1 /* SPDX-License-Identifier: BSD-3-Clause
2 *
3 * Copyright(c) 2019-2021 Xilinx, Inc.
4 * Copyright(c) 2012-2019 Solarflare Communications Inc.
5 */
6
7 #include "efx.h"
8 #include "efx_impl.h"
9 #if EFSYS_OPT_MON_STATS
10 #include "mcdi_mon.h"
11 #endif
12
13 #if EFX_OPTS_EF10()
14
15 /*
16 * Non-interrupting event queue requires interrrupting event queue to
17 * refer to for wake-up events even if wake ups are never used.
18 * It could be even non-allocated event queue.
19 */
20 #define EFX_EF10_ALWAYS_INTERRUPTING_EVQ_INDEX (0)
21
22 static __checkReturn boolean_t
23 ef10_ev_rx(
24 __in efx_evq_t *eep,
25 __in efx_qword_t *eqp,
26 __in const efx_ev_callbacks_t *eecp,
27 __in_opt void *arg);
28
29 static __checkReturn boolean_t
30 ef10_ev_tx(
31 __in efx_evq_t *eep,
32 __in efx_qword_t *eqp,
33 __in const efx_ev_callbacks_t *eecp,
34 __in_opt void *arg);
35
36 static __checkReturn boolean_t
37 ef10_ev_driver(
38 __in efx_evq_t *eep,
39 __in efx_qword_t *eqp,
40 __in const efx_ev_callbacks_t *eecp,
41 __in_opt void *arg);
42
43 static __checkReturn boolean_t
44 ef10_ev_drv_gen(
45 __in efx_evq_t *eep,
46 __in efx_qword_t *eqp,
47 __in const efx_ev_callbacks_t *eecp,
48 __in_opt void *arg);
49
50
51 static __checkReturn efx_rc_t
efx_mcdi_set_evq_tmr(__in efx_nic_t * enp,__in uint32_t instance,__in uint32_t mode,__in uint32_t timer_ns)52 efx_mcdi_set_evq_tmr(
53 __in efx_nic_t *enp,
54 __in uint32_t instance,
55 __in uint32_t mode,
56 __in uint32_t timer_ns)
57 {
58 efx_mcdi_req_t req;
59 EFX_MCDI_DECLARE_BUF(payload, MC_CMD_SET_EVQ_TMR_IN_LEN,
60 MC_CMD_SET_EVQ_TMR_OUT_LEN);
61 efx_rc_t rc;
62
63 req.emr_cmd = MC_CMD_SET_EVQ_TMR;
64 req.emr_in_buf = payload;
65 req.emr_in_length = MC_CMD_SET_EVQ_TMR_IN_LEN;
66 req.emr_out_buf = payload;
67 req.emr_out_length = MC_CMD_SET_EVQ_TMR_OUT_LEN;
68
69 MCDI_IN_SET_DWORD(req, SET_EVQ_TMR_IN_INSTANCE, instance);
70 MCDI_IN_SET_DWORD(req, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, timer_ns);
71 MCDI_IN_SET_DWORD(req, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, timer_ns);
72 MCDI_IN_SET_DWORD(req, SET_EVQ_TMR_IN_TMR_MODE, mode);
73
74 efx_mcdi_execute(enp, &req);
75
76 if (req.emr_rc != 0) {
77 rc = req.emr_rc;
78 goto fail1;
79 }
80
81 if (req.emr_out_length_used < MC_CMD_SET_EVQ_TMR_OUT_LEN) {
82 rc = EMSGSIZE;
83 goto fail2;
84 }
85
86 return (0);
87
88 fail2:
89 EFSYS_PROBE(fail2);
90 fail1:
91 EFSYS_PROBE1(fail1, efx_rc_t, rc);
92
93 return (rc);
94 }
95
96
97 __checkReturn efx_rc_t
ef10_ev_init(__in efx_nic_t * enp)98 ef10_ev_init(
99 __in efx_nic_t *enp)
100 {
101 _NOTE(ARGUNUSED(enp))
102 return (0);
103 }
104
105 void
ef10_ev_fini(__in efx_nic_t * enp)106 ef10_ev_fini(
107 __in efx_nic_t *enp)
108 {
109 _NOTE(ARGUNUSED(enp))
110 }
111
112 __checkReturn efx_rc_t
ef10_ev_qcreate(__in efx_nic_t * enp,__in unsigned int index,__in efsys_mem_t * esmp,__in size_t ndescs,__in uint32_t id,__in uint32_t us,__in uint32_t flags,__in uint32_t irq,__in efx_evq_t * eep)113 ef10_ev_qcreate(
114 __in efx_nic_t *enp,
115 __in unsigned int index,
116 __in efsys_mem_t *esmp,
117 __in size_t ndescs,
118 __in uint32_t id,
119 __in uint32_t us,
120 __in uint32_t flags,
121 __in uint32_t irq,
122 __in efx_evq_t *eep)
123 {
124 efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
125 uint32_t target_evq = 0;
126 efx_rc_t rc;
127 boolean_t low_latency;
128
129 _NOTE(ARGUNUSED(id)) /* buftbl id managed by MC */
130
131 EFSYS_ASSERT((flags & EFX_EVQ_FLAGS_EXTENDED_WIDTH) == 0);
132
133 /*
134 * NO_CONT_EV mode is only requested from the firmware when creating
135 * receive queues, but here it needs to be specified at event queue
136 * creation, as the event handler needs to know which format is in use.
137 *
138 * If EFX_EVQ_FLAGS_NO_CONT_EV is specified, all receive queues for this
139 * event queue will be created in NO_CONT_EV mode.
140 *
141 * See SF-109306-TC 5.11 "Events for RXQs in NO_CONT_EV mode".
142 */
143 if (flags & EFX_EVQ_FLAGS_NO_CONT_EV) {
144 if (enp->en_nic_cfg.enc_no_cont_ev_mode_supported == B_FALSE) {
145 rc = EINVAL;
146 goto fail1;
147 }
148 }
149
150 /* Set up the handler table */
151 eep->ee_rx = ef10_ev_rx;
152 eep->ee_tx = ef10_ev_tx;
153 eep->ee_driver = ef10_ev_driver;
154 eep->ee_drv_gen = ef10_ev_drv_gen;
155 eep->ee_mcdi = ef10_ev_mcdi;
156
157 /* Set up the event queue */
158 /* INIT_EVQ expects function-relative vector number */
159 if ((flags & EFX_EVQ_FLAGS_NOTIFY_MASK) ==
160 EFX_EVQ_FLAGS_NOTIFY_INTERRUPT) {
161 /* IRQ number is specified by caller */
162 } else if (index == EFX_EF10_ALWAYS_INTERRUPTING_EVQ_INDEX) {
163 /* Use the first interrupt for always interrupting EvQ */
164 irq = 0;
165 flags = (flags & ~EFX_EVQ_FLAGS_NOTIFY_MASK) |
166 EFX_EVQ_FLAGS_NOTIFY_INTERRUPT;
167 } else {
168 target_evq = EFX_EF10_ALWAYS_INTERRUPTING_EVQ_INDEX;
169 }
170
171 /*
172 * Interrupts may be raised for events immediately after the queue is
173 * created. See bug58606.
174 */
175
176 /*
177 * On Huntington we need to specify the settings to use.
178 * If event queue type in flags is auto, we favour throughput
179 * if the adapter is running virtualization supporting firmware
180 * (i.e. the full featured firmware variant)
181 * and latency otherwise. The Ethernet Virtual Bridging
182 * capability is used to make this decision. (Note though that
183 * the low latency firmware variant is also best for
184 * throughput and corresponding type should be specified
185 * to choose it.)
186 *
187 * If FW supports EvQ types (e.g. on Medford and Medford2) the
188 * type which is specified in flags is passed to FW to make the
189 * decision and low_latency hint is ignored.
190 */
191 low_latency = encp->enc_datapath_cap_evb ? 0 : 1;
192 rc = efx_mcdi_init_evq(enp, index, esmp, ndescs, irq, target_evq, us,
193 flags, low_latency);
194 if (rc != 0)
195 goto fail2;
196
197 return (0);
198
199 fail2:
200 EFSYS_PROBE(fail2);
201 fail1:
202 EFSYS_PROBE1(fail1, efx_rc_t, rc);
203
204 return (rc);
205 }
206
207 void
ef10_ev_qdestroy(__in efx_evq_t * eep)208 ef10_ev_qdestroy(
209 __in efx_evq_t *eep)
210 {
211 efx_nic_t *enp = eep->ee_enp;
212
213 EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
214
215 (void) efx_mcdi_fini_evq(enp, eep->ee_index);
216 }
217
218 __checkReturn efx_rc_t
ef10_ev_qprime(__in efx_evq_t * eep,__in unsigned int count)219 ef10_ev_qprime(
220 __in efx_evq_t *eep,
221 __in unsigned int count)
222 {
223 efx_nic_t *enp = eep->ee_enp;
224 uint32_t rptr;
225 efx_dword_t dword;
226
227 rptr = count & eep->ee_mask;
228
229 if (enp->en_nic_cfg.enc_bug35388_workaround) {
230 EFX_STATIC_ASSERT(EF10_EVQ_MINNEVS >
231 (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
232 EFX_STATIC_ASSERT(EF10_EVQ_MAXNEVS <
233 (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
234
235 EFX_POPULATE_DWORD_2(dword,
236 ERF_DD_EVQ_IND_RPTR_FLAGS,
237 EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
238 ERF_DD_EVQ_IND_RPTR,
239 (rptr >> ERF_DD_EVQ_IND_RPTR_WIDTH));
240 EFX_BAR_VI_WRITED(enp, ER_DD_EVQ_INDIRECT, eep->ee_index,
241 &dword, B_FALSE);
242
243 EFX_POPULATE_DWORD_2(dword,
244 ERF_DD_EVQ_IND_RPTR_FLAGS,
245 EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
246 ERF_DD_EVQ_IND_RPTR,
247 rptr & ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
248 EFX_BAR_VI_WRITED(enp, ER_DD_EVQ_INDIRECT, eep->ee_index,
249 &dword, B_FALSE);
250 } else {
251 EFX_POPULATE_DWORD_1(dword, ERF_DZ_EVQ_RPTR, rptr);
252 EFX_BAR_VI_WRITED(enp, ER_DZ_EVQ_RPTR_REG, eep->ee_index,
253 &dword, B_FALSE);
254 }
255
256 return (0);
257 }
258
259 static __checkReturn efx_rc_t
efx_mcdi_driver_event(__in efx_nic_t * enp,__in uint32_t evq,__in efx_qword_t data)260 efx_mcdi_driver_event(
261 __in efx_nic_t *enp,
262 __in uint32_t evq,
263 __in efx_qword_t data)
264 {
265 efx_mcdi_req_t req;
266 EFX_MCDI_DECLARE_BUF(payload, MC_CMD_DRIVER_EVENT_IN_LEN,
267 MC_CMD_DRIVER_EVENT_OUT_LEN);
268 efx_rc_t rc;
269
270 req.emr_cmd = MC_CMD_DRIVER_EVENT;
271 req.emr_in_buf = payload;
272 req.emr_in_length = MC_CMD_DRIVER_EVENT_IN_LEN;
273 req.emr_out_buf = payload;
274 req.emr_out_length = MC_CMD_DRIVER_EVENT_OUT_LEN;
275
276 MCDI_IN_SET_DWORD(req, DRIVER_EVENT_IN_EVQ, evq);
277
278 MCDI_IN_SET_DWORD(req, DRIVER_EVENT_IN_DATA_LO,
279 EFX_QWORD_FIELD(data, EFX_DWORD_0));
280 MCDI_IN_SET_DWORD(req, DRIVER_EVENT_IN_DATA_HI,
281 EFX_QWORD_FIELD(data, EFX_DWORD_1));
282
283 efx_mcdi_execute(enp, &req);
284
285 if (req.emr_rc != 0) {
286 rc = req.emr_rc;
287 goto fail1;
288 }
289
290 return (0);
291
292 fail1:
293 EFSYS_PROBE1(fail1, efx_rc_t, rc);
294
295 return (rc);
296 }
297
298 void
ef10_ev_qpost(__in efx_evq_t * eep,__in uint16_t data)299 ef10_ev_qpost(
300 __in efx_evq_t *eep,
301 __in uint16_t data)
302 {
303 efx_nic_t *enp = eep->ee_enp;
304 efx_qword_t event;
305
306 EFX_POPULATE_QWORD_3(event,
307 ESF_DZ_DRV_CODE, ESE_DZ_EV_CODE_DRV_GEN_EV,
308 ESF_DZ_DRV_SUB_CODE, 0,
309 ESF_DZ_DRV_SUB_DATA_DW0, (uint32_t)data);
310
311 (void) efx_mcdi_driver_event(enp, eep->ee_index, event);
312 }
313
314 __checkReturn efx_rc_t
ef10_ev_qmoderate(__in efx_evq_t * eep,__in unsigned int us)315 ef10_ev_qmoderate(
316 __in efx_evq_t *eep,
317 __in unsigned int us)
318 {
319 efx_nic_t *enp = eep->ee_enp;
320 efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
321 efx_dword_t dword;
322 uint32_t mode;
323 efx_rc_t rc;
324
325 /* Check that hardware and MCDI use the same timer MODE values */
326 EFX_STATIC_ASSERT(FFE_CZ_TIMER_MODE_DIS ==
327 MC_CMD_SET_EVQ_TMR_IN_TIMER_MODE_DIS);
328 EFX_STATIC_ASSERT(FFE_CZ_TIMER_MODE_IMMED_START ==
329 MC_CMD_SET_EVQ_TMR_IN_TIMER_MODE_IMMED_START);
330 EFX_STATIC_ASSERT(FFE_CZ_TIMER_MODE_TRIG_START ==
331 MC_CMD_SET_EVQ_TMR_IN_TIMER_MODE_TRIG_START);
332 EFX_STATIC_ASSERT(FFE_CZ_TIMER_MODE_INT_HLDOFF ==
333 MC_CMD_SET_EVQ_TMR_IN_TIMER_MODE_INT_HLDOFF);
334
335 if (us > encp->enc_evq_timer_max_us) {
336 rc = EINVAL;
337 goto fail1;
338 }
339
340 /* If the value is zero then disable the timer */
341 if (us == 0) {
342 mode = FFE_CZ_TIMER_MODE_DIS;
343 } else {
344 mode = FFE_CZ_TIMER_MODE_INT_HLDOFF;
345 }
346
347 if (encp->enc_bug61265_workaround) {
348 uint32_t ns = us * 1000;
349
350 rc = efx_mcdi_set_evq_tmr(enp, eep->ee_index, mode, ns);
351 if (rc != 0)
352 goto fail2;
353 } else {
354 unsigned int ticks;
355
356 if ((rc = efx_ev_usecs_to_ticks(enp, us, &ticks)) != 0)
357 goto fail3;
358
359 if (encp->enc_bug35388_workaround) {
360 EFX_POPULATE_DWORD_3(dword,
361 ERF_DD_EVQ_IND_TIMER_FLAGS,
362 EFE_DD_EVQ_IND_TIMER_FLAGS,
363 ERF_DD_EVQ_IND_TIMER_MODE, mode,
364 ERF_DD_EVQ_IND_TIMER_VAL, ticks);
365 EFX_BAR_VI_WRITED(enp, ER_DD_EVQ_INDIRECT,
366 eep->ee_index, &dword, 0);
367 } else {
368 /*
369 * NOTE: The TMR_REL field introduced in Medford2 is
370 * ignored on earlier EF10 controllers. See bug66418
371 * comment 9 for details.
372 */
373 EFX_POPULATE_DWORD_3(dword,
374 ERF_DZ_TC_TIMER_MODE, mode,
375 ERF_DZ_TC_TIMER_VAL, ticks,
376 ERF_FZ_TC_TMR_REL_VAL, ticks);
377 EFX_BAR_VI_WRITED(enp, ER_DZ_EVQ_TMR_REG,
378 eep->ee_index, &dword, 0);
379 }
380 }
381
382 return (0);
383
384 fail3:
385 EFSYS_PROBE(fail3);
386 fail2:
387 EFSYS_PROBE(fail2);
388 fail1:
389 EFSYS_PROBE1(fail1, efx_rc_t, rc);
390
391 return (rc);
392 }
393
394
395 #if EFSYS_OPT_QSTATS
396 void
ef10_ev_qstats_update(__in efx_evq_t * eep,__inout_ecount (EV_NQSTATS)efsys_stat_t * stat)397 ef10_ev_qstats_update(
398 __in efx_evq_t *eep,
399 __inout_ecount(EV_NQSTATS) efsys_stat_t *stat)
400 {
401 unsigned int id;
402
403 for (id = 0; id < EV_NQSTATS; id++) {
404 efsys_stat_t *essp = &stat[id];
405
406 EFSYS_STAT_INCR(essp, eep->ee_stat[id]);
407 eep->ee_stat[id] = 0;
408 }
409 }
410 #endif /* EFSYS_OPT_QSTATS */
411
412 #if EFSYS_OPT_RX_PACKED_STREAM || EFSYS_OPT_RX_ES_SUPER_BUFFER
413
414 static __checkReturn boolean_t
ef10_ev_rx_packed_stream(__in efx_evq_t * eep,__in efx_qword_t * eqp,__in const efx_ev_callbacks_t * eecp,__in_opt void * arg)415 ef10_ev_rx_packed_stream(
416 __in efx_evq_t *eep,
417 __in efx_qword_t *eqp,
418 __in const efx_ev_callbacks_t *eecp,
419 __in_opt void *arg)
420 {
421 uint32_t label;
422 uint32_t pkt_count_lbits;
423 uint16_t flags;
424 boolean_t should_abort;
425 efx_evq_rxq_state_t *eersp;
426 unsigned int pkt_count;
427 unsigned int current_id;
428 boolean_t new_buffer;
429
430 pkt_count_lbits = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_DSC_PTR_LBITS);
431 label = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_QLABEL);
432 new_buffer = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_EV_ROTATE);
433
434 flags = 0;
435
436 eersp = &eep->ee_rxq_state[label];
437
438 /*
439 * RX_DSC_PTR_LBITS has least significant bits of the global
440 * (not per-buffer) packet counter. It is guaranteed that
441 * maximum number of completed packets fits in lbits-mask.
442 * So, modulo lbits-mask arithmetic should be used to calculate
443 * packet counter increment.
444 */
445 pkt_count = (pkt_count_lbits - eersp->eers_rx_stream_npackets) &
446 EFX_MASK32(ESF_DZ_RX_DSC_PTR_LBITS);
447 eersp->eers_rx_stream_npackets += pkt_count;
448
449 if (new_buffer) {
450 flags |= EFX_PKT_PACKED_STREAM_NEW_BUFFER;
451 #if EFSYS_OPT_RX_PACKED_STREAM
452 /*
453 * If both packed stream and equal stride super-buffer
454 * modes are compiled in, in theory credits should be
455 * be maintained for packed stream only, but right now
456 * these modes are not distinguished in the event queue
457 * Rx queue state and it is OK to increment the counter
458 * regardless (it might be event cheaper than branching
459 * since neighbour structure member are updated as well).
460 */
461 eersp->eers_rx_packed_stream_credits++;
462 #endif
463 eersp->eers_rx_read_ptr++;
464 }
465 current_id = eersp->eers_rx_read_ptr & eersp->eers_rx_mask;
466
467 /* Check for errors that invalidate checksum and L3/L4 fields */
468 if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_TRUNC_ERR) != 0) {
469 /* RX frame truncated */
470 EFX_EV_QSTAT_INCR(eep, EV_RX_FRM_TRUNC);
471 flags |= EFX_DISCARD;
472 goto deliver;
473 }
474 if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_ECRC_ERR) != 0) {
475 /* Bad Ethernet frame CRC */
476 EFX_EV_QSTAT_INCR(eep, EV_RX_ETH_CRC_ERR);
477 flags |= EFX_DISCARD;
478 goto deliver;
479 }
480
481 if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_PARSE_INCOMPLETE)) {
482 EFX_EV_QSTAT_INCR(eep, EV_RX_PARSE_INCOMPLETE);
483 flags |= EFX_PKT_PACKED_STREAM_PARSE_INCOMPLETE;
484 goto deliver;
485 }
486
487 if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_IPCKSUM_ERR))
488 EFX_EV_QSTAT_INCR(eep, EV_RX_IPV4_HDR_CHKSUM_ERR);
489
490 if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_TCPUDP_CKSUM_ERR))
491 EFX_EV_QSTAT_INCR(eep, EV_RX_TCP_UDP_CHKSUM_ERR);
492
493 deliver:
494 /* If we're not discarding the packet then it is ok */
495 if (~flags & EFX_DISCARD)
496 EFX_EV_QSTAT_INCR(eep, EV_RX_OK);
497
498 EFSYS_ASSERT(eecp->eec_rx_ps != NULL);
499 should_abort = eecp->eec_rx_ps(arg, label, current_id, pkt_count,
500 flags);
501
502 return (should_abort);
503 }
504
505 #endif /* EFSYS_OPT_RX_PACKED_STREAM || EFSYS_OPT_RX_ES_SUPER_BUFFER */
506
507 static __checkReturn boolean_t
ef10_ev_rx(__in efx_evq_t * eep,__in efx_qword_t * eqp,__in const efx_ev_callbacks_t * eecp,__in_opt void * arg)508 ef10_ev_rx(
509 __in efx_evq_t *eep,
510 __in efx_qword_t *eqp,
511 __in const efx_ev_callbacks_t *eecp,
512 __in_opt void *arg)
513 {
514 efx_nic_t *enp = eep->ee_enp;
515 uint32_t size;
516 uint32_t label;
517 uint32_t mac_class;
518 uint32_t eth_tag_class;
519 uint32_t l3_class;
520 uint32_t l4_class;
521 uint32_t next_read_lbits;
522 uint16_t flags;
523 boolean_t cont;
524 boolean_t should_abort;
525 efx_evq_rxq_state_t *eersp;
526 unsigned int desc_count;
527 unsigned int last_used_id;
528
529 EFX_EV_QSTAT_INCR(eep, EV_RX);
530
531 /* Discard events after RXQ/TXQ errors, or hardware not available */
532 if (enp->en_reset_flags &
533 (EFX_RESET_RXQ_ERR | EFX_RESET_TXQ_ERR | EFX_RESET_HW_UNAVAIL))
534 return (B_FALSE);
535
536 /* Basic packet information */
537 label = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_QLABEL);
538 eersp = &eep->ee_rxq_state[label];
539
540 #if EFSYS_OPT_RX_PACKED_STREAM || EFSYS_OPT_RX_ES_SUPER_BUFFER
541 /*
542 * Packed stream events are very different,
543 * so handle them separately
544 */
545 if (eersp->eers_rx_packed_stream)
546 return (ef10_ev_rx_packed_stream(eep, eqp, eecp, arg));
547 #endif
548
549 size = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_BYTES);
550 cont = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_CONT);
551 next_read_lbits = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_DSC_PTR_LBITS);
552 eth_tag_class = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_ETH_TAG_CLASS);
553 mac_class = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_MAC_CLASS);
554 l3_class = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_L3_CLASS);
555
556 /*
557 * RX_L4_CLASS is 3 bits wide on Huntington and Medford, but is only
558 * 2 bits wide on Medford2. Check it is safe to use the Medford2 field
559 * and values for all EF10 controllers.
560 */
561 EFX_STATIC_ASSERT(ESF_FZ_RX_L4_CLASS_LBN == ESF_DE_RX_L4_CLASS_LBN);
562 EFX_STATIC_ASSERT(ESE_FZ_L4_CLASS_TCP == ESE_DE_L4_CLASS_TCP);
563 EFX_STATIC_ASSERT(ESE_FZ_L4_CLASS_UDP == ESE_DE_L4_CLASS_UDP);
564 EFX_STATIC_ASSERT(ESE_FZ_L4_CLASS_UNKNOWN == ESE_DE_L4_CLASS_UNKNOWN);
565
566 l4_class = EFX_QWORD_FIELD(*eqp, ESF_FZ_RX_L4_CLASS);
567
568 if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_DROP_EVENT) != 0) {
569 /* Drop this event */
570 return (B_FALSE);
571 }
572 flags = 0;
573
574 if (cont != 0) {
575 /*
576 * This may be part of a scattered frame, or it may be a
577 * truncated frame if scatter is disabled on this RXQ.
578 * Overlength frames can be received if e.g. a VF is configured
579 * for 1500 MTU but connected to a port set to 9000 MTU
580 * (see bug56567).
581 * FIXME: There is not yet any driver that supports scatter on
582 * Huntington. Scatter support is required for OSX.
583 */
584 flags |= EFX_PKT_CONT;
585 }
586
587 if (mac_class == ESE_DZ_MAC_CLASS_UCAST)
588 flags |= EFX_PKT_UNICAST;
589
590 /*
591 * Increment the count of descriptors read.
592 *
593 * In NO_CONT_EV mode, RX_DSC_PTR_LBITS is actually a packet count, but
594 * when scatter is disabled, there is only one descriptor per packet and
595 * so it can be treated the same.
596 *
597 * TODO: Support scatter in NO_CONT_EV mode.
598 */
599 desc_count = (next_read_lbits - eersp->eers_rx_read_ptr) &
600 EFX_MASK32(ESF_DZ_RX_DSC_PTR_LBITS);
601 eersp->eers_rx_read_ptr += desc_count;
602
603 /* Calculate the index of the last descriptor consumed */
604 last_used_id = (eersp->eers_rx_read_ptr - 1) & eersp->eers_rx_mask;
605
606 if (eep->ee_flags & EFX_EVQ_FLAGS_NO_CONT_EV) {
607 if (desc_count > 1)
608 EFX_EV_QSTAT_INCR(eep, EV_RX_BATCH);
609
610 /* Always read the length from the prefix in NO_CONT_EV mode. */
611 flags |= EFX_PKT_PREFIX_LEN;
612
613 /*
614 * Check for an aborted scatter, signalled by the ABORT bit in
615 * NO_CONT_EV mode. The ABORT bit was not used before NO_CONT_EV
616 * mode was added as it was broken in Huntington silicon.
617 */
618 if (EFX_QWORD_FIELD(*eqp, ESF_EZ_RX_ABORT) != 0) {
619 flags |= EFX_DISCARD;
620 goto deliver;
621 }
622 } else if (desc_count > 1) {
623 /*
624 * FIXME: add error checking to make sure this a batched event.
625 * This could also be an aborted scatter, see Bug36629.
626 */
627 EFX_EV_QSTAT_INCR(eep, EV_RX_BATCH);
628 flags |= EFX_PKT_PREFIX_LEN;
629 }
630
631 /* Check for errors that invalidate checksum and L3/L4 fields */
632 if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_TRUNC_ERR) != 0) {
633 /* RX frame truncated */
634 EFX_EV_QSTAT_INCR(eep, EV_RX_FRM_TRUNC);
635 flags |= EFX_DISCARD;
636 goto deliver;
637 }
638 if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_ECRC_ERR) != 0) {
639 /* Bad Ethernet frame CRC */
640 EFX_EV_QSTAT_INCR(eep, EV_RX_ETH_CRC_ERR);
641 flags |= EFX_DISCARD;
642 goto deliver;
643 }
644 if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_PARSE_INCOMPLETE)) {
645 /*
646 * Hardware parse failed, due to malformed headers
647 * or headers that are too long for the parser.
648 * Headers and checksums must be validated by the host.
649 */
650 EFX_EV_QSTAT_INCR(eep, EV_RX_PARSE_INCOMPLETE);
651 goto deliver;
652 }
653
654 if ((eth_tag_class == ESE_DZ_ETH_TAG_CLASS_VLAN1) ||
655 (eth_tag_class == ESE_DZ_ETH_TAG_CLASS_VLAN2)) {
656 flags |= EFX_PKT_VLAN_TAGGED;
657 }
658
659 switch (l3_class) {
660 case ESE_DZ_L3_CLASS_IP4:
661 case ESE_DZ_L3_CLASS_IP4_FRAG:
662 flags |= EFX_PKT_IPV4;
663 if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_IPCKSUM_ERR)) {
664 EFX_EV_QSTAT_INCR(eep, EV_RX_IPV4_HDR_CHKSUM_ERR);
665 } else {
666 flags |= EFX_CKSUM_IPV4;
667 }
668
669 /*
670 * RX_L4_CLASS is 3 bits wide on Huntington and Medford, but is
671 * only 2 bits wide on Medford2. Check it is safe to use the
672 * Medford2 field and values for all EF10 controllers.
673 */
674 EFX_STATIC_ASSERT(ESF_FZ_RX_L4_CLASS_LBN ==
675 ESF_DE_RX_L4_CLASS_LBN);
676 EFX_STATIC_ASSERT(ESE_FZ_L4_CLASS_TCP == ESE_DE_L4_CLASS_TCP);
677 EFX_STATIC_ASSERT(ESE_FZ_L4_CLASS_UDP == ESE_DE_L4_CLASS_UDP);
678 EFX_STATIC_ASSERT(ESE_FZ_L4_CLASS_UNKNOWN ==
679 ESE_DE_L4_CLASS_UNKNOWN);
680
681 if (l4_class == ESE_FZ_L4_CLASS_TCP) {
682 EFX_EV_QSTAT_INCR(eep, EV_RX_TCP_IPV4);
683 flags |= EFX_PKT_TCP;
684 } else if (l4_class == ESE_FZ_L4_CLASS_UDP) {
685 EFX_EV_QSTAT_INCR(eep, EV_RX_UDP_IPV4);
686 flags |= EFX_PKT_UDP;
687 } else {
688 EFX_EV_QSTAT_INCR(eep, EV_RX_OTHER_IPV4);
689 }
690 break;
691
692 case ESE_DZ_L3_CLASS_IP6:
693 case ESE_DZ_L3_CLASS_IP6_FRAG:
694 flags |= EFX_PKT_IPV6;
695
696 /*
697 * RX_L4_CLASS is 3 bits wide on Huntington and Medford, but is
698 * only 2 bits wide on Medford2. Check it is safe to use the
699 * Medford2 field and values for all EF10 controllers.
700 */
701 EFX_STATIC_ASSERT(ESF_FZ_RX_L4_CLASS_LBN ==
702 ESF_DE_RX_L4_CLASS_LBN);
703 EFX_STATIC_ASSERT(ESE_FZ_L4_CLASS_TCP == ESE_DE_L4_CLASS_TCP);
704 EFX_STATIC_ASSERT(ESE_FZ_L4_CLASS_UDP == ESE_DE_L4_CLASS_UDP);
705 EFX_STATIC_ASSERT(ESE_FZ_L4_CLASS_UNKNOWN ==
706 ESE_DE_L4_CLASS_UNKNOWN);
707
708 if (l4_class == ESE_FZ_L4_CLASS_TCP) {
709 EFX_EV_QSTAT_INCR(eep, EV_RX_TCP_IPV6);
710 flags |= EFX_PKT_TCP;
711 } else if (l4_class == ESE_FZ_L4_CLASS_UDP) {
712 EFX_EV_QSTAT_INCR(eep, EV_RX_UDP_IPV6);
713 flags |= EFX_PKT_UDP;
714 } else {
715 EFX_EV_QSTAT_INCR(eep, EV_RX_OTHER_IPV6);
716 }
717 break;
718
719 default:
720 EFX_EV_QSTAT_INCR(eep, EV_RX_NON_IP);
721 break;
722 }
723
724 if (flags & (EFX_PKT_TCP | EFX_PKT_UDP)) {
725 if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) {
726 EFX_EV_QSTAT_INCR(eep, EV_RX_TCP_UDP_CHKSUM_ERR);
727 } else {
728 flags |= EFX_CKSUM_TCPUDP;
729 }
730 }
731
732 deliver:
733 /* If we're not discarding the packet then it is ok */
734 if (~flags & EFX_DISCARD)
735 EFX_EV_QSTAT_INCR(eep, EV_RX_OK);
736
737 EFSYS_ASSERT(eecp->eec_rx != NULL);
738 should_abort = eecp->eec_rx(arg, label, last_used_id, size, flags);
739
740 return (should_abort);
741 }
742
743 static __checkReturn boolean_t
ef10_ev_tx(__in efx_evq_t * eep,__in efx_qword_t * eqp,__in const efx_ev_callbacks_t * eecp,__in_opt void * arg)744 ef10_ev_tx(
745 __in efx_evq_t *eep,
746 __in efx_qword_t *eqp,
747 __in const efx_ev_callbacks_t *eecp,
748 __in_opt void *arg)
749 {
750 efx_nic_t *enp = eep->ee_enp;
751 uint32_t id;
752 uint32_t label;
753 boolean_t should_abort;
754
755 EFX_EV_QSTAT_INCR(eep, EV_TX);
756
757 /* Discard events after RXQ/TXQ errors, or hardware not available */
758 if (enp->en_reset_flags &
759 (EFX_RESET_RXQ_ERR | EFX_RESET_TXQ_ERR | EFX_RESET_HW_UNAVAIL))
760 return (B_FALSE);
761
762 if (EFX_QWORD_FIELD(*eqp, ESF_DZ_TX_DROP_EVENT) != 0) {
763 /* Drop this event */
764 return (B_FALSE);
765 }
766
767 /* Per-packet TX completion (was per-descriptor for Falcon/Siena) */
768 id = EFX_QWORD_FIELD(*eqp, ESF_DZ_TX_DESCR_INDX);
769 label = EFX_QWORD_FIELD(*eqp, ESF_DZ_TX_QLABEL);
770
771 EFSYS_PROBE2(tx_complete, uint32_t, label, uint32_t, id);
772
773 EFSYS_ASSERT(eecp->eec_tx != NULL);
774 should_abort = eecp->eec_tx(arg, label, id);
775
776 return (should_abort);
777 }
778
779 static __checkReturn boolean_t
ef10_ev_driver(__in efx_evq_t * eep,__in efx_qword_t * eqp,__in const efx_ev_callbacks_t * eecp,__in_opt void * arg)780 ef10_ev_driver(
781 __in efx_evq_t *eep,
782 __in efx_qword_t *eqp,
783 __in const efx_ev_callbacks_t *eecp,
784 __in_opt void *arg)
785 {
786 unsigned int code;
787 boolean_t should_abort;
788
789 EFX_EV_QSTAT_INCR(eep, EV_DRIVER);
790 should_abort = B_FALSE;
791
792 code = EFX_QWORD_FIELD(*eqp, ESF_DZ_DRV_SUB_CODE);
793 switch (code) {
794 case ESE_DZ_DRV_TIMER_EV: {
795 uint32_t id;
796
797 id = EFX_QWORD_FIELD(*eqp, ESF_DZ_DRV_TMR_ID);
798
799 EFSYS_ASSERT(eecp->eec_timer != NULL);
800 should_abort = eecp->eec_timer(arg, id);
801 break;
802 }
803
804 case ESE_DZ_DRV_WAKE_UP_EV: {
805 uint32_t id;
806
807 id = EFX_QWORD_FIELD(*eqp, ESF_DZ_DRV_EVQ_ID);
808
809 EFSYS_ASSERT(eecp->eec_wake_up != NULL);
810 should_abort = eecp->eec_wake_up(arg, id);
811 break;
812 }
813
814 case ESE_DZ_DRV_START_UP_EV:
815 EFSYS_ASSERT(eecp->eec_initialized != NULL);
816 should_abort = eecp->eec_initialized(arg);
817 break;
818
819 default:
820 EFSYS_PROBE3(bad_event, unsigned int, eep->ee_index,
821 uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_1),
822 uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_0));
823 break;
824 }
825
826 return (should_abort);
827 }
828
829 static __checkReturn boolean_t
ef10_ev_drv_gen(__in efx_evq_t * eep,__in efx_qword_t * eqp,__in const efx_ev_callbacks_t * eecp,__in_opt void * arg)830 ef10_ev_drv_gen(
831 __in efx_evq_t *eep,
832 __in efx_qword_t *eqp,
833 __in const efx_ev_callbacks_t *eecp,
834 __in_opt void *arg)
835 {
836 uint32_t data;
837 boolean_t should_abort;
838
839 EFX_EV_QSTAT_INCR(eep, EV_DRV_GEN);
840 should_abort = B_FALSE;
841
842 data = EFX_QWORD_FIELD(*eqp, ESF_DZ_DRV_SUB_DATA_DW0);
843 if (data >= ((uint32_t)1 << 16)) {
844 EFSYS_PROBE3(bad_event, unsigned int, eep->ee_index,
845 uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_1),
846 uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_0));
847
848 return (B_TRUE);
849 }
850
851 EFSYS_ASSERT(eecp->eec_software != NULL);
852 should_abort = eecp->eec_software(arg, (uint16_t)data);
853
854 return (should_abort);
855 }
856
857 #endif /* EFX_OPTS_EF10() */
858
859 #if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10()
860
861 __checkReturn boolean_t
ef10_ev_mcdi(__in efx_evq_t * eep,__in efx_qword_t * eqp,__in const efx_ev_callbacks_t * eecp,__in_opt void * arg)862 ef10_ev_mcdi(
863 __in efx_evq_t *eep,
864 __in efx_qword_t *eqp,
865 __in const efx_ev_callbacks_t *eecp,
866 __in_opt void *arg)
867 {
868 efx_nic_t *enp = eep->ee_enp;
869 unsigned int code;
870 boolean_t should_abort = B_FALSE;
871 boolean_t ev_is_v2 = B_FALSE;
872
873 EFX_EV_QSTAT_INCR(eep, EV_MCDI_RESPONSE);
874
875 code = EFX_QWORD_FIELD(*eqp, MCDI_EVENT_CODE);
876 switch (code) {
877 case MCDI_EVENT_CODE_BADSSERT:
878 efx_mcdi_ev_death(enp, EINTR);
879 break;
880
881 case MCDI_EVENT_CODE_CMDDONE:
882 efx_mcdi_ev_cpl(enp,
883 MCDI_EV_FIELD(eqp, CMDDONE_SEQ),
884 MCDI_EV_FIELD(eqp, CMDDONE_DATALEN),
885 MCDI_EV_FIELD(eqp, CMDDONE_ERRNO));
886 break;
887
888 #if EFSYS_OPT_MCDI_PROXY_AUTH
889 case MCDI_EVENT_CODE_PROXY_RESPONSE:
890 /*
891 * This event notifies a function that an authorization request
892 * has been processed. If the request was authorized then the
893 * function can now re-send the original MCDI request.
894 * See SF-113652-SW "SR-IOV Proxied Network Access Control".
895 */
896 efx_mcdi_ev_proxy_response(enp,
897 MCDI_EV_FIELD(eqp, PROXY_RESPONSE_HANDLE),
898 MCDI_EV_FIELD(eqp, PROXY_RESPONSE_RC));
899 break;
900 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */
901
902 #if EFSYS_OPT_MCDI_PROXY_AUTH_SERVER
903 case MCDI_EVENT_CODE_PROXY_REQUEST:
904 efx_mcdi_ev_proxy_request(enp,
905 MCDI_EV_FIELD(eqp, PROXY_REQUEST_BUFF_INDEX));
906 break;
907 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH_SERVER */
908
909 case MCDI_EVENT_CODE_LINKCHANGE_V2:
910 ev_is_v2 = B_TRUE;
911 /* Fallthrough */
912 case MCDI_EVENT_CODE_LINKCHANGE: {
913 efx_link_mode_t link_mode;
914
915 ef10_phy_link_ev(enp, eqp, ev_is_v2, &link_mode);
916 should_abort = eecp->eec_link_change(arg, link_mode);
917 break;
918 }
919
920 case MCDI_EVENT_CODE_SENSOREVT: {
921 #if EFSYS_OPT_MON_STATS
922 efx_mon_stat_t id;
923 efx_mon_stat_value_t value;
924 efx_rc_t rc;
925
926 /* Decode monitor stat for MCDI sensor (if supported) */
927 if ((rc = mcdi_mon_ev(enp, eqp, &id, &value)) == 0) {
928 /* Report monitor stat change */
929 should_abort = eecp->eec_monitor(arg, id, value);
930 } else if (rc == ENOTSUP) {
931 should_abort = eecp->eec_exception(arg,
932 EFX_EXCEPTION_UNKNOWN_SENSOREVT,
933 MCDI_EV_FIELD(eqp, DATA));
934 } else {
935 EFSYS_ASSERT(rc == ENODEV); /* Wrong port */
936 }
937 #endif
938 break;
939 }
940
941 case MCDI_EVENT_CODE_SCHEDERR:
942 /* Informational only */
943 break;
944
945 case MCDI_EVENT_CODE_REBOOT:
946 /* Falcon/Siena only (should not been seen with Huntington). */
947 efx_mcdi_ev_death(enp, EIO);
948 break;
949
950 case MCDI_EVENT_CODE_MC_REBOOT:
951 /* MC_REBOOT event is used for Huntington (EF10) and later. */
952 efx_mcdi_ev_death(enp, EIO);
953 break;
954
955 case MCDI_EVENT_CODE_MAC_STATS_DMA:
956 #if EFSYS_OPT_MAC_STATS
957 if (eecp->eec_mac_stats != NULL) {
958 eecp->eec_mac_stats(arg,
959 MCDI_EV_FIELD(eqp, MAC_STATS_DMA_GENERATION));
960 }
961 #endif
962 break;
963
964 case MCDI_EVENT_CODE_FWALERT: {
965 uint32_t reason = MCDI_EV_FIELD(eqp, FWALERT_REASON);
966
967 if (reason == MCDI_EVENT_FWALERT_REASON_SRAM_ACCESS)
968 should_abort = eecp->eec_exception(arg,
969 EFX_EXCEPTION_FWALERT_SRAM,
970 MCDI_EV_FIELD(eqp, FWALERT_DATA));
971 else
972 should_abort = eecp->eec_exception(arg,
973 EFX_EXCEPTION_UNKNOWN_FWALERT,
974 MCDI_EV_FIELD(eqp, DATA));
975 break;
976 }
977
978 case MCDI_EVENT_CODE_TX_ERR: {
979 /*
980 * After a TXQ error is detected, firmware sends a TX_ERR event.
981 * This may be followed by TX completions (which we discard),
982 * and then finally by a TX_FLUSH event. Firmware destroys the
983 * TXQ automatically after sending the TX_FLUSH event.
984 */
985 enp->en_reset_flags |= EFX_RESET_TXQ_ERR;
986
987 EFSYS_PROBE2(tx_descq_err,
988 uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_1),
989 uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_0));
990
991 /* Inform the driver that a reset is required. */
992 eecp->eec_exception(arg, EFX_EXCEPTION_TX_ERROR,
993 MCDI_EV_FIELD(eqp, TX_ERR_DATA));
994 break;
995 }
996
997 case MCDI_EVENT_CODE_TX_FLUSH: {
998 uint32_t txq_index = MCDI_EV_FIELD(eqp, TX_FLUSH_TXQ);
999
1000 /*
1001 * EF10 firmware sends two TX_FLUSH events: one to the txq's
1002 * event queue, and one to evq 0 (with TX_FLUSH_TO_DRIVER set).
1003 * We want to wait for all completions, so ignore the events
1004 * with TX_FLUSH_TO_DRIVER.
1005 */
1006 if (MCDI_EV_FIELD(eqp, TX_FLUSH_TO_DRIVER) != 0) {
1007 should_abort = B_FALSE;
1008 break;
1009 }
1010
1011 EFX_EV_QSTAT_INCR(eep, EV_DRIVER_TX_DESCQ_FLS_DONE);
1012
1013 EFSYS_PROBE1(tx_descq_fls_done, uint32_t, txq_index);
1014
1015 EFSYS_ASSERT(eecp->eec_txq_flush_done != NULL);
1016 should_abort = eecp->eec_txq_flush_done(arg, txq_index);
1017 break;
1018 }
1019
1020 case MCDI_EVENT_CODE_RX_ERR: {
1021 /*
1022 * After an RXQ error is detected, firmware sends an RX_ERR
1023 * event. This may be followed by RX events (which we discard),
1024 * and then finally by an RX_FLUSH event. Firmware destroys the
1025 * RXQ automatically after sending the RX_FLUSH event.
1026 */
1027 enp->en_reset_flags |= EFX_RESET_RXQ_ERR;
1028
1029 EFSYS_PROBE2(rx_descq_err,
1030 uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_1),
1031 uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_0));
1032
1033 /* Inform the driver that a reset is required. */
1034 eecp->eec_exception(arg, EFX_EXCEPTION_RX_ERROR,
1035 MCDI_EV_FIELD(eqp, RX_ERR_DATA));
1036 break;
1037 }
1038
1039 case MCDI_EVENT_CODE_RX_FLUSH: {
1040 uint32_t rxq_index = MCDI_EV_FIELD(eqp, RX_FLUSH_RXQ);
1041
1042 /*
1043 * EF10 firmware sends two RX_FLUSH events: one to the rxq's
1044 * event queue, and one to evq 0 (with RX_FLUSH_TO_DRIVER set).
1045 * We want to wait for all completions, so ignore the events
1046 * with RX_FLUSH_TO_DRIVER.
1047 */
1048 if (MCDI_EV_FIELD(eqp, RX_FLUSH_TO_DRIVER) != 0) {
1049 should_abort = B_FALSE;
1050 break;
1051 }
1052
1053 EFX_EV_QSTAT_INCR(eep, EV_DRIVER_RX_DESCQ_FLS_DONE);
1054
1055 EFSYS_PROBE1(rx_descq_fls_done, uint32_t, rxq_index);
1056
1057 EFSYS_ASSERT(eecp->eec_rxq_flush_done != NULL);
1058 should_abort = eecp->eec_rxq_flush_done(arg, rxq_index);
1059 break;
1060 }
1061
1062 default:
1063 EFSYS_PROBE3(bad_event, unsigned int, eep->ee_index,
1064 uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_1),
1065 uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_0));
1066 break;
1067 }
1068
1069 return (should_abort);
1070 }
1071
1072 #endif /* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */
1073
1074 #if EFX_OPTS_EF10()
1075
1076 void
ef10_ev_rxlabel_init(__in efx_evq_t * eep,__in efx_rxq_t * erp,__in unsigned int label,__in efx_rxq_type_t type)1077 ef10_ev_rxlabel_init(
1078 __in efx_evq_t *eep,
1079 __in efx_rxq_t *erp,
1080 __in unsigned int label,
1081 __in efx_rxq_type_t type)
1082 {
1083 efx_evq_rxq_state_t *eersp;
1084 #if EFSYS_OPT_RX_PACKED_STREAM || EFSYS_OPT_RX_ES_SUPER_BUFFER
1085 boolean_t packed_stream = (type == EFX_RXQ_TYPE_PACKED_STREAM);
1086 boolean_t es_super_buffer = (type == EFX_RXQ_TYPE_ES_SUPER_BUFFER);
1087 #endif
1088
1089 _NOTE(ARGUNUSED(type))
1090 EFSYS_ASSERT3U(label, <, EFX_ARRAY_SIZE(eep->ee_rxq_state));
1091 eersp = &eep->ee_rxq_state[label];
1092
1093 EFSYS_ASSERT3U(eersp->eers_rx_mask, ==, 0);
1094
1095 #if EFSYS_OPT_RX_PACKED_STREAM
1096 /*
1097 * For packed stream modes, the very first event will
1098 * have a new buffer flag set, so it will be incremented,
1099 * yielding the correct pointer. That results in a simpler
1100 * code than trying to detect start-of-the-world condition
1101 * in the event handler.
1102 */
1103 eersp->eers_rx_read_ptr = packed_stream ? ~0 : 0;
1104 #else
1105 eersp->eers_rx_read_ptr = 0;
1106 #endif
1107 eersp->eers_rx_mask = erp->er_mask;
1108 #if EFSYS_OPT_RX_PACKED_STREAM || EFSYS_OPT_RX_ES_SUPER_BUFFER
1109 eersp->eers_rx_stream_npackets = 0;
1110 eersp->eers_rx_packed_stream = packed_stream || es_super_buffer;
1111 #endif
1112 #if EFSYS_OPT_RX_PACKED_STREAM
1113 if (packed_stream) {
1114 eersp->eers_rx_packed_stream_credits = (eep->ee_mask + 1) /
1115 EFX_DIV_ROUND_UP(EFX_RX_PACKED_STREAM_MEM_PER_CREDIT,
1116 EFX_RX_PACKED_STREAM_MIN_PACKET_SPACE);
1117 EFSYS_ASSERT3U(eersp->eers_rx_packed_stream_credits, !=, 0);
1118 /*
1119 * A single credit is allocated to the queue when it is started.
1120 * It is immediately spent by the first packet which has NEW
1121 * BUFFER flag set, though, but still we shall take into
1122 * account, as to not wrap around the maximum number of credits
1123 * accidentally
1124 */
1125 eersp->eers_rx_packed_stream_credits--;
1126 EFSYS_ASSERT3U(eersp->eers_rx_packed_stream_credits, <=,
1127 EFX_RX_PACKED_STREAM_MAX_CREDITS);
1128 }
1129 #endif
1130 }
1131
1132 void
ef10_ev_rxlabel_fini(__in efx_evq_t * eep,__in unsigned int label)1133 ef10_ev_rxlabel_fini(
1134 __in efx_evq_t *eep,
1135 __in unsigned int label)
1136 {
1137 efx_evq_rxq_state_t *eersp;
1138
1139 EFSYS_ASSERT3U(label, <, EFX_ARRAY_SIZE(eep->ee_rxq_state));
1140 eersp = &eep->ee_rxq_state[label];
1141
1142 EFSYS_ASSERT3U(eersp->eers_rx_mask, !=, 0);
1143
1144 eersp->eers_rx_read_ptr = 0;
1145 eersp->eers_rx_mask = 0;
1146 #if EFSYS_OPT_RX_PACKED_STREAM || EFSYS_OPT_RX_ES_SUPER_BUFFER
1147 eersp->eers_rx_stream_npackets = 0;
1148 eersp->eers_rx_packed_stream = B_FALSE;
1149 #endif
1150 #if EFSYS_OPT_RX_PACKED_STREAM
1151 eersp->eers_rx_packed_stream_credits = 0;
1152 #endif
1153 }
1154
1155 #endif /* EFX_OPTS_EF10() */
1156