1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright 2016 6WIND S.A. 3 * Copyright 2020 Mellanox Technologies, Ltd 4 */ 5 #include <rte_eal_memconfig.h> 6 #include <rte_errno.h> 7 #include <rte_mempool.h> 8 #include <rte_malloc.h> 9 #include <rte_rwlock.h> 10 11 #include "mlx5_glue.h" 12 #include "mlx5_common_mp.h" 13 #include "mlx5_common_mr.h" 14 #include "mlx5_common_utils.h" 15 #include "mlx5_malloc.h" 16 17 struct mr_find_contig_memsegs_data { 18 uintptr_t addr; 19 uintptr_t start; 20 uintptr_t end; 21 const struct rte_memseg_list *msl; 22 }; 23 24 /** 25 * Expand B-tree table to a given size. Can't be called with holding 26 * memory_hotplug_lock or share_cache.rwlock due to rte_realloc(). 27 * 28 * @param bt 29 * Pointer to B-tree structure. 30 * @param n 31 * Number of entries for expansion. 32 * 33 * @return 34 * 0 on success, -1 on failure. 35 */ 36 static int 37 mr_btree_expand(struct mlx5_mr_btree *bt, int n) 38 { 39 void *mem; 40 int ret = 0; 41 42 if (n <= bt->size) 43 return ret; 44 /* 45 * Downside of directly using rte_realloc() is that SOCKET_ID_ANY is 46 * used inside if there's no room to expand. Because this is a quite 47 * rare case and a part of very slow path, it is very acceptable. 48 * Initially cache_bh[] will be given practically enough space and once 49 * it is expanded, expansion wouldn't be needed again ever. 50 */ 51 mem = mlx5_realloc(bt->table, MLX5_MEM_RTE | MLX5_MEM_ZERO, 52 n * sizeof(struct mr_cache_entry), 0, SOCKET_ID_ANY); 53 if (mem == NULL) { 54 /* Not an error, B-tree search will be skipped. */ 55 DRV_LOG(WARNING, "failed to expand MR B-tree (%p) table", 56 (void *)bt); 57 ret = -1; 58 } else { 59 DRV_LOG(DEBUG, "expanded MR B-tree table (size=%u)", n); 60 bt->table = mem; 61 bt->size = n; 62 } 63 return ret; 64 } 65 66 /** 67 * Look up LKey from given B-tree lookup table, store the last index and return 68 * searched LKey. 69 * 70 * @param bt 71 * Pointer to B-tree structure. 72 * @param[out] idx 73 * Pointer to index. Even on search failure, returns index where it stops 74 * searching so that index can be used when inserting a new entry. 75 * @param addr 76 * Search key. 77 * 78 * @return 79 * Searched LKey on success, UINT32_MAX on no match. 80 */ 81 static uint32_t 82 mr_btree_lookup(struct mlx5_mr_btree *bt, uint16_t *idx, uintptr_t addr) 83 { 84 struct mr_cache_entry *lkp_tbl; 85 uint16_t n; 86 uint16_t base = 0; 87 88 MLX5_ASSERT(bt != NULL); 89 lkp_tbl = *bt->table; 90 n = bt->len; 91 /* First entry must be NULL for comparison. */ 92 MLX5_ASSERT(bt->len > 0 || (lkp_tbl[0].start == 0 && 93 lkp_tbl[0].lkey == UINT32_MAX)); 94 /* Binary search. */ 95 do { 96 register uint16_t delta = n >> 1; 97 98 if (addr < lkp_tbl[base + delta].start) { 99 n = delta; 100 } else { 101 base += delta; 102 n -= delta; 103 } 104 } while (n > 1); 105 MLX5_ASSERT(addr >= lkp_tbl[base].start); 106 *idx = base; 107 if (addr < lkp_tbl[base].end) 108 return lkp_tbl[base].lkey; 109 /* Not found. */ 110 return UINT32_MAX; 111 } 112 113 /** 114 * Insert an entry to B-tree lookup table. 115 * 116 * @param bt 117 * Pointer to B-tree structure. 118 * @param entry 119 * Pointer to new entry to insert. 120 * 121 * @return 122 * 0 on success, -1 on failure. 123 */ 124 static int 125 mr_btree_insert(struct mlx5_mr_btree *bt, struct mr_cache_entry *entry) 126 { 127 struct mr_cache_entry *lkp_tbl; 128 uint16_t idx = 0; 129 size_t shift; 130 131 MLX5_ASSERT(bt != NULL); 132 MLX5_ASSERT(bt->len <= bt->size); 133 MLX5_ASSERT(bt->len > 0); 134 lkp_tbl = *bt->table; 135 /* Find out the slot for insertion. */ 136 if (mr_btree_lookup(bt, &idx, entry->start) != UINT32_MAX) { 137 DRV_LOG(DEBUG, 138 "abort insertion to B-tree(%p): already exist at" 139 " idx=%u [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x", 140 (void *)bt, idx, entry->start, entry->end, entry->lkey); 141 /* Already exist, return. */ 142 return 0; 143 } 144 /* If table is full, return error. */ 145 if (unlikely(bt->len == bt->size)) { 146 bt->overflow = 1; 147 return -1; 148 } 149 /* Insert entry. */ 150 ++idx; 151 shift = (bt->len - idx) * sizeof(struct mr_cache_entry); 152 if (shift) 153 memmove(&lkp_tbl[idx + 1], &lkp_tbl[idx], shift); 154 lkp_tbl[idx] = *entry; 155 bt->len++; 156 DRV_LOG(DEBUG, 157 "inserted B-tree(%p)[%u]," 158 " [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x", 159 (void *)bt, idx, entry->start, entry->end, entry->lkey); 160 return 0; 161 } 162 163 /** 164 * Initialize B-tree and allocate memory for lookup table. 165 * 166 * @param bt 167 * Pointer to B-tree structure. 168 * @param n 169 * Number of entries to allocate. 170 * @param socket 171 * NUMA socket on which memory must be allocated. 172 * 173 * @return 174 * 0 on success, a negative errno value otherwise and rte_errno is set. 175 */ 176 int 177 mlx5_mr_btree_init(struct mlx5_mr_btree *bt, int n, int socket) 178 { 179 if (bt == NULL) { 180 rte_errno = EINVAL; 181 return -rte_errno; 182 } 183 MLX5_ASSERT(!bt->table && !bt->size); 184 memset(bt, 0, sizeof(*bt)); 185 bt->table = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, 186 sizeof(struct mr_cache_entry) * n, 187 0, socket); 188 if (bt->table == NULL) { 189 rte_errno = ENOMEM; 190 DEBUG("failed to allocate memory for btree cache on socket %d", 191 socket); 192 return -rte_errno; 193 } 194 bt->size = n; 195 /* First entry must be NULL for binary search. */ 196 (*bt->table)[bt->len++] = (struct mr_cache_entry) { 197 .lkey = UINT32_MAX, 198 }; 199 DEBUG("initialized B-tree %p with table %p", 200 (void *)bt, (void *)bt->table); 201 return 0; 202 } 203 204 /** 205 * Free B-tree resources. 206 * 207 * @param bt 208 * Pointer to B-tree structure. 209 */ 210 void 211 mlx5_mr_btree_free(struct mlx5_mr_btree *bt) 212 { 213 if (bt == NULL) 214 return; 215 DEBUG("freeing B-tree %p with table %p", 216 (void *)bt, (void *)bt->table); 217 mlx5_free(bt->table); 218 memset(bt, 0, sizeof(*bt)); 219 } 220 221 /** 222 * Dump all the entries in a B-tree 223 * 224 * @param bt 225 * Pointer to B-tree structure. 226 */ 227 void 228 mlx5_mr_btree_dump(struct mlx5_mr_btree *bt __rte_unused) 229 { 230 #ifdef RTE_LIBRTE_MLX5_DEBUG 231 int idx; 232 struct mr_cache_entry *lkp_tbl; 233 234 if (bt == NULL) 235 return; 236 lkp_tbl = *bt->table; 237 for (idx = 0; idx < bt->len; ++idx) { 238 struct mr_cache_entry *entry = &lkp_tbl[idx]; 239 240 DEBUG("B-tree(%p)[%u]," 241 " [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x", 242 (void *)bt, idx, entry->start, entry->end, entry->lkey); 243 } 244 #endif 245 } 246 247 /** 248 * Find virtually contiguous memory chunk in a given MR. 249 * 250 * @param dev 251 * Pointer to MR structure. 252 * @param[out] entry 253 * Pointer to returning MR cache entry. If not found, this will not be 254 * updated. 255 * @param start_idx 256 * Start index of the memseg bitmap. 257 * 258 * @return 259 * Next index to go on lookup. 260 */ 261 static int 262 mr_find_next_chunk(struct mlx5_mr *mr, struct mr_cache_entry *entry, 263 int base_idx) 264 { 265 uintptr_t start = 0; 266 uintptr_t end = 0; 267 uint32_t idx = 0; 268 269 /* MR for external memory doesn't have memseg list. */ 270 if (mr->msl == NULL) { 271 MLX5_ASSERT(mr->ms_bmp_n == 1); 272 MLX5_ASSERT(mr->ms_n == 1); 273 MLX5_ASSERT(base_idx == 0); 274 /* 275 * Can't search it from memseg list but get it directly from 276 * pmd_mr as there's only one chunk. 277 */ 278 entry->start = (uintptr_t)mr->pmd_mr.addr; 279 entry->end = (uintptr_t)mr->pmd_mr.addr + mr->pmd_mr.len; 280 entry->lkey = rte_cpu_to_be_32(mr->pmd_mr.lkey); 281 /* Returning 1 ends iteration. */ 282 return 1; 283 } 284 for (idx = base_idx; idx < mr->ms_bmp_n; ++idx) { 285 if (rte_bitmap_get(mr->ms_bmp, idx)) { 286 const struct rte_memseg_list *msl; 287 const struct rte_memseg *ms; 288 289 msl = mr->msl; 290 ms = rte_fbarray_get(&msl->memseg_arr, 291 mr->ms_base_idx + idx); 292 MLX5_ASSERT(msl->page_sz == ms->hugepage_sz); 293 if (!start) 294 start = ms->addr_64; 295 end = ms->addr_64 + ms->hugepage_sz; 296 } else if (start) { 297 /* Passed the end of a fragment. */ 298 break; 299 } 300 } 301 if (start) { 302 /* Found one chunk. */ 303 entry->start = start; 304 entry->end = end; 305 entry->lkey = rte_cpu_to_be_32(mr->pmd_mr.lkey); 306 } 307 return idx; 308 } 309 310 /** 311 * Insert a MR to the global B-tree cache. It may fail due to low-on-memory. 312 * Then, this entry will have to be searched by mr_lookup_list() in 313 * mlx5_mr_create() on miss. 314 * 315 * @param share_cache 316 * Pointer to a global shared MR cache. 317 * @param mr 318 * Pointer to MR to insert. 319 * 320 * @return 321 * 0 on success, -1 on failure. 322 */ 323 int 324 mlx5_mr_insert_cache(struct mlx5_mr_share_cache *share_cache, 325 struct mlx5_mr *mr) 326 { 327 unsigned int n; 328 329 DRV_LOG(DEBUG, "Inserting MR(%p) to global cache(%p)", 330 (void *)mr, (void *)share_cache); 331 for (n = 0; n < mr->ms_bmp_n; ) { 332 struct mr_cache_entry entry; 333 334 memset(&entry, 0, sizeof(entry)); 335 /* Find a contiguous chunk and advance the index. */ 336 n = mr_find_next_chunk(mr, &entry, n); 337 if (!entry.end) 338 break; 339 if (mr_btree_insert(&share_cache->cache, &entry) < 0) { 340 /* 341 * Overflowed, but the global table cannot be expanded 342 * because of deadlock. 343 */ 344 return -1; 345 } 346 } 347 return 0; 348 } 349 350 /** 351 * Look up address in the original global MR list. 352 * 353 * @param share_cache 354 * Pointer to a global shared MR cache. 355 * @param[out] entry 356 * Pointer to returning MR cache entry. If no match, this will not be updated. 357 * @param addr 358 * Search key. 359 * 360 * @return 361 * Found MR on match, NULL otherwise. 362 */ 363 struct mlx5_mr * 364 mlx5_mr_lookup_list(struct mlx5_mr_share_cache *share_cache, 365 struct mr_cache_entry *entry, uintptr_t addr) 366 { 367 struct mlx5_mr *mr; 368 369 /* Iterate all the existing MRs. */ 370 LIST_FOREACH(mr, &share_cache->mr_list, mr) { 371 unsigned int n; 372 373 if (mr->ms_n == 0) 374 continue; 375 for (n = 0; n < mr->ms_bmp_n; ) { 376 struct mr_cache_entry ret; 377 378 memset(&ret, 0, sizeof(ret)); 379 n = mr_find_next_chunk(mr, &ret, n); 380 if (addr >= ret.start && addr < ret.end) { 381 /* Found. */ 382 *entry = ret; 383 return mr; 384 } 385 } 386 } 387 return NULL; 388 } 389 390 /** 391 * Look up address on global MR cache. 392 * 393 * @param share_cache 394 * Pointer to a global shared MR cache. 395 * @param[out] entry 396 * Pointer to returning MR cache entry. If no match, this will not be updated. 397 * @param addr 398 * Search key. 399 * 400 * @return 401 * Searched LKey on success, UINT32_MAX on failure and rte_errno is set. 402 */ 403 uint32_t 404 mlx5_mr_lookup_cache(struct mlx5_mr_share_cache *share_cache, 405 struct mr_cache_entry *entry, uintptr_t addr) 406 { 407 uint16_t idx; 408 uint32_t lkey = UINT32_MAX; 409 struct mlx5_mr *mr; 410 411 /* 412 * If the global cache has overflowed since it failed to expand the 413 * B-tree table, it can't have all the existing MRs. Then, the address 414 * has to be searched by traversing the original MR list instead, which 415 * is very slow path. Otherwise, the global cache is all inclusive. 416 */ 417 if (!unlikely(share_cache->cache.overflow)) { 418 lkey = mr_btree_lookup(&share_cache->cache, &idx, addr); 419 if (lkey != UINT32_MAX) 420 *entry = (*share_cache->cache.table)[idx]; 421 } else { 422 /* Falling back to the slowest path. */ 423 mr = mlx5_mr_lookup_list(share_cache, entry, addr); 424 if (mr != NULL) 425 lkey = entry->lkey; 426 } 427 MLX5_ASSERT(lkey == UINT32_MAX || (addr >= entry->start && 428 addr < entry->end)); 429 return lkey; 430 } 431 432 /** 433 * Free MR resources. MR lock must not be held to avoid a deadlock. rte_free() 434 * can raise memory free event and the callback function will spin on the lock. 435 * 436 * @param mr 437 * Pointer to MR to free. 438 */ 439 void 440 mlx5_mr_free(struct mlx5_mr *mr, mlx5_dereg_mr_t dereg_mr_cb) 441 { 442 if (mr == NULL) 443 return; 444 DRV_LOG(DEBUG, "freeing MR(%p):", (void *)mr); 445 dereg_mr_cb(&mr->pmd_mr); 446 if (mr->ms_bmp != NULL) 447 rte_bitmap_free(mr->ms_bmp); 448 mlx5_free(mr); 449 } 450 451 void 452 mlx5_mr_rebuild_cache(struct mlx5_mr_share_cache *share_cache) 453 { 454 struct mlx5_mr *mr; 455 456 DRV_LOG(DEBUG, "Rebuild dev cache[] %p", (void *)share_cache); 457 /* Flush cache to rebuild. */ 458 share_cache->cache.len = 1; 459 share_cache->cache.overflow = 0; 460 /* Iterate all the existing MRs. */ 461 LIST_FOREACH(mr, &share_cache->mr_list, mr) 462 if (mlx5_mr_insert_cache(share_cache, mr) < 0) 463 return; 464 } 465 466 /** 467 * Release resources of detached MR having no online entry. 468 * 469 * @param share_cache 470 * Pointer to a global shared MR cache. 471 */ 472 static void 473 mlx5_mr_garbage_collect(struct mlx5_mr_share_cache *share_cache) 474 { 475 struct mlx5_mr *mr_next; 476 struct mlx5_mr_list free_list = LIST_HEAD_INITIALIZER(free_list); 477 478 /* Must be called from the primary process. */ 479 MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY); 480 /* 481 * MR can't be freed with holding the lock because rte_free() could call 482 * memory free callback function. This will be a deadlock situation. 483 */ 484 rte_rwlock_write_lock(&share_cache->rwlock); 485 /* Detach the whole free list and release it after unlocking. */ 486 free_list = share_cache->mr_free_list; 487 LIST_INIT(&share_cache->mr_free_list); 488 rte_rwlock_write_unlock(&share_cache->rwlock); 489 /* Release resources. */ 490 mr_next = LIST_FIRST(&free_list); 491 while (mr_next != NULL) { 492 struct mlx5_mr *mr = mr_next; 493 494 mr_next = LIST_NEXT(mr, mr); 495 mlx5_mr_free(mr, share_cache->dereg_mr_cb); 496 } 497 } 498 499 /* Called during rte_memseg_contig_walk() by mlx5_mr_create(). */ 500 static int 501 mr_find_contig_memsegs_cb(const struct rte_memseg_list *msl, 502 const struct rte_memseg *ms, size_t len, void *arg) 503 { 504 struct mr_find_contig_memsegs_data *data = arg; 505 506 if (data->addr < ms->addr_64 || data->addr >= ms->addr_64 + len) 507 return 0; 508 /* Found, save it and stop walking. */ 509 data->start = ms->addr_64; 510 data->end = ms->addr_64 + len; 511 data->msl = msl; 512 return 1; 513 } 514 515 /** 516 * Create a new global Memory Region (MR) for a missing virtual address. 517 * This API should be called on a secondary process, then a request is sent to 518 * the primary process in order to create a MR for the address. As the global MR 519 * list is on the shared memory, following LKey lookup should succeed unless the 520 * request fails. 521 * 522 * @param pd 523 * Pointer to pd of a device (net, regex, vdpa,...). 524 * @param share_cache 525 * Pointer to a global shared MR cache. 526 * @param[out] entry 527 * Pointer to returning MR cache entry, found in the global cache or newly 528 * created. If failed to create one, this will not be updated. 529 * @param addr 530 * Target virtual address to register. 531 * @param mr_ext_memseg_en 532 * Configurable flag about external memory segment enable or not. 533 * 534 * @return 535 * Searched LKey on success, UINT32_MAX on failure and rte_errno is set. 536 */ 537 static uint32_t 538 mlx5_mr_create_secondary(void *pd __rte_unused, 539 struct mlx5_mp_id *mp_id, 540 struct mlx5_mr_share_cache *share_cache, 541 struct mr_cache_entry *entry, uintptr_t addr, 542 unsigned int mr_ext_memseg_en __rte_unused) 543 { 544 int ret; 545 546 DEBUG("port %u requesting MR creation for address (%p)", 547 mp_id->port_id, (void *)addr); 548 ret = mlx5_mp_req_mr_create(mp_id, addr); 549 if (ret) { 550 DEBUG("Fail to request MR creation for address (%p)", 551 (void *)addr); 552 return UINT32_MAX; 553 } 554 rte_rwlock_read_lock(&share_cache->rwlock); 555 /* Fill in output data. */ 556 mlx5_mr_lookup_cache(share_cache, entry, addr); 557 /* Lookup can't fail. */ 558 MLX5_ASSERT(entry->lkey != UINT32_MAX); 559 rte_rwlock_read_unlock(&share_cache->rwlock); 560 DEBUG("MR CREATED by primary process for %p:\n" 561 " [0x%" PRIxPTR ", 0x%" PRIxPTR "), lkey=0x%x", 562 (void *)addr, entry->start, entry->end, entry->lkey); 563 return entry->lkey; 564 } 565 566 /** 567 * Create a new global Memory Region (MR) for a missing virtual address. 568 * Register entire virtually contiguous memory chunk around the address. 569 * 570 * @param pd 571 * Pointer to pd of a device (net, regex, vdpa,...). 572 * @param share_cache 573 * Pointer to a global shared MR cache. 574 * @param[out] entry 575 * Pointer to returning MR cache entry, found in the global cache or newly 576 * created. If failed to create one, this will not be updated. 577 * @param addr 578 * Target virtual address to register. 579 * @param mr_ext_memseg_en 580 * Configurable flag about external memory segment enable or not. 581 * 582 * @return 583 * Searched LKey on success, UINT32_MAX on failure and rte_errno is set. 584 */ 585 uint32_t 586 mlx5_mr_create_primary(void *pd, 587 struct mlx5_mr_share_cache *share_cache, 588 struct mr_cache_entry *entry, uintptr_t addr, 589 unsigned int mr_ext_memseg_en) 590 { 591 struct mr_find_contig_memsegs_data data = {.addr = addr, }; 592 struct mr_find_contig_memsegs_data data_re; 593 const struct rte_memseg_list *msl; 594 const struct rte_memseg *ms; 595 struct mlx5_mr *mr = NULL; 596 int ms_idx_shift = -1; 597 uint32_t bmp_size; 598 void *bmp_mem; 599 uint32_t ms_n; 600 uint32_t n; 601 size_t len; 602 603 DRV_LOG(DEBUG, "Creating a MR using address (%p)", (void *)addr); 604 /* 605 * Release detached MRs if any. This can't be called with holding either 606 * memory_hotplug_lock or share_cache->rwlock. MRs on the free list have 607 * been detached by the memory free event but it couldn't be released 608 * inside the callback due to deadlock. As a result, releasing resources 609 * is quite opportunistic. 610 */ 611 mlx5_mr_garbage_collect(share_cache); 612 /* 613 * If enabled, find out a contiguous virtual address chunk in use, to 614 * which the given address belongs, in order to register maximum range. 615 * In the best case where mempools are not dynamically recreated and 616 * '--socket-mem' is specified as an EAL option, it is very likely to 617 * have only one MR(LKey) per a socket and per a hugepage-size even 618 * though the system memory is highly fragmented. As the whole memory 619 * chunk will be pinned by kernel, it can't be reused unless entire 620 * chunk is freed from EAL. 621 * 622 * If disabled, just register one memseg (page). Then, memory 623 * consumption will be minimized but it may drop performance if there 624 * are many MRs to lookup on the datapath. 625 */ 626 if (!mr_ext_memseg_en) { 627 data.msl = rte_mem_virt2memseg_list((void *)addr); 628 data.start = RTE_ALIGN_FLOOR(addr, data.msl->page_sz); 629 data.end = data.start + data.msl->page_sz; 630 } else if (!rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data)) { 631 DRV_LOG(WARNING, 632 "Unable to find virtually contiguous" 633 " chunk for address (%p)." 634 " rte_memseg_contig_walk() failed.", (void *)addr); 635 rte_errno = ENXIO; 636 goto err_nolock; 637 } 638 alloc_resources: 639 /* Addresses must be page-aligned. */ 640 MLX5_ASSERT(data.msl); 641 MLX5_ASSERT(rte_is_aligned((void *)data.start, data.msl->page_sz)); 642 MLX5_ASSERT(rte_is_aligned((void *)data.end, data.msl->page_sz)); 643 msl = data.msl; 644 ms = rte_mem_virt2memseg((void *)data.start, msl); 645 len = data.end - data.start; 646 MLX5_ASSERT(ms); 647 MLX5_ASSERT(msl->page_sz == ms->hugepage_sz); 648 /* Number of memsegs in the range. */ 649 ms_n = len / msl->page_sz; 650 DEBUG("Extending %p to [0x%" PRIxPTR ", 0x%" PRIxPTR ")," 651 " page_sz=0x%" PRIx64 ", ms_n=%u", 652 (void *)addr, data.start, data.end, msl->page_sz, ms_n); 653 /* Size of memory for bitmap. */ 654 bmp_size = rte_bitmap_get_memory_footprint(ms_n); 655 mr = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, 656 RTE_ALIGN_CEIL(sizeof(*mr), RTE_CACHE_LINE_SIZE) + 657 bmp_size, RTE_CACHE_LINE_SIZE, msl->socket_id); 658 if (mr == NULL) { 659 DEBUG("Unable to allocate memory for a new MR of" 660 " address (%p).", (void *)addr); 661 rte_errno = ENOMEM; 662 goto err_nolock; 663 } 664 mr->msl = msl; 665 /* 666 * Save the index of the first memseg and initialize memseg bitmap. To 667 * see if a memseg of ms_idx in the memseg-list is still valid, check: 668 * rte_bitmap_get(mr->bmp, ms_idx - mr->ms_base_idx) 669 */ 670 mr->ms_base_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms); 671 bmp_mem = RTE_PTR_ALIGN_CEIL(mr + 1, RTE_CACHE_LINE_SIZE); 672 mr->ms_bmp = rte_bitmap_init(ms_n, bmp_mem, bmp_size); 673 if (mr->ms_bmp == NULL) { 674 DEBUG("Unable to initialize bitmap for a new MR of" 675 " address (%p).", (void *)addr); 676 rte_errno = EINVAL; 677 goto err_nolock; 678 } 679 /* 680 * Should recheck whether the extended contiguous chunk is still valid. 681 * Because memory_hotplug_lock can't be held if there's any memory 682 * related calls in a critical path, resource allocation above can't be 683 * locked. If the memory has been changed at this point, try again with 684 * just single page. If not, go on with the big chunk atomically from 685 * here. 686 */ 687 rte_mcfg_mem_read_lock(); 688 data_re = data; 689 if (len > msl->page_sz && 690 !rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data_re)) { 691 DEBUG("Unable to find virtually contiguous" 692 " chunk for address (%p)." 693 " rte_memseg_contig_walk() failed.", (void *)addr); 694 rte_errno = ENXIO; 695 goto err_memlock; 696 } 697 if (data.start != data_re.start || data.end != data_re.end) { 698 /* 699 * The extended contiguous chunk has been changed. Try again 700 * with single memseg instead. 701 */ 702 data.start = RTE_ALIGN_FLOOR(addr, msl->page_sz); 703 data.end = data.start + msl->page_sz; 704 rte_mcfg_mem_read_unlock(); 705 mlx5_mr_free(mr, share_cache->dereg_mr_cb); 706 goto alloc_resources; 707 } 708 MLX5_ASSERT(data.msl == data_re.msl); 709 rte_rwlock_write_lock(&share_cache->rwlock); 710 /* 711 * Check the address is really missing. If other thread already created 712 * one or it is not found due to overflow, abort and return. 713 */ 714 if (mlx5_mr_lookup_cache(share_cache, entry, addr) != UINT32_MAX) { 715 /* 716 * Insert to the global cache table. It may fail due to 717 * low-on-memory. Then, this entry will have to be searched 718 * here again. 719 */ 720 mr_btree_insert(&share_cache->cache, entry); 721 DEBUG("Found MR for %p on final lookup, abort", (void *)addr); 722 rte_rwlock_write_unlock(&share_cache->rwlock); 723 rte_mcfg_mem_read_unlock(); 724 /* 725 * Must be unlocked before calling rte_free() because 726 * mlx5_mr_mem_event_free_cb() can be called inside. 727 */ 728 mlx5_mr_free(mr, share_cache->dereg_mr_cb); 729 return entry->lkey; 730 } 731 /* 732 * Trim start and end addresses for verbs MR. Set bits for registering 733 * memsegs but exclude already registered ones. Bitmap can be 734 * fragmented. 735 */ 736 for (n = 0; n < ms_n; ++n) { 737 uintptr_t start; 738 struct mr_cache_entry ret; 739 740 memset(&ret, 0, sizeof(ret)); 741 start = data_re.start + n * msl->page_sz; 742 /* Exclude memsegs already registered by other MRs. */ 743 if (mlx5_mr_lookup_cache(share_cache, &ret, start) == 744 UINT32_MAX) { 745 /* 746 * Start from the first unregistered memseg in the 747 * extended range. 748 */ 749 if (ms_idx_shift == -1) { 750 mr->ms_base_idx += n; 751 data.start = start; 752 ms_idx_shift = n; 753 } 754 data.end = start + msl->page_sz; 755 rte_bitmap_set(mr->ms_bmp, n - ms_idx_shift); 756 ++mr->ms_n; 757 } 758 } 759 len = data.end - data.start; 760 mr->ms_bmp_n = len / msl->page_sz; 761 MLX5_ASSERT(ms_idx_shift + mr->ms_bmp_n <= ms_n); 762 /* 763 * Finally create an MR for the memory chunk. Verbs: ibv_reg_mr() can 764 * be called with holding the memory lock because it doesn't use 765 * mlx5_alloc_buf_extern() which eventually calls rte_malloc_socket() 766 * through mlx5_alloc_verbs_buf(). 767 */ 768 share_cache->reg_mr_cb(pd, (void *)data.start, len, &mr->pmd_mr); 769 if (mr->pmd_mr.obj == NULL) { 770 DEBUG("Fail to create an MR for address (%p)", 771 (void *)addr); 772 rte_errno = EINVAL; 773 goto err_mrlock; 774 } 775 MLX5_ASSERT((uintptr_t)mr->pmd_mr.addr == data.start); 776 MLX5_ASSERT(mr->pmd_mr.len); 777 LIST_INSERT_HEAD(&share_cache->mr_list, mr, mr); 778 DEBUG("MR CREATED (%p) for %p:\n" 779 " [0x%" PRIxPTR ", 0x%" PRIxPTR ")," 780 " lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u", 781 (void *)mr, (void *)addr, data.start, data.end, 782 rte_cpu_to_be_32(mr->pmd_mr.lkey), 783 mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n); 784 /* Insert to the global cache table. */ 785 mlx5_mr_insert_cache(share_cache, mr); 786 /* Fill in output data. */ 787 mlx5_mr_lookup_cache(share_cache, entry, addr); 788 /* Lookup can't fail. */ 789 MLX5_ASSERT(entry->lkey != UINT32_MAX); 790 rte_rwlock_write_unlock(&share_cache->rwlock); 791 rte_mcfg_mem_read_unlock(); 792 return entry->lkey; 793 err_mrlock: 794 rte_rwlock_write_unlock(&share_cache->rwlock); 795 err_memlock: 796 rte_mcfg_mem_read_unlock(); 797 err_nolock: 798 /* 799 * In case of error, as this can be called in a datapath, a warning 800 * message per an error is preferable instead. Must be unlocked before 801 * calling rte_free() because mlx5_mr_mem_event_free_cb() can be called 802 * inside. 803 */ 804 mlx5_mr_free(mr, share_cache->dereg_mr_cb); 805 return UINT32_MAX; 806 } 807 808 /** 809 * Create a new global Memory Region (MR) for a missing virtual address. 810 * This can be called from primary and secondary process. 811 * 812 * @param pd 813 * Pointer to pd handle of a device (net, regex, vdpa,...). 814 * @param share_cache 815 * Pointer to a global shared MR cache. 816 * @param[out] entry 817 * Pointer to returning MR cache entry, found in the global cache or newly 818 * created. If failed to create one, this will not be updated. 819 * @param addr 820 * Target virtual address to register. 821 * 822 * @return 823 * Searched LKey on success, UINT32_MAX on failure and rte_errno is set. 824 */ 825 static uint32_t 826 mlx5_mr_create(void *pd, struct mlx5_mp_id *mp_id, 827 struct mlx5_mr_share_cache *share_cache, 828 struct mr_cache_entry *entry, uintptr_t addr, 829 unsigned int mr_ext_memseg_en) 830 { 831 uint32_t ret = 0; 832 833 switch (rte_eal_process_type()) { 834 case RTE_PROC_PRIMARY: 835 ret = mlx5_mr_create_primary(pd, share_cache, entry, 836 addr, mr_ext_memseg_en); 837 break; 838 case RTE_PROC_SECONDARY: 839 ret = mlx5_mr_create_secondary(pd, mp_id, share_cache, entry, 840 addr, mr_ext_memseg_en); 841 break; 842 default: 843 break; 844 } 845 return ret; 846 } 847 848 /** 849 * Look up address in the global MR cache table. If not found, create a new MR. 850 * Insert the found/created entry to local bottom-half cache table. 851 * 852 * @param pd 853 * Pointer to pd of a device (net, regex, vdpa,...). 854 * @param share_cache 855 * Pointer to a global shared MR cache. 856 * @param mr_ctrl 857 * Pointer to per-queue MR control structure. 858 * @param[out] entry 859 * Pointer to returning MR cache entry, found in the global cache or newly 860 * created. If failed to create one, this is not written. 861 * @param addr 862 * Search key. 863 * 864 * @return 865 * Searched LKey on success, UINT32_MAX on no match. 866 */ 867 static uint32_t 868 mr_lookup_caches(void *pd, struct mlx5_mp_id *mp_id, 869 struct mlx5_mr_share_cache *share_cache, 870 struct mlx5_mr_ctrl *mr_ctrl, 871 struct mr_cache_entry *entry, uintptr_t addr, 872 unsigned int mr_ext_memseg_en) 873 { 874 struct mlx5_mr_btree *bt = &mr_ctrl->cache_bh; 875 uint32_t lkey; 876 uint16_t idx; 877 878 /* If local cache table is full, try to double it. */ 879 if (unlikely(bt->len == bt->size)) 880 mr_btree_expand(bt, bt->size << 1); 881 /* Look up in the global cache. */ 882 rte_rwlock_read_lock(&share_cache->rwlock); 883 lkey = mr_btree_lookup(&share_cache->cache, &idx, addr); 884 if (lkey != UINT32_MAX) { 885 /* Found. */ 886 *entry = (*share_cache->cache.table)[idx]; 887 rte_rwlock_read_unlock(&share_cache->rwlock); 888 /* 889 * Update local cache. Even if it fails, return the found entry 890 * to update top-half cache. Next time, this entry will be found 891 * in the global cache. 892 */ 893 mr_btree_insert(bt, entry); 894 return lkey; 895 } 896 rte_rwlock_read_unlock(&share_cache->rwlock); 897 /* First time to see the address? Create a new MR. */ 898 lkey = mlx5_mr_create(pd, mp_id, share_cache, entry, addr, 899 mr_ext_memseg_en); 900 /* 901 * Update the local cache if successfully created a new global MR. Even 902 * if failed to create one, there's no action to take in this datapath 903 * code. As returning LKey is invalid, this will eventually make HW 904 * fail. 905 */ 906 if (lkey != UINT32_MAX) 907 mr_btree_insert(bt, entry); 908 return lkey; 909 } 910 911 /** 912 * Bottom-half of LKey search on datapath. First search in cache_bh[] and if 913 * misses, search in the global MR cache table and update the new entry to 914 * per-queue local caches. 915 * 916 * @param pd 917 * Pointer to pd of a device (net, regex, vdpa,...). 918 * @param share_cache 919 * Pointer to a global shared MR cache. 920 * @param mr_ctrl 921 * Pointer to per-queue MR control structure. 922 * @param addr 923 * Search key. 924 * 925 * @return 926 * Searched LKey on success, UINT32_MAX on no match. 927 */ 928 uint32_t mlx5_mr_addr2mr_bh(void *pd, struct mlx5_mp_id *mp_id, 929 struct mlx5_mr_share_cache *share_cache, 930 struct mlx5_mr_ctrl *mr_ctrl, 931 uintptr_t addr, unsigned int mr_ext_memseg_en) 932 { 933 uint32_t lkey; 934 uint16_t bh_idx = 0; 935 /* Victim in top-half cache to replace with new entry. */ 936 struct mr_cache_entry *repl = &mr_ctrl->cache[mr_ctrl->head]; 937 938 /* Binary-search MR translation table. */ 939 lkey = mr_btree_lookup(&mr_ctrl->cache_bh, &bh_idx, addr); 940 /* Update top-half cache. */ 941 if (likely(lkey != UINT32_MAX)) { 942 *repl = (*mr_ctrl->cache_bh.table)[bh_idx]; 943 } else { 944 /* 945 * If missed in local lookup table, search in the global cache 946 * and local cache_bh[] will be updated inside if possible. 947 * Top-half cache entry will also be updated. 948 */ 949 lkey = mr_lookup_caches(pd, mp_id, share_cache, mr_ctrl, 950 repl, addr, mr_ext_memseg_en); 951 if (unlikely(lkey == UINT32_MAX)) 952 return UINT32_MAX; 953 } 954 /* Update the most recently used entry. */ 955 mr_ctrl->mru = mr_ctrl->head; 956 /* Point to the next victim, the oldest. */ 957 mr_ctrl->head = (mr_ctrl->head + 1) % MLX5_MR_CACHE_N; 958 return lkey; 959 } 960 961 /** 962 * Release all the created MRs and resources on global MR cache of a device. 963 * list. 964 * 965 * @param share_cache 966 * Pointer to a global shared MR cache. 967 */ 968 void 969 mlx5_mr_release_cache(struct mlx5_mr_share_cache *share_cache) 970 { 971 struct mlx5_mr *mr_next; 972 973 rte_rwlock_write_lock(&share_cache->rwlock); 974 /* Detach from MR list and move to free list. */ 975 mr_next = LIST_FIRST(&share_cache->mr_list); 976 while (mr_next != NULL) { 977 struct mlx5_mr *mr = mr_next; 978 979 mr_next = LIST_NEXT(mr, mr); 980 LIST_REMOVE(mr, mr); 981 LIST_INSERT_HEAD(&share_cache->mr_free_list, mr, mr); 982 } 983 LIST_INIT(&share_cache->mr_list); 984 /* Free global cache. */ 985 mlx5_mr_btree_free(&share_cache->cache); 986 rte_rwlock_write_unlock(&share_cache->rwlock); 987 /* Free all remaining MRs. */ 988 mlx5_mr_garbage_collect(share_cache); 989 } 990 991 /** 992 * Flush all of the local cache entries. 993 * 994 * @param mr_ctrl 995 * Pointer to per-queue MR local cache. 996 */ 997 void 998 mlx5_mr_flush_local_cache(struct mlx5_mr_ctrl *mr_ctrl) 999 { 1000 /* Reset the most-recently-used index. */ 1001 mr_ctrl->mru = 0; 1002 /* Reset the linear search array. */ 1003 mr_ctrl->head = 0; 1004 memset(mr_ctrl->cache, 0, sizeof(mr_ctrl->cache)); 1005 /* Reset the B-tree table. */ 1006 mr_ctrl->cache_bh.len = 1; 1007 mr_ctrl->cache_bh.overflow = 0; 1008 /* Update the generation number. */ 1009 mr_ctrl->cur_gen = *mr_ctrl->dev_gen_ptr; 1010 DRV_LOG(DEBUG, "mr_ctrl(%p): flushed, cur_gen=%d", 1011 (void *)mr_ctrl, mr_ctrl->cur_gen); 1012 } 1013 1014 /** 1015 * Creates a memory region for external memory, that is memory which is not 1016 * part of the DPDK memory segments. 1017 * 1018 * @param pd 1019 * Pointer to pd of a device (net, regex, vdpa,...). 1020 * @param addr 1021 * Starting virtual address of memory. 1022 * @param len 1023 * Length of memory segment being mapped. 1024 * @param socked_id 1025 * Socket to allocate heap memory for the control structures. 1026 * 1027 * @return 1028 * Pointer to MR structure on success, NULL otherwise. 1029 */ 1030 struct mlx5_mr * 1031 mlx5_create_mr_ext(void *pd, uintptr_t addr, size_t len, int socket_id, 1032 mlx5_reg_mr_t reg_mr_cb) 1033 { 1034 struct mlx5_mr *mr = NULL; 1035 1036 mr = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, 1037 RTE_ALIGN_CEIL(sizeof(*mr), RTE_CACHE_LINE_SIZE), 1038 RTE_CACHE_LINE_SIZE, socket_id); 1039 if (mr == NULL) 1040 return NULL; 1041 reg_mr_cb(pd, (void *)addr, len, &mr->pmd_mr); 1042 if (mr->pmd_mr.obj == NULL) { 1043 DRV_LOG(WARNING, 1044 "Fail to create MR for address (%p)", 1045 (void *)addr); 1046 mlx5_free(mr); 1047 return NULL; 1048 } 1049 mr->msl = NULL; /* Mark it is external memory. */ 1050 mr->ms_bmp = NULL; 1051 mr->ms_n = 1; 1052 mr->ms_bmp_n = 1; 1053 DRV_LOG(DEBUG, 1054 "MR CREATED (%p) for external memory %p:\n" 1055 " [0x%" PRIxPTR ", 0x%" PRIxPTR ")," 1056 " lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u", 1057 (void *)mr, (void *)addr, 1058 addr, addr + len, rte_cpu_to_be_32(mr->pmd_mr.lkey), 1059 mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n); 1060 return mr; 1061 } 1062 1063 /** 1064 * Dump all the created MRs and the global cache entries. 1065 * 1066 * @param sh 1067 * Pointer to Ethernet device shared context. 1068 */ 1069 void 1070 mlx5_mr_dump_cache(struct mlx5_mr_share_cache *share_cache __rte_unused) 1071 { 1072 #ifdef RTE_LIBRTE_MLX5_DEBUG 1073 struct mlx5_mr *mr; 1074 int mr_n = 0; 1075 int chunk_n = 0; 1076 1077 rte_rwlock_read_lock(&share_cache->rwlock); 1078 /* Iterate all the existing MRs. */ 1079 LIST_FOREACH(mr, &share_cache->mr_list, mr) { 1080 unsigned int n; 1081 1082 DEBUG("MR[%u], LKey = 0x%x, ms_n = %u, ms_bmp_n = %u", 1083 mr_n++, rte_cpu_to_be_32(mr->pmd_mr.lkey), 1084 mr->ms_n, mr->ms_bmp_n); 1085 if (mr->ms_n == 0) 1086 continue; 1087 for (n = 0; n < mr->ms_bmp_n; ) { 1088 struct mr_cache_entry ret = { 0, }; 1089 1090 n = mr_find_next_chunk(mr, &ret, n); 1091 if (!ret.end) 1092 break; 1093 DEBUG(" chunk[%u], [0x%" PRIxPTR ", 0x%" PRIxPTR ")", 1094 chunk_n++, ret.start, ret.end); 1095 } 1096 } 1097 DEBUG("Dumping global cache %p", (void *)share_cache); 1098 mlx5_mr_btree_dump(&share_cache->cache); 1099 rte_rwlock_read_unlock(&share_cache->rwlock); 1100 #endif 1101 } 1102