs_to_ticks(enp, us, &ticks)) != 0)
357 			goto fail3;
358 
359 		if (encp->enc_bug35388_workaround) {
360 			EFX_POPULATE_DWORD_3(dword,
361 			    ERF_DD_EVQ_IND_TIMER_FLAGS,
362 			    EFE_DD_EVQ_IND_TIMER_FLAGS,
363 			    ERF_DD_EVQ_IND_TIMER_MODE, mode,
364 			    ERF_DD_EVQ_IND_TIMER_VAL, ticks);
365 			EFX_BAR_VI_WRITED(enp, ER_DD_EVQ_INDIRECT,
366 			    eep->ee_index, &dword, 0);
367 		} else {
368 			/*
369 			 * NOTE: The TMR_REL field introduced in Medford2 is
370 			 * ignored on earlier EF10 controllers. See bug66418
371 			 * comment 9 for details.
372 			 */
373 			EFX_POPULATE_DWORD_3(dword,
374 			    ERF_DZ_TC_TIMER_MODE, mode,
375 			    ERF_DZ_TC_TIMER_VAL, ticks,
376 			    ERF_FZ_TC_TMR_REL_VAL, ticks);
377 			EFX_BAR_VI_WRITED(enp, ER_DZ_EVQ_TMR_REG,
378 			    eep->ee_index, &dword, 0);
379 		}
380 	}
381 
382 	return (0);
383 
384 fail3:
385 	EFSYS_PROBE(fail3);
386 fail2:
387 	EFSYS_PROBE(fail2);
388 fail1:
389 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
390 
391 	return (rc);
392 }
393 
394 
395 #if EFSYS_OPT_QSTATS
396 			void
397 ef10_ev_qstats_update(
398 	__in				efx_evq_t *eep,
399 	__inout_ecount(EV_NQSTATS)	efsys_stat_t *stat)
400 {
401 	unsigned int id;
402 
403 	for (id = 0; id < EV_NQSTATS; id++) {
404 		efsys_stat_t *essp = &stat[id];
405 
406 		EFSYS_STAT_INCR(essp, eep->ee_stat[id]);
407 		eep->ee_stat[id] = 0;
408 	}
409 }
410 #endif /* EFSYS_OPT_QSTATS */
411 
412 #if EFSYS_OPT_RX_PACKED_STREAM || EFSYS_OPT_RX_ES_SUPER_BUFFER
413 
414 static	__checkReturn	boolean_t
415 ef10_ev_rx_packed_stream(
416 	__in		efx_evq_t *eep,
417 	__in		efx_qword_t *eqp,
418 	__in		const efx_ev_callbacks_t *eecp,
419 	__in_opt	void *arg)
420 {
421 	uint32_t label;
422 	uint32_t pkt_count_lbits;
423 	uint16_t flags;
424 	boolean_t should_abort;
425 	efx_evq_rxq_state_t *eersp;
426 	unsigned int pkt_count;
427 	unsigned int current_id;
428 	boolean_t new_buffer;
429 
430 	pkt_count_lbits = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_DSC_PTR_LBITS);
431 	label = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_QLABEL);
432 	new_buffer = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_EV_ROTATE);
433 
434 	flags = 0;
435 
436 	eersp = &eep->ee_rxq_state[label];
437 
438 	/*
439 	 * RX_DSC_PTR_LBITS has least significant bits of the global
440 	 * (not per-buffer) packet counter. It is guaranteed that
441 	 * maximum number of completed packets fits in lbits-mask.
442 	 * So, modulo lbits-mask arithmetic should be used to calculate
443 	 * packet counter increment.
444 	 */
445 	pkt_count = (pkt_count_lbits - eersp->eers_rx_stream_npackets) &
446 	    EFX_MASK32(ESF_DZ_RX_DSC_PTR_LBITS);
447 	eersp->eers_rx_stream_npackets += pkt_count;
448 
449 	if (new_buffer) {
450 		flags |= EFX_PKT_PACKED_STREAM_NEW_BUFFER;
451 #if EFSYS_OPT_RX_PACKED_STREAM
452 		/*
453 		 * If both packed stream and equal stride super-buffer
454 		 * modes are compiled in, in theory credits should be
455 		 * be maintained for packed stream only, but right now
456 		 * these modes are not distinguished in the event queue
457 		 * Rx queue state and it is OK to increment the counter
458 		 * regardless (it might be event cheaper than branching
459 		 * since neighbour structure member are updated as well).
460 		 */
461 		eersp->eers_rx_packed_stream_credits++;
462 #endif
463 		eersp->eers_rx_read_ptr++;
464 	}
465 	current_id = eersp->eers_rx_read_ptr & eersp->eers_rx_mask;
466 
467 	/* Check for errors that invalidate checksum and L3/L4 fields */
468 	if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_TRUNC_ERR) != 0) {
469 		/* RX frame truncated */
470 		EFX_EV_QSTAT_INCR(eep, EV_RX_FRM_TRUNC);
471 		flags |= EFX_DISCARD;
472 		goto deliver;
473 	}
474 	if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_ECRC_ERR) != 0) {
475 		/* Bad Ethernet frame CRC */
476 		EFX_EV_QSTAT_INCR(eep, EV_RX_ETH_CRC_ERR);
477 		flags |= EFX_DISCARD;
478 		goto deliver;
479 	}
480 
481 	if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_PARSE_INCOMPLETE)) {
482 		EFX_EV_QSTAT_INCR(eep, EV_RX_PARSE_INCOMPLETE);
483 		flags |= EFX_PKT_PACKED_STREAM_PARSE_INCOMPLETE;
484 		goto deliver;
485 	}
486 
487 	if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_IPCKSUM_ERR))
488 		EFX_EV_QSTAT_INCR(eep, EV_RX_IPV4_HDR_CHKSUM_ERR);
489 
490 	if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_TCPUDP_CKSUM_ERR))
491 		EFX_EV_QSTAT_INCR(eep, EV_RX_TCP_UDP_CHKSUM_ERR);
492 
493 deliver:
494 	/* If we're not discarding the packet then it is ok */
495 	if (~flags & EFX_DISCARD)
496 		EFX_EV_QSTAT_INCR(eep, EV_RX_OK);
497 
498 	EFSYS_ASSERT(eecp->eec_rx_ps != NULL);
499 	should_abort = eecp->eec_rx_ps(arg, label, current_id, pkt_count,
500 	    flags);
501 
502 	return (should_abort);
503 }
504 
505 #endif /* EFSYS_OPT_RX_PACKED_STREAM || EFSYS_OPT_RX_ES_SUPER_BUFFER */
506 
507 static	__checkReturn	boolean_t
508 ef10_ev_rx(
509 	__in		efx_evq_t *eep,
510 	__in		efx_qword_t *eqp,
511 	__in		const efx_ev_callbacks_t *eecp,
512 	__in_opt	void *arg)
513 {
514 	efx_nic_t *enp = eep->ee_enp;
515 	uint32_t size;
516 	uint32_t label;
517 	uint32_t mac_class;
518 	uint32_t eth_tag_class;
519 	uint32_t l3_class;
520 	uint32_t l4_class;
521 	uint32_t next_read_lbits;
522 	uint16_t flags;
523 	boolean_t cont;
524 	boolean_t should_abort;
525 	efx_evq_rxq_state_t *eersp;
526 	unsigned int desc_count;
527 	unsigned int last_used_id;
528 
529 	EFX_EV_QSTAT_INCR(eep, EV_RX);
530 
531 	/* Discard events after RXQ/TXQ errors, or hardware not available */
532 	if (enp->en_reset_flags &
533 	    (EFX_RESET_RXQ_ERR | EFX_RESET_TXQ_ERR | EFX_RESET_HW_UNAVAIL))
534 		return (B_FALSE);
535 
536 	/* Basic packet information */
537 	label = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_QLABEL);
538 	eersp = &eep->ee_rxq_state[label];
539 
540 #if EFSYS_OPT_RX_PACKED_STREAM || EFSYS_OPT_RX_ES_SUPER_BUFFER
541 	/*
542 	 * Packed stream events are very different,
543 	 * so handle them separately
544 	 */
545 	if (eersp->eers_rx_packed_stream)
546 		return (ef10_ev_rx_packed_stream(eep, eqp, eecp, arg));
547 #endif
548 
549 	size = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_BYTES);
550 	cont = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_CONT);
551 	next_read_lbits = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_DSC_PTR_LBITS);
552 	eth_tag_class = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_ETH_TAG_CLASS);
553 	mac_class = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_MAC_CLASS);
554 	l3_class = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_L3_CLASS);
555 
556 	/*
557 	 * RX_L4_CLASS is 3 bits wide on Huntington and Medford, but is only
558 	 * 2 bits wide on Medford2. Check it is safe to use the Medford2 field
559 	 * and values for all EF10 controllers.
560 	 */
561 	EFX_STATIC_ASSERT(ESF_FZ_RX_L4_CLASS_LBN == ESF_DE_RX_L4_CLASS_LBN);
562 	EFX_STATIC_ASSERT(ESE_FZ_L4_CLASS_TCP == ESE_DE_L4_CLASS_TCP);
563 	EFX_STATIC_ASSERT(ESE_FZ_L4_CLASS_UDP == ESE_DE_L4_CLASS_UDP);
564 	EFX_STATIC_ASSERT(ESE_FZ_L4_CLASS_UNKNOWN == ESE_DE_L4_CLASS_UNKNOWN);
565 
566 	l4_class = EFX_QWORD_FIELD(*eqp, ESF_FZ_RX_L4_CLASS);
567 
568 	if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_DROP_EVENT) != 0) {
569 		/* Drop this event */
570 		return (B_FALSE);
571 	}
572 	flags = 0;
573 
574 	if (cont != 0) {
575 		/*
576 		 * This may be part of a scattered frame, or it may be a
577 		 * truncated frame if scatter is disabled on this RXQ.
578 		 * Overlength frames can be received if e.g. a VF is configured
579 		 * for 1500 MTU but connected to a port set to 9000 MTU
580 		 * (see bug56567).
581 		 * FIXME: There is not yet any driver that supports scatter on
582 		 * Huntington.  Scatter support is required for OSX.
583 		 */
584 		flags |= EFX_PKT_CONT;
585 	}
586 
587 	if (mac_class == ESE_DZ_MAC_CLASS_UCAST)
588 		flags |= EFX_PKT_UNICAST;
589 
590 	/*
591 	 * Increment the count of descriptors read.
592 	 *
593 	 * In NO_CONT_EV mode, RX_DSC_PTR_LBITS is actually a packet count, but
594 	 * when scatter is disabled, there is only one descriptor per packet and
595 	 * so it can be treated the same.
596 	 *
597 	 * TODO: Support scatter in NO_CONT_EV mode.
598 	 */
599 	desc_count = (next_read_lbits - eersp->eers_rx_read_ptr) &
600 	    EFX_MASK32(ESF_DZ_RX_DSC_PTR_LBITS);
601 	eersp->eers_rx_read_ptr += desc_count;
602 
603 	/* Calculate the index of the last descriptor consumed */
604 	last_used_id = (eersp->eers_rx_read_ptr - 1) & eersp->eers_rx_mask;
605 
606 	if (eep->ee_flags & EFX_EVQ_FLAGS_NO_CONT_EV) {
607 		if (desc_count > 1)
608 			EFX_EV_QSTAT_INCR(eep, EV_RX_BATCH);
609 
610 		/* Always read the length from the prefix in NO_CONT_EV mode. */
611 		flags |= EFX_PKT_PREFIX_LEN;
612 
613 		/*
614 		 * Check for an aborted scatter, signalled by the ABORT bit in
615 		 * NO_CONT_EV mode. The ABORT bit was not used before NO_CONT_EV
616 		 * mode was added as it was broken in Huntington silicon.
617 		 */
618 		if (EFX_QWORD_FIELD(*eqp, ESF_EZ_RX_ABORT) != 0) {
619 			flags |= EFX_DISCARD;
620 			goto deliver;
621 		}
622 	} else if (desc_count > 1) {
623 		/*
624 		 * FIXME: add error checking to make sure this a batched event.
625 		 * This could also be an aborted scatter, see Bug36629.
626 		 */
627 		EFX_EV_QSTAT_INCR(eep, EV_RX_BATCH);
628 		flags |= EFX_PKT_PREFIX_LEN;
629 	}
630 
631 	/* Check for errors that invalidate checksum and L3/L4 fields */
632 	if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_TRUNC_ERR) != 0) {
633 		/* RX frame truncated */
634 		EFX_EV_QSTAT_INCR(eep, EV_RX_FRM_TRUNC);
635 		flags |= EFX_DISCARD;
636 		goto deliver;
637 	}
638 	if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_ECRC_ERR) != 0) {
639 		/* Bad Ethernet frame CRC */
640 		EFX_EV_QSTAT_INCR(eep, EV_RX_ETH_CRC_ERR);
641 		flags |= EFX_DISCARD;
642 		goto deliver;
643 	}
644 	if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_PARSE_INCOMPLETE)) {
645 		/*
646 		 * Hardware parse failed, due to malformed headers
647 		 * or headers that are too long for the parser.
648 		 * Headers and checksums must be validated by the host.
649 		 */
650 		EFX_EV_QSTAT_INCR(eep, EV_RX_PARSE_INCOMPLETE);
651 		goto deliver;
652 	}
653 
654 	if ((eth_tag_class == ESE_DZ_ETH_TAG_CLASS_VLAN1) ||
655 	    (eth_tag_class == ESE_DZ_ETH_TAG_CLASS_VLAN2)) {
656 		flags |= EFX_PKT_VLAN_TAGGED;
657 	}
658 
659 	switch (l3_class) {
660 	case ESE_DZ_L3_CLASS_IP4:
661 	case ESE_DZ_L3_CLASS_IP4_FRAG:
662 		flags |= EFX_PKT_IPV4;
663 		if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_IPCKSUM_ERR)) {
664 			EFX_EV_QSTAT_INCR(eep, EV_RX_IPV4_HDR_CHKSUM_ERR);
665 		} else {
666 			flags |= EFX_CKSUM_IPV4;
667 		}
668 
669 		/*
670 		 * RX_L4_CLASS is 3 bits wide on Huntington and Medford, but is
671 		 * only 2 bits wide on Medford2. Check it is safe to use the
672 		 * Medford2 field and values for all EF10 controllers.
673 		 */
674 		EFX_STATIC_ASSERT(ESF_FZ_RX_L4_CLASS_LBN ==
675 		    ESF_DE_RX_L4_CLASS_LBN);
676 		EFX_STATIC_ASSERT(ESE_FZ_L4_CLASS_TCP == ESE_DE_L4_CLASS_TCP);
677 		EFX_STATIC_ASSERT(ESE_FZ_L4_CLASS_UDP == ESE_DE_L4_CLASS_UDP);
678 		EFX_STATIC_ASSERT(ESE_FZ_L4_CLASS_UNKNOWN ==
679 		    ESE_DE_L4_CLASS_UNKNOWN);
680 
681 		if (l4_class == ESE_FZ_L4_CLASS_TCP) {
682 			EFX_EV_QSTAT_INCR(eep, EV_RX_TCP_IPV4);
683 			flags |= EFX_PKT_TCP;
684 		} else if (l4_class == ESE_FZ_L4_CLASS_UDP) {
685 			EFX_EV_QSTAT_INCR(eep, EV_RX_UDP_IPV4);
686 			flags |= EFX_PKT_UDP;
687 		} else {
688 			EFX_EV_QSTAT_INCR(eep, EV_RX_OTHER_IPV4);
689 		}
690 		break;
691 
692 	case ESE_DZ_L3_CLASS_IP6:
693 	case ESE_DZ_L3_CLASS_IP6_FRAG:
694 		flags |= EFX_PKT_IPV6;
695 
696 		/*
697 		 * RX_L4_CLASS is 3 bits wide on Huntington and Medford, but is
698 		 * only 2 bits wide on Medford2. Check it is safe to use the
699 		 * Medford2 field and values for all EF10 controllers.
700 		 */
701 		EFX_STATIC_ASSERT(ESF_FZ_RX_L4_CLASS_LBN ==
702 		    ESF_DE_RX_L4_CLASS_LBN);
703 		EFX_STATIC_ASSERT(ESE_FZ_L4_CLASS_TCP == ESE_DE_L4_CLASS_TCP);
704 		EFX_STATIC_ASSERT(ESE_FZ_L4_CLASS_UDP == ESE_DE_L4_CLASS_UDP);
705 		EFX_STATIC_ASSERT(ESE_FZ_L4_CLASS_UNKNOWN ==
706 		    ESE_DE_L4_CLASS_UNKNOWN);
707 
708 		if (l4_class == ESE_FZ_L4_CLASS_TCP) {
709 			EFX_EV_QSTAT_INCR(eep, EV_RX_TCP_IPV6);
710 			flags |= EFX_PKT_TCP;
711 		} else if (l4_class == ESE_FZ_L4_CLASS_UDP) {
712 			EFX_EV_QSTAT_INCR(eep, EV_RX_UDP_IPV6);
713 			flags |= EFX_PKT_UDP;
714 		} else {
715 			EFX_EV_QSTAT_INCR(eep, EV_RX_OTHER_IPV6);
716 		}
717 		break;
718 
719 	default:
720 		EFX_EV_QSTAT_INCR(eep, EV_RX_NON_IP);
721 		break;
722 	}
723 
724 	if (flags & (EFX_PKT_TCP | EFX_PKT_UDP)) {
725 		if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) {
726 			EFX_EV_QSTAT_INCR(eep, EV_RX_TCP_UDP_CHKSUM_ERR);
727 		} else {
728 			flags |= EFX_CKSUM_TCPUDP;
729 		}
730 	}
731 
732 deliver:
733 	/* If we're not discarding the packet then it is ok */
734 	if (~flags & EFX_DISCARD)
735 		EFX_EV_QSTAT_INCR(eep, EV_RX_OK);
736 
737 	EFSYS_ASSERT(eecp->eec_rx != NULL);
738 	should_abort = eecp->eec_rx(arg, label, last_used_id, size, flags);
739 
740 	return (should_abort);
741 }
742 
743 static	__checkReturn	boolean_t
744 ef10_ev_tx(
745 	__in		efx_evq_t *eep,
746 	__in		efx_qword_t *eqp,
747 	__in		const efx_ev_callbacks_t *eecp,
748 	__in_opt	void *arg)
749 {
750 	efx_nic_t *enp = eep->ee_enp;
751 	uint32_t id;
752 	uint32_t label;
753 	boolean_t should_abort;
754 
755 	EFX_EV_QSTAT_INCR(eep, EV_TX);
756 
757 	/* Discard events after RXQ/TXQ errors, or hardware not available */
758 	if (enp->en_reset_flags &
759 	    (EFX_RESET_RXQ_ERR | EFX_RESET_TXQ_ERR | EFX_RESET_HW_UNAVAIL))
760 		return (B_FALSE);
761 
762 	if (EFX_QWORD_FIELD(*eqp, ESF_DZ_TX_DROP_EVENT) != 0) {
763 		/* Drop this event */
764 		return (B_FALSE);
765 	}
766 
767 	/* Per-packet TX completion (was per-descriptor for Falcon/Siena) */
768 	id = EFX_QWORD_FIELD(*eqp, ESF_DZ_TX_DESCR_INDX);
769 	label = EFX_QWORD_FIELD(*eqp, ESF_DZ_TX_QLABEL);
770 
771 	EFSYS_PROBE2(tx_complete, uint32_t, label, uint32_t, id);
772 
773 	EFSYS_ASSERT(eecp->eec_tx != NULL);
774 	should_abort = eecp->eec_tx(arg, label, id);
775 
776 	return (should_abort);
777 }
778 
779 static	__checkReturn	boolean_t
780 ef10_ev_driver(
781 	__in		efx_evq_t *eep,
782 	__in		efx_qword_t *eqp,
783 	__in		const efx_ev_callbacks_t *eecp,
784 	__in_opt	void *arg)
785 {
786 	unsigned int code;
787 	boolean_t should_abort;
788 
789 	EFX_EV_QSTAT_INCR(eep, EV_DRIVER);
790 	should_abort = B_FALSE;
791 
792 	code = EFX_QWORD_FIELD(*eqp, ESF_DZ_DRV_SUB_CODE);
793 	switch (code) {
794 	case ESE_DZ_DRV_TIMER_EV: {
795 		uint32_t id;
796 
797 		id = EFX_QWORD_FIELD(*eqp, ESF_DZ_DRV_TMR_ID);
798 
799 		EFSYS_ASSERT(eecp->eec_timer != NULL);
800 		should_abort = eecp->eec_timer(arg, id);
801 		break;
802 	}
803 
804 	case ESE_DZ_DRV_WAKE_UP_EV: {
805 		uint32_t id;
806 
807 		id = EFX_QWORD_FIELD(*eqp, ESF_DZ_DRV_EVQ_ID);
808 
809 		EFSYS_ASSERT(eecp->eec_wake_up != NULL);
810 		should_abort = eecp->eec_wake_up(arg, id);
811 		break;
812 	}
813 
814 	case ESE_DZ_DRV_START_UP_EV:
815 		EFSYS_ASSERT(eecp->eec_initialized != NULL);
816 		should_abort = eecp->eec_initialized(arg);
817 		break;
818 
819 	default:
820 		EFSYS_PROBE3(bad_event, unsigned int, eep->ee_index,
821 		    uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_1),
822 		    uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_0));
823 		break;
824 	}
825 
826 	return (should_abort);
827 }
828 
829 static	__checkReturn	boolean_t
830 ef10_ev_drv_gen(
831 	__in		efx_evq_t *eep,
832 	__in		efx_qword_t *eqp,
833 	__in		const efx_ev_callbacks_t *eecp,
834 	__in_opt	void *arg)
835 {
836 	uint32_t data;
837 	boolean_t should_abort;
838 
839 	EFX_EV_QSTAT_INCR(eep, EV_DRV_GEN);
840 	should_abort = B_FALSE;
841 
842 	data = EFX_QWORD_FIELD(*eqp, ESF_DZ_DRV_SUB_DATA_DW0);
843 	if (data >= ((uint32_t)1 << 16)) {
844 		EFSYS_PROBE3(bad_event, unsigned int, eep->ee_index,
845 		    uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_1),
846 		    uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_0));
847 
848 		return (B_TRUE);
849 	}
850 
851 	EFSYS_ASSERT(eecp->eec_software != NULL);
852 	should_abort = eecp->eec_software(arg, (uint16_t)data);
853 
854 	return (should_abort);
855 }
856 
857 #endif	/* EFX_OPTS_EF10() */
858 
859 #if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10()
860 
861 	__checkReturn	boolean_t
862 ef10_ev_mcdi(
863 	__in		efx_evq_t *eep,
864 	__in		efx_qword_t *eqp,
865 	__in		const efx_ev_callbacks_t *eecp,
866 	__in_opt	void *arg)
867 {
868 	efx_nic_t *enp = eep->ee_enp;
869 	unsigned int code;
870 	boolean_t should_abort = B_FALSE;
871 
872 	EFX_EV_QSTAT_INCR(eep, EV_MCDI_RESPONSE);
873 
874 	code = EFX_QWORD_FIELD(*eqp, MCDI_EVENT_CODE);
875 	switch (code) {
876 	case MCDI_EVENT_CODE_BADSSERT:
877 		efx_mcdi_ev_death(enp, EINTR);
878 		break;
879 
880 	case MCDI_EVENT_CODE_CMDDONE:
881 		efx_mcdi_ev_cpl(enp,
882 		    MCDI_EV_FIELD(eqp, CMDDONE_SEQ),
883 		    MCDI_EV_FIELD(eqp, CMDDONE_DATALEN),
884 		    MCDI_EV_FIELD(eqp, CMDDONE_ERRNO));
885 		break;
886 
887 #if EFSYS_OPT_MCDI_PROXY_AUTH
888 	case MCDI_EVENT_CODE_PROXY_RESPONSE:
889 		/*
890 		 * This event notifies a function that an authorization request
891 		 * has been processed. If the request was authorized then the
892 		 * function can now re-send the original MCDI request.
893 		 * See SF-113652-SW "SR-IOV Proxied Network Access Control".
894 		 */
895 		efx_mcdi_ev_proxy_response(enp,
896 		    MCDI_EV_FIELD(eqp, PROXY_RESPONSE_HANDLE),
897 		    MCDI_EV_FIELD(eqp, PROXY_RESPONSE_RC));
898 		break;
899 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */
900 
901 #if EFSYS_OPT_MCDI_PROXY_AUTH_SERVER
902 	case MCDI_EVENT_CODE_PROXY_REQUEST:
903 		efx_mcdi_ev_proxy_request(enp,
904 			MCDI_EV_FIELD(eqp, PROXY_REQUEST_BUFF_INDEX));
905 		break;
906 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH_SERVER */
907 
908 	case MCDI_EVENT_CODE_LINKCHANGE: {
909 		efx_link_mode_t link_mode;
910 
911 		ef10_phy_link_ev(enp, eqp, &link_mode);
912 		should_abort = eecp->eec_link_change(arg, link_mode);
913 		break;
914 	}
915 
916 	case MCDI_EVENT_CODE_SENSOREVT: {
917 #if EFSYS_OPT_MON_STATS
918 		efx_mon_stat_t id;
919 		efx_mon_stat_value_t value;
920 		efx_rc_t rc;
921 
922 		/* Decode monitor stat for MCDI sensor (if supported) */
923 		if ((rc = mcdi_mon_ev(enp, eqp, &id, &value)) == 0) {
924 			/* Report monitor stat change */
925 			should_abort = eecp->eec_monitor(arg, id, value);
926 		} else if (rc == ENOTSUP) {
927 			should_abort = eecp->eec_exception(arg,
928 				EFX_EXCEPTION_UNKNOWN_SENSOREVT,
929 				MCDI_EV_FIELD(eqp, DATA));
930 		} else {
931 			EFSYS_ASSERT(rc == ENODEV);	/* Wrong port */
932 		}
933 #endif
934 		break;
935 	}
936 
937 	case MCDI_EVENT_CODE_SCHEDERR:
938 		/* Informational only */
939 		break;
940 
941 	case MCDI_EVENT_CODE_REBOOT:
942 		/* Falcon/Siena only (should not been seen with Huntington). */
943 		efx_mcdi_ev_death(enp, EIO);
944 		break;
945 
946 	case MCDI_EVENT_CODE_MC_REBOOT:
947 		/* MC_REBOOT event is used for Huntington (EF10) and later. */
948 		efx_mcdi_ev_death(enp, EIO);
949 		break;
950 
951 	case MCDI_EVENT_CODE_MAC_STATS_DMA:
952 #if EFSYS_OPT_MAC_STATS
953 		if (eecp->eec_mac_stats != NULL) {
954 			eecp->eec_mac_stats(arg,
955 			    MCDI_EV_FIELD(eqp, MAC_STATS_DMA_GENERATION));
956 		}
957 #endif
958 		break;
959 
960 	case MCDI_EVENT_CODE_FWALERT: {
961 		uint32_t reason = MCDI_EV_FIELD(eqp, FWALERT_REASON);
962 
963 		if (reason == MCDI_EVENT_FWALERT_REASON_SRAM_ACCESS)
964 			should_abort = eecp->eec_exception(arg,
965 				EFX_EXCEPTION_FWALERT_SRAM,
966 				MCDI_EV_FIELD(eqp, FWALERT_DATA));
967 		else
968 			should_abort = eecp->eec_exception(arg,
969 				EFX_EXCEPTION_UNKNOWN_FWALERT,
970 				MCDI_EV_FIELD(eqp, DATA));
971 		break;
972 	}
973 
974 	case MCDI_EVENT_CODE_TX_ERR: {
975 		/*
976 		 * After a TXQ error is detected, firmware sends a TX_ERR event.
977 		 * This may be followed by TX completions (which we discard),
978 		 * and then finally by a TX_FLUSH event. Firmware destroys the
979 		 * TXQ automatically after sending the TX_FLUSH event.
980 		 */
981 		enp->en_reset_flags |= EFX_RESET_TXQ_ERR;
982 
983 		EFSYS_PROBE2(tx_descq_err,
984 			    uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_1),
985 			    uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_0));
986 
987 		/* Inform the driver that a reset is required. */
988 		eecp->eec_exception(arg, EFX_EXCEPTION_TX_ERROR,
989 		    MCDI_EV_FIELD(eqp, TX_ERR_DATA));
990 		break;
991 	}
992 
993 	case MCDI_EVENT_CODE_TX_FLUSH: {
994 		uint32_t txq_index = MCDI_EV_FIELD(eqp, TX_FLUSH_TXQ);
995 
996 		/*
997 		 * EF10 firmware sends two TX_FLUSH events: one to the txq's
998 		 * event queue, and one to evq 0 (with TX_FLUSH_TO_DRIVER set).
999 		 * We want to wait for all completions, so ignore the events
1000 		 * with TX_FLUSH_TO_DRIVER.
1001 		 */
1002 		if (MCDI_EV_FIELD(eqp, TX_FLUSH_TO_DRIVER) != 0) {
1003 			should_abort = B_FALSE;
1004 			break;
1005 		}
1006 
1007 		EFX_EV_QSTAT_INCR(eep, EV_DRIVER_TX_DESCQ_FLS_DONE);
1008 
1009 		EFSYS_PROBE1(tx_descq_fls_done, uint32_t, txq_index);
1010 
1011 		EFSYS_ASSERT(eecp->eec_txq_flush_done != NULL);
1012 		should_abort = eecp->eec_txq_flush_done(arg, txq_index);
1013 		break;
1014 	}
1015 
1016 	case MCDI_EVENT_CODE_RX_ERR: {
1017 		/*
1018 		 * After an RXQ error is detected, firmware sends an RX_ERR
1019 		 * event. This may be followed by RX events (which we discard),
1020 		 * and then finally by an RX_FLUSH event. Firmware destroys the
1021 		 * RXQ automatically after sending the RX_FLUSH event.
1022 		 */
1023 		enp->en_reset_flags |= EFX_RESET_RXQ_ERR;
1024 
1025 		EFSYS_PROBE2(rx_descq_err,
1026 			    uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_1),
1027 			    uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_0));
1028 
1029 		/* Inform the driver that a reset is required. */
1030 		eecp->eec_exception(arg, EFX_EXCEPTION_RX_ERROR,
1031 		    MCDI_EV_FIELD(eqp, RX_ERR_DATA));
1032 		break;
1033 	}
1034 
1035 	case MCDI_EVENT_CODE_RX_FLUSH: {
1036 		uint32_t rxq_index = MCDI_EV_FIELD(eqp, RX_FLUSH_RXQ);
1037 
1038 		/*
1039 		 * EF10 firmware sends two RX_FLUSH events: one to the rxq's
1040 		 * event queue, and one to evq 0 (with RX_FLUSH_TO_DRIVER set).
1041 		 * We want to wait for all completions, so ignore the events
1042 		 * with RX_FLUSH_TO_DRIVER.
1043 		 */
1044 		if (MCDI_EV_FIELD(eqp, RX_FLUSH_TO_DRIVER) != 0) {
1045 			should_abort = B_FALSE;
1046 			break;
1047 		}
1048 
1049 		EFX_EV_QSTAT_INCR(eep, EV_DRIVER_RX_DESCQ_FLS_DONE);
1050 
1051 		EFSYS_PROBE1(rx_descq_fls_done, uint32_t, rxq_index);
1052 
1053 		EFSYS_ASSERT(eecp->eec_rxq_flush_done != NULL);
1054 		should_abort = eecp->eec_rxq_flush_done(arg, rxq_index);
1055 		break;
1056 	}
1057 
1058 	default:
1059 		EFSYS_PROBE3(bad_event, unsigned int, eep->ee_index,
1060 		    uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_1),
1061 		    uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_0));
1062 		break;
1063 	}
1064 
1065 	return (should_abort);
1066 }
1067 
1068 #endif	/* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */
1069 
1070 #if EFX_OPTS_EF10()
1071 
1072 		void
1073 ef10_ev_rxlabel_init(
1074 	__in		efx_evq_t *eep,
1075 	__in		efx_rxq_t *erp,
1076 	__in		unsigned int label,
1077 	__in		efx_rxq_type_t type)
1078 {
1079 	efx_evq_rxq_state_t *eersp;
1080 #if EFSYS_OPT_RX_PACKED_STREAM || EFSYS_OPT_RX_ES_SUPER_BUFFER
1081 	boolean_t packed_stream = (type == EFX_RXQ_TYPE_PACKED_STREAM);
1082 	boolean_t es_super_buffer = (type == EFX_RXQ_TYPE_ES_SUPER_BUFFER);
1083 #endif
1084 
1085 	_NOTE(ARGUNUSED(type))
1086 	EFSYS_ASSERT3U(label, <, EFX_ARRAY_SIZE(eep->ee_rxq_state));
1087 	eersp = &eep->ee_rxq_state[label];
1088 
1089 	EFSYS_ASSERT3U(eersp->eers_rx_mask, ==, 0);
1090 
1091 #if EFSYS_OPT_RX_PACKED_STREAM
1092 	/*
1093 	 * For packed stream modes, the very first event will
1094 	 * have a new buffer flag set, so it will be incremented,
1095 	 * yielding the correct pointer. That results in a simpler
1096 	 * code than trying to detect start-of-the-world condition
1097 	 * in the event handler.
1098 	 */
1099 	eersp->eers_rx_read_ptr = packed_stream ? ~0 : 0;
1100 #else
1101 	eersp->eers_rx_read_ptr = 0;
1102 #endif
1103 	eersp->eers_rx_mask = erp->er_mask;
1104 #if EFSYS_OPT_RX_PACKED_STREAM || EFSYS_OPT_RX_ES_SUPER_BUFFER
1105 	eersp->eers_rx_stream_npackets = 0;
1106 	eersp->eers_rx_packed_stream = packed_stream || es_super_buffer;
1107 #endif
1108 #if EFSYS_OPT_RX_PACKED_STREAM
1109 	if (packed_stream) {
1110 		eersp->eers_rx_packed_stream_credits = (eep->ee_mask + 1) /
1111 		    EFX_DIV_ROUND_UP(EFX_RX_PACKED_STREAM_MEM_PER_CREDIT,
1112 		    EFX_RX_PACKED_STREAM_MIN_PACKET_SPACE);
1113 		EFSYS_ASSERT3U(eersp->eers_rx_packed_stream_credits, !=, 0);
1114 		/*
1115 		 * A single credit is allocated to the queue when it is started.
1116 		 * It is immediately spent by the first packet which has NEW
1117 		 * BUFFER flag set, though, but still we shall take into
1118 		 * account, as to not wrap around the maximum number of credits
1119 		 * accidentally
1120 		 */
1121 		eersp->eers_rx_packed_stream_credits--;
1122 		EFSYS_ASSERT3U(eersp->eers_rx_packed_stream_credits, <=,
1123 		    EFX_RX_PACKED_STREAM_MAX_CREDITS);
1124 	}
1125 #endif
1126 }
1127 
1128 		void
1129 ef10_ev_rxlabel_fini(
1130 	__in		efx_evq_t *eep,
1131 	__in		unsigned int label)
1132 {
1133 	efx_evq_rxq_state_t *eersp;
1134 
1135 	EFSYS_ASSERT3U(label, <, EFX_ARRAY_SIZE(eep->ee_rxq_state));
1136 	eersp = &eep->ee_rxq_state[label];
1137 
1138 	EFSYS_ASSERT3U(eersp->eers_rx_mask, !=, 0);
1139 
1140 	eersp->eers_rx_read_ptr = 0;
1141 	eersp->eers_rx_mask = 0;
1142 #if EFSYS_OPT_RX_PACKED_STREAM || EFSYS_OPT_RX_ES_SUPER_BUFFER
1143 	eersp->eers_rx_stream_npackets = 0;
1144 	eersp->eers_rx_packed_stream = B_FALSE;
1145 #endif
1146 #if EFSYS_OPT_RX_PACKED_STREAM
1147 	eersp->eers_rx_packed_stream_credits = 0;
1148 #endif
1149 }
1150 
1151 #endif	/* EFX_OPTS_EF10() */
1152