xref: /dpdk/drivers/common/mlx5/mlx5_common_mr.c (revision bc8e32473cc3978d763a1387eaa8244bcf75e77d)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2020 Mellanox Technologies, Ltd
4  */
5 #include <rte_eal_memconfig.h>
6 #include <rte_errno.h>
7 #include <rte_mempool.h>
8 #include <rte_malloc.h>
9 #include <rte_rwlock.h>
10 
11 #include "mlx5_glue.h"
12 #include "mlx5_common_mp.h"
13 #include "mlx5_common_mr.h"
14 #include "mlx5_common_utils.h"
15 #include "mlx5_malloc.h"
16 
17 struct mr_find_contig_memsegs_data {
18 	uintptr_t addr;
19 	uintptr_t start;
20 	uintptr_t end;
21 	const struct rte_memseg_list *msl;
22 };
23 
24 /**
25  * Expand B-tree table to a given size. Can't be called with holding
26  * memory_hotplug_lock or share_cache.rwlock due to rte_realloc().
27  *
28  * @param bt
29  *   Pointer to B-tree structure.
30  * @param n
31  *   Number of entries for expansion.
32  *
33  * @return
34  *   0 on success, -1 on failure.
35  */
36 static int
37 mr_btree_expand(struct mlx5_mr_btree *bt, int n)
38 {
39 	void *mem;
40 	int ret = 0;
41 
42 	if (n <= bt->size)
43 		return ret;
44 	/*
45 	 * Downside of directly using rte_realloc() is that SOCKET_ID_ANY is
46 	 * used inside if there's no room to expand. Because this is a quite
47 	 * rare case and a part of very slow path, it is very acceptable.
48 	 * Initially cache_bh[] will be given practically enough space and once
49 	 * it is expanded, expansion wouldn't be needed again ever.
50 	 */
51 	mem = mlx5_realloc(bt->table, MLX5_MEM_RTE | MLX5_MEM_ZERO,
52 			   n * sizeof(struct mr_cache_entry), 0, SOCKET_ID_ANY);
53 	if (mem == NULL) {
54 		/* Not an error, B-tree search will be skipped. */
55 		DRV_LOG(WARNING, "failed to expand MR B-tree (%p) table",
56 			(void *)bt);
57 		ret = -1;
58 	} else {
59 		DRV_LOG(DEBUG, "expanded MR B-tree table (size=%u)", n);
60 		bt->table = mem;
61 		bt->size = n;
62 	}
63 	return ret;
64 }
65 
66 /**
67  * Look up LKey from given B-tree lookup table, store the last index and return
68  * searched LKey.
69  *
70  * @param bt
71  *   Pointer to B-tree structure.
72  * @param[out] idx
73  *   Pointer to index. Even on search failure, returns index where it stops
74  *   searching so that index can be used when inserting a new entry.
75  * @param addr
76  *   Search key.
77  *
78  * @return
79  *   Searched LKey on success, UINT32_MAX on no match.
80  */
81 static uint32_t
82 mr_btree_lookup(struct mlx5_mr_btree *bt, uint16_t *idx, uintptr_t addr)
83 {
84 	struct mr_cache_entry *lkp_tbl;
85 	uint16_t n;
86 	uint16_t base = 0;
87 
88 	MLX5_ASSERT(bt != NULL);
89 	lkp_tbl = *bt->table;
90 	n = bt->len;
91 	/* First entry must be NULL for comparison. */
92 	MLX5_ASSERT(bt->len > 0 || (lkp_tbl[0].start == 0 &&
93 				    lkp_tbl[0].lkey == UINT32_MAX));
94 	/* Binary search. */
95 	do {
96 		register uint16_t delta = n >> 1;
97 
98 		if (addr < lkp_tbl[base + delta].start) {
99 			n = delta;
100 		} else {
101 			base += delta;
102 			n -= delta;
103 		}
104 	} while (n > 1);
105 	MLX5_ASSERT(addr >= lkp_tbl[base].start);
106 	*idx = base;
107 	if (addr < lkp_tbl[base].end)
108 		return lkp_tbl[base].lkey;
109 	/* Not found. */
110 	return UINT32_MAX;
111 }
112 
113 /**
114  * Insert an entry to B-tree lookup table.
115  *
116  * @param bt
117  *   Pointer to B-tree structure.
118  * @param entry
119  *   Pointer to new entry to insert.
120  *
121  * @return
122  *   0 on success, -1 on failure.
123  */
124 static int
125 mr_btree_insert(struct mlx5_mr_btree *bt, struct mr_cache_entry *entry)
126 {
127 	struct mr_cache_entry *lkp_tbl;
128 	uint16_t idx = 0;
129 	size_t shift;
130 
131 	MLX5_ASSERT(bt != NULL);
132 	MLX5_ASSERT(bt->len <= bt->size);
133 	MLX5_ASSERT(bt->len > 0);
134 	lkp_tbl = *bt->table;
135 	/* Find out the slot for insertion. */
136 	if (mr_btree_lookup(bt, &idx, entry->start) != UINT32_MAX) {
137 		DRV_LOG(DEBUG,
138 			"abort insertion to B-tree(%p): already exist at"
139 			" idx=%u [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
140 			(void *)bt, idx, entry->start, entry->end, entry->lkey);
141 		/* Already exist, return. */
142 		return 0;
143 	}
144 	/* If table is full, return error. */
145 	if (unlikely(bt->len == bt->size)) {
146 		bt->overflow = 1;
147 		return -1;
148 	}
149 	/* Insert entry. */
150 	++idx;
151 	shift = (bt->len - idx) * sizeof(struct mr_cache_entry);
152 	if (shift)
153 		memmove(&lkp_tbl[idx + 1], &lkp_tbl[idx], shift);
154 	lkp_tbl[idx] = *entry;
155 	bt->len++;
156 	DRV_LOG(DEBUG,
157 		"inserted B-tree(%p)[%u],"
158 		" [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
159 		(void *)bt, idx, entry->start, entry->end, entry->lkey);
160 	return 0;
161 }
162 
163 /**
164  * Initialize B-tree and allocate memory for lookup table.
165  *
166  * @param bt
167  *   Pointer to B-tree structure.
168  * @param n
169  *   Number of entries to allocate.
170  * @param socket
171  *   NUMA socket on which memory must be allocated.
172  *
173  * @return
174  *   0 on success, a negative errno value otherwise and rte_errno is set.
175  */
176 int
177 mlx5_mr_btree_init(struct mlx5_mr_btree *bt, int n, int socket)
178 {
179 	if (bt == NULL) {
180 		rte_errno = EINVAL;
181 		return -rte_errno;
182 	}
183 	MLX5_ASSERT(!bt->table && !bt->size);
184 	memset(bt, 0, sizeof(*bt));
185 	bt->table = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO,
186 				sizeof(struct mr_cache_entry) * n,
187 				0, socket);
188 	if (bt->table == NULL) {
189 		rte_errno = ENOMEM;
190 		DEBUG("failed to allocate memory for btree cache on socket %d",
191 		      socket);
192 		return -rte_errno;
193 	}
194 	bt->size = n;
195 	/* First entry must be NULL for binary search. */
196 	(*bt->table)[bt->len++] = (struct mr_cache_entry) {
197 		.lkey = UINT32_MAX,
198 	};
199 	DEBUG("initialized B-tree %p with table %p",
200 	      (void *)bt, (void *)bt->table);
201 	return 0;
202 }
203 
204 /**
205  * Free B-tree resources.
206  *
207  * @param bt
208  *   Pointer to B-tree structure.
209  */
210 void
211 mlx5_mr_btree_free(struct mlx5_mr_btree *bt)
212 {
213 	if (bt == NULL)
214 		return;
215 	DEBUG("freeing B-tree %p with table %p",
216 	      (void *)bt, (void *)bt->table);
217 	mlx5_free(bt->table);
218 	memset(bt, 0, sizeof(*bt));
219 }
220 
221 /**
222  * Dump all the entries in a B-tree
223  *
224  * @param bt
225  *   Pointer to B-tree structure.
226  */
227 void
228 mlx5_mr_btree_dump(struct mlx5_mr_btree *bt __rte_unused)
229 {
230 #ifdef RTE_LIBRTE_MLX5_DEBUG
231 	int idx;
232 	struct mr_cache_entry *lkp_tbl;
233 
234 	if (bt == NULL)
235 		return;
236 	lkp_tbl = *bt->table;
237 	for (idx = 0; idx < bt->len; ++idx) {
238 		struct mr_cache_entry *entry = &lkp_tbl[idx];
239 
240 		DEBUG("B-tree(%p)[%u],"
241 		      " [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
242 		      (void *)bt, idx, entry->start, entry->end, entry->lkey);
243 	}
244 #endif
245 }
246 
247 /**
248  * Find virtually contiguous memory chunk in a given MR.
249  *
250  * @param dev
251  *   Pointer to MR structure.
252  * @param[out] entry
253  *   Pointer to returning MR cache entry. If not found, this will not be
254  *   updated.
255  * @param start_idx
256  *   Start index of the memseg bitmap.
257  *
258  * @return
259  *   Next index to go on lookup.
260  */
261 static int
262 mr_find_next_chunk(struct mlx5_mr *mr, struct mr_cache_entry *entry,
263 		   int base_idx)
264 {
265 	uintptr_t start = 0;
266 	uintptr_t end = 0;
267 	uint32_t idx = 0;
268 
269 	/* MR for external memory doesn't have memseg list. */
270 	if (mr->msl == NULL) {
271 		MLX5_ASSERT(mr->ms_bmp_n == 1);
272 		MLX5_ASSERT(mr->ms_n == 1);
273 		MLX5_ASSERT(base_idx == 0);
274 		/*
275 		 * Can't search it from memseg list but get it directly from
276 		 * pmd_mr as there's only one chunk.
277 		 */
278 		entry->start = (uintptr_t)mr->pmd_mr.addr;
279 		entry->end = (uintptr_t)mr->pmd_mr.addr + mr->pmd_mr.len;
280 		entry->lkey = rte_cpu_to_be_32(mr->pmd_mr.lkey);
281 		/* Returning 1 ends iteration. */
282 		return 1;
283 	}
284 	for (idx = base_idx; idx < mr->ms_bmp_n; ++idx) {
285 		if (rte_bitmap_get(mr->ms_bmp, idx)) {
286 			const struct rte_memseg_list *msl;
287 			const struct rte_memseg *ms;
288 
289 			msl = mr->msl;
290 			ms = rte_fbarray_get(&msl->memseg_arr,
291 					     mr->ms_base_idx + idx);
292 			MLX5_ASSERT(msl->page_sz == ms->hugepage_sz);
293 			if (!start)
294 				start = ms->addr_64;
295 			end = ms->addr_64 + ms->hugepage_sz;
296 		} else if (start) {
297 			/* Passed the end of a fragment. */
298 			break;
299 		}
300 	}
301 	if (start) {
302 		/* Found one chunk. */
303 		entry->start = start;
304 		entry->end = end;
305 		entry->lkey = rte_cpu_to_be_32(mr->pmd_mr.lkey);
306 	}
307 	return idx;
308 }
309 
310 /**
311  * Insert a MR to the global B-tree cache. It may fail due to low-on-memory.
312  * Then, this entry will have to be searched by mr_lookup_list() in
313  * mlx5_mr_create() on miss.
314  *
315  * @param share_cache
316  *   Pointer to a global shared MR cache.
317  * @param mr
318  *   Pointer to MR to insert.
319  *
320  * @return
321  *   0 on success, -1 on failure.
322  */
323 int
324 mlx5_mr_insert_cache(struct mlx5_mr_share_cache *share_cache,
325 		     struct mlx5_mr *mr)
326 {
327 	unsigned int n;
328 
329 	DRV_LOG(DEBUG, "Inserting MR(%p) to global cache(%p)",
330 		(void *)mr, (void *)share_cache);
331 	for (n = 0; n < mr->ms_bmp_n; ) {
332 		struct mr_cache_entry entry;
333 
334 		memset(&entry, 0, sizeof(entry));
335 		/* Find a contiguous chunk and advance the index. */
336 		n = mr_find_next_chunk(mr, &entry, n);
337 		if (!entry.end)
338 			break;
339 		if (mr_btree_insert(&share_cache->cache, &entry) < 0) {
340 			/*
341 			 * Overflowed, but the global table cannot be expanded
342 			 * because of deadlock.
343 			 */
344 			return -1;
345 		}
346 	}
347 	return 0;
348 }
349 
350 /**
351  * Look up address in the original global MR list.
352  *
353  * @param share_cache
354  *   Pointer to a global shared MR cache.
355  * @param[out] entry
356  *   Pointer to returning MR cache entry. If no match, this will not be updated.
357  * @param addr
358  *   Search key.
359  *
360  * @return
361  *   Found MR on match, NULL otherwise.
362  */
363 struct mlx5_mr *
364 mlx5_mr_lookup_list(struct mlx5_mr_share_cache *share_cache,
365 		    struct mr_cache_entry *entry, uintptr_t addr)
366 {
367 	struct mlx5_mr *mr;
368 
369 	/* Iterate all the existing MRs. */
370 	LIST_FOREACH(mr, &share_cache->mr_list, mr) {
371 		unsigned int n;
372 
373 		if (mr->ms_n == 0)
374 			continue;
375 		for (n = 0; n < mr->ms_bmp_n; ) {
376 			struct mr_cache_entry ret;
377 
378 			memset(&ret, 0, sizeof(ret));
379 			n = mr_find_next_chunk(mr, &ret, n);
380 			if (addr >= ret.start && addr < ret.end) {
381 				/* Found. */
382 				*entry = ret;
383 				return mr;
384 			}
385 		}
386 	}
387 	return NULL;
388 }
389 
390 /**
391  * Look up address on global MR cache.
392  *
393  * @param share_cache
394  *   Pointer to a global shared MR cache.
395  * @param[out] entry
396  *   Pointer to returning MR cache entry. If no match, this will not be updated.
397  * @param addr
398  *   Search key.
399  *
400  * @return
401  *   Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
402  */
403 uint32_t
404 mlx5_mr_lookup_cache(struct mlx5_mr_share_cache *share_cache,
405 		     struct mr_cache_entry *entry, uintptr_t addr)
406 {
407 	uint16_t idx;
408 	uint32_t lkey = UINT32_MAX;
409 	struct mlx5_mr *mr;
410 
411 	/*
412 	 * If the global cache has overflowed since it failed to expand the
413 	 * B-tree table, it can't have all the existing MRs. Then, the address
414 	 * has to be searched by traversing the original MR list instead, which
415 	 * is very slow path. Otherwise, the global cache is all inclusive.
416 	 */
417 	if (!unlikely(share_cache->cache.overflow)) {
418 		lkey = mr_btree_lookup(&share_cache->cache, &idx, addr);
419 		if (lkey != UINT32_MAX)
420 			*entry = (*share_cache->cache.table)[idx];
421 	} else {
422 		/* Falling back to the slowest path. */
423 		mr = mlx5_mr_lookup_list(share_cache, entry, addr);
424 		if (mr != NULL)
425 			lkey = entry->lkey;
426 	}
427 	MLX5_ASSERT(lkey == UINT32_MAX || (addr >= entry->start &&
428 					   addr < entry->end));
429 	return lkey;
430 }
431 
432 /**
433  * Free MR resources. MR lock must not be held to avoid a deadlock. rte_free()
434  * can raise memory free event and the callback function will spin on the lock.
435  *
436  * @param mr
437  *   Pointer to MR to free.
438  */
439 void
440 mlx5_mr_free(struct mlx5_mr *mr, mlx5_dereg_mr_t dereg_mr_cb)
441 {
442 	if (mr == NULL)
443 		return;
444 	DRV_LOG(DEBUG, "freeing MR(%p):", (void *)mr);
445 	dereg_mr_cb(&mr->pmd_mr);
446 	if (mr->ms_bmp != NULL)
447 		rte_bitmap_free(mr->ms_bmp);
448 	mlx5_free(mr);
449 }
450 
451 void
452 mlx5_mr_rebuild_cache(struct mlx5_mr_share_cache *share_cache)
453 {
454 	struct mlx5_mr *mr;
455 
456 	DRV_LOG(DEBUG, "Rebuild dev cache[] %p", (void *)share_cache);
457 	/* Flush cache to rebuild. */
458 	share_cache->cache.len = 1;
459 	share_cache->cache.overflow = 0;
460 	/* Iterate all the existing MRs. */
461 	LIST_FOREACH(mr, &share_cache->mr_list, mr)
462 		if (mlx5_mr_insert_cache(share_cache, mr) < 0)
463 			return;
464 }
465 
466 /**
467  * Release resources of detached MR having no online entry.
468  *
469  * @param share_cache
470  *   Pointer to a global shared MR cache.
471  */
472 static void
473 mlx5_mr_garbage_collect(struct mlx5_mr_share_cache *share_cache)
474 {
475 	struct mlx5_mr *mr_next;
476 	struct mlx5_mr_list free_list = LIST_HEAD_INITIALIZER(free_list);
477 
478 	/* Must be called from the primary process. */
479 	MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY);
480 	/*
481 	 * MR can't be freed with holding the lock because rte_free() could call
482 	 * memory free callback function. This will be a deadlock situation.
483 	 */
484 	rte_rwlock_write_lock(&share_cache->rwlock);
485 	/* Detach the whole free list and release it after unlocking. */
486 	free_list = share_cache->mr_free_list;
487 	LIST_INIT(&share_cache->mr_free_list);
488 	rte_rwlock_write_unlock(&share_cache->rwlock);
489 	/* Release resources. */
490 	mr_next = LIST_FIRST(&free_list);
491 	while (mr_next != NULL) {
492 		struct mlx5_mr *mr = mr_next;
493 
494 		mr_next = LIST_NEXT(mr, mr);
495 		mlx5_mr_free(mr, share_cache->dereg_mr_cb);
496 	}
497 }
498 
499 /* Called during rte_memseg_contig_walk() by mlx5_mr_create(). */
500 static int
501 mr_find_contig_memsegs_cb(const struct rte_memseg_list *msl,
502 			  const struct rte_memseg *ms, size_t len, void *arg)
503 {
504 	struct mr_find_contig_memsegs_data *data = arg;
505 
506 	if (data->addr < ms->addr_64 || data->addr >= ms->addr_64 + len)
507 		return 0;
508 	/* Found, save it and stop walking. */
509 	data->start = ms->addr_64;
510 	data->end = ms->addr_64 + len;
511 	data->msl = msl;
512 	return 1;
513 }
514 
515 /**
516  * Create a new global Memory Region (MR) for a missing virtual address.
517  * This API should be called on a secondary process, then a request is sent to
518  * the primary process in order to create a MR for the address. As the global MR
519  * list is on the shared memory, following LKey lookup should succeed unless the
520  * request fails.
521  *
522  * @param pd
523  *   Pointer to pd of a device (net, regex, vdpa,...).
524  * @param share_cache
525  *   Pointer to a global shared MR cache.
526  * @param[out] entry
527  *   Pointer to returning MR cache entry, found in the global cache or newly
528  *   created. If failed to create one, this will not be updated.
529  * @param addr
530  *   Target virtual address to register.
531  * @param mr_ext_memseg_en
532  *   Configurable flag about external memory segment enable or not.
533  *
534  * @return
535  *   Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
536  */
537 static uint32_t
538 mlx5_mr_create_secondary(void *pd __rte_unused,
539 			 struct mlx5_mp_id *mp_id,
540 			 struct mlx5_mr_share_cache *share_cache,
541 			 struct mr_cache_entry *entry, uintptr_t addr,
542 			 unsigned int mr_ext_memseg_en __rte_unused)
543 {
544 	int ret;
545 
546 	DEBUG("port %u requesting MR creation for address (%p)",
547 	      mp_id->port_id, (void *)addr);
548 	ret = mlx5_mp_req_mr_create(mp_id, addr);
549 	if (ret) {
550 		DEBUG("Fail to request MR creation for address (%p)",
551 		      (void *)addr);
552 		return UINT32_MAX;
553 	}
554 	rte_rwlock_read_lock(&share_cache->rwlock);
555 	/* Fill in output data. */
556 	mlx5_mr_lookup_cache(share_cache, entry, addr);
557 	/* Lookup can't fail. */
558 	MLX5_ASSERT(entry->lkey != UINT32_MAX);
559 	rte_rwlock_read_unlock(&share_cache->rwlock);
560 	DEBUG("MR CREATED by primary process for %p:\n"
561 	      "  [0x%" PRIxPTR ", 0x%" PRIxPTR "), lkey=0x%x",
562 	      (void *)addr, entry->start, entry->end, entry->lkey);
563 	return entry->lkey;
564 }
565 
566 /**
567  * Create a new global Memory Region (MR) for a missing virtual address.
568  * Register entire virtually contiguous memory chunk around the address.
569  *
570  * @param pd
571  *   Pointer to pd of a device (net, regex, vdpa,...).
572  * @param share_cache
573  *   Pointer to a global shared MR cache.
574  * @param[out] entry
575  *   Pointer to returning MR cache entry, found in the global cache or newly
576  *   created. If failed to create one, this will not be updated.
577  * @param addr
578  *   Target virtual address to register.
579  * @param mr_ext_memseg_en
580  *   Configurable flag about external memory segment enable or not.
581  *
582  * @return
583  *   Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
584  */
585 uint32_t
586 mlx5_mr_create_primary(void *pd,
587 		       struct mlx5_mr_share_cache *share_cache,
588 		       struct mr_cache_entry *entry, uintptr_t addr,
589 		       unsigned int mr_ext_memseg_en)
590 {
591 	struct mr_find_contig_memsegs_data data = {.addr = addr, };
592 	struct mr_find_contig_memsegs_data data_re;
593 	const struct rte_memseg_list *msl;
594 	const struct rte_memseg *ms;
595 	struct mlx5_mr *mr = NULL;
596 	int ms_idx_shift = -1;
597 	uint32_t bmp_size;
598 	void *bmp_mem;
599 	uint32_t ms_n;
600 	uint32_t n;
601 	size_t len;
602 
603 	DRV_LOG(DEBUG, "Creating a MR using address (%p)", (void *)addr);
604 	/*
605 	 * Release detached MRs if any. This can't be called with holding either
606 	 * memory_hotplug_lock or share_cache->rwlock. MRs on the free list have
607 	 * been detached by the memory free event but it couldn't be released
608 	 * inside the callback due to deadlock. As a result, releasing resources
609 	 * is quite opportunistic.
610 	 */
611 	mlx5_mr_garbage_collect(share_cache);
612 	/*
613 	 * If enabled, find out a contiguous virtual address chunk in use, to
614 	 * which the given address belongs, in order to register maximum range.
615 	 * In the best case where mempools are not dynamically recreated and
616 	 * '--socket-mem' is specified as an EAL option, it is very likely to
617 	 * have only one MR(LKey) per a socket and per a hugepage-size even
618 	 * though the system memory is highly fragmented. As the whole memory
619 	 * chunk will be pinned by kernel, it can't be reused unless entire
620 	 * chunk is freed from EAL.
621 	 *
622 	 * If disabled, just register one memseg (page). Then, memory
623 	 * consumption will be minimized but it may drop performance if there
624 	 * are many MRs to lookup on the datapath.
625 	 */
626 	if (!mr_ext_memseg_en) {
627 		data.msl = rte_mem_virt2memseg_list((void *)addr);
628 		data.start = RTE_ALIGN_FLOOR(addr, data.msl->page_sz);
629 		data.end = data.start + data.msl->page_sz;
630 	} else if (!rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data)) {
631 		DRV_LOG(WARNING,
632 			"Unable to find virtually contiguous"
633 			" chunk for address (%p)."
634 			" rte_memseg_contig_walk() failed.", (void *)addr);
635 		rte_errno = ENXIO;
636 		goto err_nolock;
637 	}
638 alloc_resources:
639 	/* Addresses must be page-aligned. */
640 	MLX5_ASSERT(data.msl);
641 	MLX5_ASSERT(rte_is_aligned((void *)data.start, data.msl->page_sz));
642 	MLX5_ASSERT(rte_is_aligned((void *)data.end, data.msl->page_sz));
643 	msl = data.msl;
644 	ms = rte_mem_virt2memseg((void *)data.start, msl);
645 	len = data.end - data.start;
646 	MLX5_ASSERT(ms);
647 	MLX5_ASSERT(msl->page_sz == ms->hugepage_sz);
648 	/* Number of memsegs in the range. */
649 	ms_n = len / msl->page_sz;
650 	DEBUG("Extending %p to [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
651 	      " page_sz=0x%" PRIx64 ", ms_n=%u",
652 	      (void *)addr, data.start, data.end, msl->page_sz, ms_n);
653 	/* Size of memory for bitmap. */
654 	bmp_size = rte_bitmap_get_memory_footprint(ms_n);
655 	mr = mlx5_malloc(MLX5_MEM_RTE |  MLX5_MEM_ZERO,
656 			 RTE_ALIGN_CEIL(sizeof(*mr), RTE_CACHE_LINE_SIZE) +
657 			 bmp_size, RTE_CACHE_LINE_SIZE, msl->socket_id);
658 	if (mr == NULL) {
659 		DEBUG("Unable to allocate memory for a new MR of"
660 		      " address (%p).", (void *)addr);
661 		rte_errno = ENOMEM;
662 		goto err_nolock;
663 	}
664 	mr->msl = msl;
665 	/*
666 	 * Save the index of the first memseg and initialize memseg bitmap. To
667 	 * see if a memseg of ms_idx in the memseg-list is still valid, check:
668 	 *	rte_bitmap_get(mr->bmp, ms_idx - mr->ms_base_idx)
669 	 */
670 	mr->ms_base_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
671 	bmp_mem = RTE_PTR_ALIGN_CEIL(mr + 1, RTE_CACHE_LINE_SIZE);
672 	mr->ms_bmp = rte_bitmap_init(ms_n, bmp_mem, bmp_size);
673 	if (mr->ms_bmp == NULL) {
674 		DEBUG("Unable to initialize bitmap for a new MR of"
675 		      " address (%p).", (void *)addr);
676 		rte_errno = EINVAL;
677 		goto err_nolock;
678 	}
679 	/*
680 	 * Should recheck whether the extended contiguous chunk is still valid.
681 	 * Because memory_hotplug_lock can't be held if there's any memory
682 	 * related calls in a critical path, resource allocation above can't be
683 	 * locked. If the memory has been changed at this point, try again with
684 	 * just single page. If not, go on with the big chunk atomically from
685 	 * here.
686 	 */
687 	rte_mcfg_mem_read_lock();
688 	data_re = data;
689 	if (len > msl->page_sz &&
690 	    !rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data_re)) {
691 		DEBUG("Unable to find virtually contiguous"
692 		      " chunk for address (%p)."
693 		      " rte_memseg_contig_walk() failed.", (void *)addr);
694 		rte_errno = ENXIO;
695 		goto err_memlock;
696 	}
697 	if (data.start != data_re.start || data.end != data_re.end) {
698 		/*
699 		 * The extended contiguous chunk has been changed. Try again
700 		 * with single memseg instead.
701 		 */
702 		data.start = RTE_ALIGN_FLOOR(addr, msl->page_sz);
703 		data.end = data.start + msl->page_sz;
704 		rte_mcfg_mem_read_unlock();
705 		mlx5_mr_free(mr, share_cache->dereg_mr_cb);
706 		goto alloc_resources;
707 	}
708 	MLX5_ASSERT(data.msl == data_re.msl);
709 	rte_rwlock_write_lock(&share_cache->rwlock);
710 	/*
711 	 * Check the address is really missing. If other thread already created
712 	 * one or it is not found due to overflow, abort and return.
713 	 */
714 	if (mlx5_mr_lookup_cache(share_cache, entry, addr) != UINT32_MAX) {
715 		/*
716 		 * Insert to the global cache table. It may fail due to
717 		 * low-on-memory. Then, this entry will have to be searched
718 		 * here again.
719 		 */
720 		mr_btree_insert(&share_cache->cache, entry);
721 		DEBUG("Found MR for %p on final lookup, abort", (void *)addr);
722 		rte_rwlock_write_unlock(&share_cache->rwlock);
723 		rte_mcfg_mem_read_unlock();
724 		/*
725 		 * Must be unlocked before calling rte_free() because
726 		 * mlx5_mr_mem_event_free_cb() can be called inside.
727 		 */
728 		mlx5_mr_free(mr, share_cache->dereg_mr_cb);
729 		return entry->lkey;
730 	}
731 	/*
732 	 * Trim start and end addresses for verbs MR. Set bits for registering
733 	 * memsegs but exclude already registered ones. Bitmap can be
734 	 * fragmented.
735 	 */
736 	for (n = 0; n < ms_n; ++n) {
737 		uintptr_t start;
738 		struct mr_cache_entry ret;
739 
740 		memset(&ret, 0, sizeof(ret));
741 		start = data_re.start + n * msl->page_sz;
742 		/* Exclude memsegs already registered by other MRs. */
743 		if (mlx5_mr_lookup_cache(share_cache, &ret, start) ==
744 		    UINT32_MAX) {
745 			/*
746 			 * Start from the first unregistered memseg in the
747 			 * extended range.
748 			 */
749 			if (ms_idx_shift == -1) {
750 				mr->ms_base_idx += n;
751 				data.start = start;
752 				ms_idx_shift = n;
753 			}
754 			data.end = start + msl->page_sz;
755 			rte_bitmap_set(mr->ms_bmp, n - ms_idx_shift);
756 			++mr->ms_n;
757 		}
758 	}
759 	len = data.end - data.start;
760 	mr->ms_bmp_n = len / msl->page_sz;
761 	MLX5_ASSERT(ms_idx_shift + mr->ms_bmp_n <= ms_n);
762 	/*
763 	 * Finally create an MR for the memory chunk. Verbs: ibv_reg_mr() can
764 	 * be called with holding the memory lock because it doesn't use
765 	 * mlx5_alloc_buf_extern() which eventually calls rte_malloc_socket()
766 	 * through mlx5_alloc_verbs_buf().
767 	 */
768 	share_cache->reg_mr_cb(pd, (void *)data.start, len, &mr->pmd_mr);
769 	if (mr->pmd_mr.obj == NULL) {
770 		DEBUG("Fail to create an MR for address (%p)",
771 		      (void *)addr);
772 		rte_errno = EINVAL;
773 		goto err_mrlock;
774 	}
775 	MLX5_ASSERT((uintptr_t)mr->pmd_mr.addr == data.start);
776 	MLX5_ASSERT(mr->pmd_mr.len);
777 	LIST_INSERT_HEAD(&share_cache->mr_list, mr, mr);
778 	DEBUG("MR CREATED (%p) for %p:\n"
779 	      "  [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
780 	      " lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u",
781 	      (void *)mr, (void *)addr, data.start, data.end,
782 	      rte_cpu_to_be_32(mr->pmd_mr.lkey),
783 	      mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n);
784 	/* Insert to the global cache table. */
785 	mlx5_mr_insert_cache(share_cache, mr);
786 	/* Fill in output data. */
787 	mlx5_mr_lookup_cache(share_cache, entry, addr);
788 	/* Lookup can't fail. */
789 	MLX5_ASSERT(entry->lkey != UINT32_MAX);
790 	rte_rwlock_write_unlock(&share_cache->rwlock);
791 	rte_mcfg_mem_read_unlock();
792 	return entry->lkey;
793 err_mrlock:
794 	rte_rwlock_write_unlock(&share_cache->rwlock);
795 err_memlock:
796 	rte_mcfg_mem_read_unlock();
797 err_nolock:
798 	/*
799 	 * In case of error, as this can be called in a datapath, a warning
800 	 * message per an error is preferable instead. Must be unlocked before
801 	 * calling rte_free() because mlx5_mr_mem_event_free_cb() can be called
802 	 * inside.
803 	 */
804 	mlx5_mr_free(mr, share_cache->dereg_mr_cb);
805 	return UINT32_MAX;
806 }
807 
808 /**
809  * Create a new global Memory Region (MR) for a missing virtual address.
810  * This can be called from primary and secondary process.
811  *
812  * @param pd
813  *   Pointer to pd handle of a device (net, regex, vdpa,...).
814  * @param share_cache
815  *   Pointer to a global shared MR cache.
816  * @param[out] entry
817  *   Pointer to returning MR cache entry, found in the global cache or newly
818  *   created. If failed to create one, this will not be updated.
819  * @param addr
820  *   Target virtual address to register.
821  *
822  * @return
823  *   Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
824  */
825 static uint32_t
826 mlx5_mr_create(void *pd, struct mlx5_mp_id *mp_id,
827 	       struct mlx5_mr_share_cache *share_cache,
828 	       struct mr_cache_entry *entry, uintptr_t addr,
829 	       unsigned int mr_ext_memseg_en)
830 {
831 	uint32_t ret = 0;
832 
833 	switch (rte_eal_process_type()) {
834 	case RTE_PROC_PRIMARY:
835 		ret = mlx5_mr_create_primary(pd, share_cache, entry,
836 					     addr, mr_ext_memseg_en);
837 		break;
838 	case RTE_PROC_SECONDARY:
839 		ret = mlx5_mr_create_secondary(pd, mp_id, share_cache, entry,
840 					       addr, mr_ext_memseg_en);
841 		break;
842 	default:
843 		break;
844 	}
845 	return ret;
846 }
847 
848 /**
849  * Look up address in the global MR cache table. If not found, create a new MR.
850  * Insert the found/created entry to local bottom-half cache table.
851  *
852  * @param pd
853  *   Pointer to pd of a device (net, regex, vdpa,...).
854  * @param share_cache
855  *   Pointer to a global shared MR cache.
856  * @param mr_ctrl
857  *   Pointer to per-queue MR control structure.
858  * @param[out] entry
859  *   Pointer to returning MR cache entry, found in the global cache or newly
860  *   created. If failed to create one, this is not written.
861  * @param addr
862  *   Search key.
863  *
864  * @return
865  *   Searched LKey on success, UINT32_MAX on no match.
866  */
867 static uint32_t
868 mr_lookup_caches(void *pd, struct mlx5_mp_id *mp_id,
869 		 struct mlx5_mr_share_cache *share_cache,
870 		 struct mlx5_mr_ctrl *mr_ctrl,
871 		 struct mr_cache_entry *entry, uintptr_t addr,
872 		 unsigned int mr_ext_memseg_en)
873 {
874 	struct mlx5_mr_btree *bt = &mr_ctrl->cache_bh;
875 	uint32_t lkey;
876 	uint16_t idx;
877 
878 	/* If local cache table is full, try to double it. */
879 	if (unlikely(bt->len == bt->size))
880 		mr_btree_expand(bt, bt->size << 1);
881 	/* Look up in the global cache. */
882 	rte_rwlock_read_lock(&share_cache->rwlock);
883 	lkey = mr_btree_lookup(&share_cache->cache, &idx, addr);
884 	if (lkey != UINT32_MAX) {
885 		/* Found. */
886 		*entry = (*share_cache->cache.table)[idx];
887 		rte_rwlock_read_unlock(&share_cache->rwlock);
888 		/*
889 		 * Update local cache. Even if it fails, return the found entry
890 		 * to update top-half cache. Next time, this entry will be found
891 		 * in the global cache.
892 		 */
893 		mr_btree_insert(bt, entry);
894 		return lkey;
895 	}
896 	rte_rwlock_read_unlock(&share_cache->rwlock);
897 	/* First time to see the address? Create a new MR. */
898 	lkey = mlx5_mr_create(pd, mp_id, share_cache, entry, addr,
899 			      mr_ext_memseg_en);
900 	/*
901 	 * Update the local cache if successfully created a new global MR. Even
902 	 * if failed to create one, there's no action to take in this datapath
903 	 * code. As returning LKey is invalid, this will eventually make HW
904 	 * fail.
905 	 */
906 	if (lkey != UINT32_MAX)
907 		mr_btree_insert(bt, entry);
908 	return lkey;
909 }
910 
911 /**
912  * Bottom-half of LKey search on datapath. First search in cache_bh[] and if
913  * misses, search in the global MR cache table and update the new entry to
914  * per-queue local caches.
915  *
916  * @param pd
917  *   Pointer to pd of a device (net, regex, vdpa,...).
918  * @param share_cache
919  *   Pointer to a global shared MR cache.
920  * @param mr_ctrl
921  *   Pointer to per-queue MR control structure.
922  * @param addr
923  *   Search key.
924  *
925  * @return
926  *   Searched LKey on success, UINT32_MAX on no match.
927  */
928 uint32_t mlx5_mr_addr2mr_bh(void *pd, struct mlx5_mp_id *mp_id,
929 			    struct mlx5_mr_share_cache *share_cache,
930 			    struct mlx5_mr_ctrl *mr_ctrl,
931 			    uintptr_t addr, unsigned int mr_ext_memseg_en)
932 {
933 	uint32_t lkey;
934 	uint16_t bh_idx = 0;
935 	/* Victim in top-half cache to replace with new entry. */
936 	struct mr_cache_entry *repl = &mr_ctrl->cache[mr_ctrl->head];
937 
938 	/* Binary-search MR translation table. */
939 	lkey = mr_btree_lookup(&mr_ctrl->cache_bh, &bh_idx, addr);
940 	/* Update top-half cache. */
941 	if (likely(lkey != UINT32_MAX)) {
942 		*repl = (*mr_ctrl->cache_bh.table)[bh_idx];
943 	} else {
944 		/*
945 		 * If missed in local lookup table, search in the global cache
946 		 * and local cache_bh[] will be updated inside if possible.
947 		 * Top-half cache entry will also be updated.
948 		 */
949 		lkey = mr_lookup_caches(pd, mp_id, share_cache, mr_ctrl,
950 					repl, addr, mr_ext_memseg_en);
951 		if (unlikely(lkey == UINT32_MAX))
952 			return UINT32_MAX;
953 	}
954 	/* Update the most recently used entry. */
955 	mr_ctrl->mru = mr_ctrl->head;
956 	/* Point to the next victim, the oldest. */
957 	mr_ctrl->head = (mr_ctrl->head + 1) % MLX5_MR_CACHE_N;
958 	return lkey;
959 }
960 
961 /**
962  * Release all the created MRs and resources on global MR cache of a device.
963  * list.
964  *
965  * @param share_cache
966  *   Pointer to a global shared MR cache.
967  */
968 void
969 mlx5_mr_release_cache(struct mlx5_mr_share_cache *share_cache)
970 {
971 	struct mlx5_mr *mr_next;
972 
973 	rte_rwlock_write_lock(&share_cache->rwlock);
974 	/* Detach from MR list and move to free list. */
975 	mr_next = LIST_FIRST(&share_cache->mr_list);
976 	while (mr_next != NULL) {
977 		struct mlx5_mr *mr = mr_next;
978 
979 		mr_next = LIST_NEXT(mr, mr);
980 		LIST_REMOVE(mr, mr);
981 		LIST_INSERT_HEAD(&share_cache->mr_free_list, mr, mr);
982 	}
983 	LIST_INIT(&share_cache->mr_list);
984 	/* Free global cache. */
985 	mlx5_mr_btree_free(&share_cache->cache);
986 	rte_rwlock_write_unlock(&share_cache->rwlock);
987 	/* Free all remaining MRs. */
988 	mlx5_mr_garbage_collect(share_cache);
989 }
990 
991 /**
992  * Flush all of the local cache entries.
993  *
994  * @param mr_ctrl
995  *   Pointer to per-queue MR local cache.
996  */
997 void
998 mlx5_mr_flush_local_cache(struct mlx5_mr_ctrl *mr_ctrl)
999 {
1000 	/* Reset the most-recently-used index. */
1001 	mr_ctrl->mru = 0;
1002 	/* Reset the linear search array. */
1003 	mr_ctrl->head = 0;
1004 	memset(mr_ctrl->cache, 0, sizeof(mr_ctrl->cache));
1005 	/* Reset the B-tree table. */
1006 	mr_ctrl->cache_bh.len = 1;
1007 	mr_ctrl->cache_bh.overflow = 0;
1008 	/* Update the generation number. */
1009 	mr_ctrl->cur_gen = *mr_ctrl->dev_gen_ptr;
1010 	DRV_LOG(DEBUG, "mr_ctrl(%p): flushed, cur_gen=%d",
1011 		(void *)mr_ctrl, mr_ctrl->cur_gen);
1012 }
1013 
1014 /**
1015  * Creates a memory region for external memory, that is memory which is not
1016  * part of the DPDK memory segments.
1017  *
1018  * @param pd
1019  *   Pointer to pd of a device (net, regex, vdpa,...).
1020  * @param addr
1021  *   Starting virtual address of memory.
1022  * @param len
1023  *   Length of memory segment being mapped.
1024  * @param socked_id
1025  *   Socket to allocate heap memory for the control structures.
1026  *
1027  * @return
1028  *   Pointer to MR structure on success, NULL otherwise.
1029  */
1030 struct mlx5_mr *
1031 mlx5_create_mr_ext(void *pd, uintptr_t addr, size_t len, int socket_id,
1032 		   mlx5_reg_mr_t reg_mr_cb)
1033 {
1034 	struct mlx5_mr *mr = NULL;
1035 
1036 	mr = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO,
1037 			 RTE_ALIGN_CEIL(sizeof(*mr), RTE_CACHE_LINE_SIZE),
1038 			 RTE_CACHE_LINE_SIZE, socket_id);
1039 	if (mr == NULL)
1040 		return NULL;
1041 	reg_mr_cb(pd, (void *)addr, len, &mr->pmd_mr);
1042 	if (mr->pmd_mr.obj == NULL) {
1043 		DRV_LOG(WARNING,
1044 			"Fail to create MR for address (%p)",
1045 			(void *)addr);
1046 		mlx5_free(mr);
1047 		return NULL;
1048 	}
1049 	mr->msl = NULL; /* Mark it is external memory. */
1050 	mr->ms_bmp = NULL;
1051 	mr->ms_n = 1;
1052 	mr->ms_bmp_n = 1;
1053 	DRV_LOG(DEBUG,
1054 		"MR CREATED (%p) for external memory %p:\n"
1055 		"  [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
1056 		" lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u",
1057 		(void *)mr, (void *)addr,
1058 		addr, addr + len, rte_cpu_to_be_32(mr->pmd_mr.lkey),
1059 		mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n);
1060 	return mr;
1061 }
1062 
1063 /**
1064  * Dump all the created MRs and the global cache entries.
1065  *
1066  * @param sh
1067  *   Pointer to Ethernet device shared context.
1068  */
1069 void
1070 mlx5_mr_dump_cache(struct mlx5_mr_share_cache *share_cache __rte_unused)
1071 {
1072 #ifdef RTE_LIBRTE_MLX5_DEBUG
1073 	struct mlx5_mr *mr;
1074 	int mr_n = 0;
1075 	int chunk_n = 0;
1076 
1077 	rte_rwlock_read_lock(&share_cache->rwlock);
1078 	/* Iterate all the existing MRs. */
1079 	LIST_FOREACH(mr, &share_cache->mr_list, mr) {
1080 		unsigned int n;
1081 
1082 		DEBUG("MR[%u], LKey = 0x%x, ms_n = %u, ms_bmp_n = %u",
1083 		      mr_n++, rte_cpu_to_be_32(mr->pmd_mr.lkey),
1084 		      mr->ms_n, mr->ms_bmp_n);
1085 		if (mr->ms_n == 0)
1086 			continue;
1087 		for (n = 0; n < mr->ms_bmp_n; ) {
1088 			struct mr_cache_entry ret = { 0, };
1089 
1090 			n = mr_find_next_chunk(mr, &ret, n);
1091 			if (!ret.end)
1092 				break;
1093 			DEBUG("  chunk[%u], [0x%" PRIxPTR ", 0x%" PRIxPTR ")",
1094 			      chunk_n++, ret.start, ret.end);
1095 		}
1096 	}
1097 	DEBUG("Dumping global cache %p", (void *)share_cache);
1098 	mlx5_mr_btree_dump(&share_cache->cache);
1099 	rte_rwlock_read_unlock(&share_cache->rwlock);
1100 #endif
1101 }
1102