xref: /dpdk/drivers/common/mlx5/mlx5_common_mr.c (revision e12a0166c80f65e35408f4715b2f3a60763c3741)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2020 Mellanox Technologies, Ltd
4  */
5 #include <stddef.h>
6 
7 #include <rte_eal_memconfig.h>
8 #include <rte_eal_paging.h>
9 #include <rte_errno.h>
10 #include <rte_mempool.h>
11 #include <rte_malloc.h>
12 #include <rte_rwlock.h>
13 
14 #include "mlx5_glue.h"
15 #include "mlx5_common.h"
16 #include "mlx5_common_mp.h"
17 #include "mlx5_common_mr.h"
18 #include "mlx5_common_os.h"
19 #include "mlx5_common_log.h"
20 #include "mlx5_malloc.h"
21 
22 struct mr_find_contig_memsegs_data {
23 	uintptr_t addr;
24 	uintptr_t start;
25 	uintptr_t end;
26 	const struct rte_memseg_list *msl;
27 };
28 
29 /* Virtual memory range. */
30 struct mlx5_range {
31 	uintptr_t start;
32 	uintptr_t end;
33 };
34 
35 /** Memory region for a mempool. */
36 struct mlx5_mempool_mr {
37 	struct mlx5_pmd_mr pmd_mr;
38 	RTE_ATOMIC(uint32_t) refcnt; /**< Number of mempools sharing this MR. */
39 };
40 
41 /* Mempool registration. */
42 struct mlx5_mempool_reg {
43 	LIST_ENTRY(mlx5_mempool_reg) next;
44 	/** Registered mempool, used to designate registrations. */
45 	struct rte_mempool *mp;
46 	/** Memory regions for the address ranges of the mempool. */
47 	struct mlx5_mempool_mr *mrs;
48 	/** Number of memory regions. */
49 	unsigned int mrs_n;
50 	/** Whether the MR were created for external pinned memory. */
51 	bool is_extmem;
52 };
53 
54 void
mlx5_mprq_buf_free_cb(void * addr __rte_unused,void * opaque)55 mlx5_mprq_buf_free_cb(void *addr __rte_unused, void *opaque)
56 {
57 	struct mlx5_mprq_buf *buf = opaque;
58 
59 	if (rte_atomic_load_explicit(&buf->refcnt, rte_memory_order_relaxed) == 1) {
60 		rte_mempool_put(buf->mp, buf);
61 	} else if (unlikely(rte_atomic_fetch_sub_explicit(&buf->refcnt, 1,
62 					       rte_memory_order_relaxed) - 1 == 0)) {
63 		rte_atomic_store_explicit(&buf->refcnt, 1, rte_memory_order_relaxed);
64 		rte_mempool_put(buf->mp, buf);
65 	}
66 }
67 
68 /**
69  * Expand B-tree table to a given size. Can't be called with holding
70  * memory_hotplug_lock or share_cache.rwlock due to rte_realloc().
71  *
72  * @param bt
73  *   Pointer to B-tree structure.
74  * @param n
75  *   Number of entries for expansion.
76  *
77  * @return
78  *   0 on success, -1 on failure.
79  */
80 static int
mr_btree_expand(struct mlx5_mr_btree * bt,uint32_t n)81 mr_btree_expand(struct mlx5_mr_btree *bt, uint32_t n)
82 {
83 	void *mem;
84 	int ret = 0;
85 
86 	if (n <= bt->size)
87 		return ret;
88 	/*
89 	 * Downside of directly using rte_realloc() is that SOCKET_ID_ANY is
90 	 * used inside if there's no room to expand. Because this is a quite
91 	 * rare case and a part of very slow path, it is very acceptable.
92 	 * Initially cache_bh[] will be given practically enough space and once
93 	 * it is expanded, expansion wouldn't be needed again ever.
94 	 */
95 	mem = mlx5_realloc(bt->table, MLX5_MEM_RTE | MLX5_MEM_ZERO,
96 			   n * sizeof(struct mr_cache_entry), 0, SOCKET_ID_ANY);
97 	if (mem == NULL) {
98 		/* Not an error, B-tree search will be skipped. */
99 		DRV_LOG(WARNING, "failed to expand MR B-tree (%p) table",
100 			(void *)bt);
101 		ret = -1;
102 	} else {
103 		DRV_LOG(DEBUG, "expanded MR B-tree table (size=%u)", n);
104 		bt->table = mem;
105 		bt->size = n;
106 	}
107 	return ret;
108 }
109 
110 /**
111  * Look up LKey from given B-tree lookup table, store the last index and return
112  * searched LKey.
113  *
114  * @param bt
115  *   Pointer to B-tree structure.
116  * @param[out] idx
117  *   Pointer to index. Even on search failure, returns index where it stops
118  *   searching so that index can be used when inserting a new entry.
119  * @param addr
120  *   Search key.
121  *
122  * @return
123  *   Searched LKey on success, UINT32_MAX on no match.
124  */
125 static uint32_t
mr_btree_lookup(struct mlx5_mr_btree * bt,uint32_t * idx,uintptr_t addr)126 mr_btree_lookup(struct mlx5_mr_btree *bt, uint32_t *idx, uintptr_t addr)
127 {
128 	struct mr_cache_entry *lkp_tbl;
129 	uint32_t n;
130 	uint32_t base = 0;
131 
132 	MLX5_ASSERT(bt != NULL);
133 	lkp_tbl = *bt->table;
134 	n = bt->len;
135 	/* First entry must be NULL for comparison. */
136 	MLX5_ASSERT(bt->len > 0 || (lkp_tbl[0].start == 0 &&
137 				    lkp_tbl[0].lkey == UINT32_MAX));
138 	/* Binary search. */
139 	do {
140 		register uint32_t delta = n >> 1;
141 
142 		if (addr < lkp_tbl[base + delta].start) {
143 			n = delta;
144 		} else {
145 			base += delta;
146 			n -= delta;
147 		}
148 	} while (n > 1);
149 	MLX5_ASSERT(addr >= lkp_tbl[base].start);
150 	*idx = base;
151 	if (addr < lkp_tbl[base].end)
152 		return lkp_tbl[base].lkey;
153 	/* Not found. */
154 	return UINT32_MAX;
155 }
156 
157 /**
158  * Insert an entry to B-tree lookup table.
159  *
160  * @param bt
161  *   Pointer to B-tree structure.
162  * @param entry
163  *   Pointer to new entry to insert.
164  *
165  * @return
166  *   0 on success, -1 on failure.
167  */
168 static int
mr_btree_insert(struct mlx5_mr_btree * bt,struct mr_cache_entry * entry)169 mr_btree_insert(struct mlx5_mr_btree *bt, struct mr_cache_entry *entry)
170 {
171 	struct mr_cache_entry *lkp_tbl;
172 	uint32_t idx = 0;
173 	size_t shift;
174 
175 	MLX5_ASSERT(bt != NULL);
176 	MLX5_ASSERT(bt->len <= bt->size);
177 	MLX5_ASSERT(bt->len > 0);
178 	lkp_tbl = *bt->table;
179 	/* Find out the slot for insertion. */
180 	if (mr_btree_lookup(bt, &idx, entry->start) != UINT32_MAX) {
181 		DRV_LOG(DEBUG,
182 			"abort insertion to B-tree(%p): already exist at"
183 			" idx=%u [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
184 			(void *)bt, idx, entry->start, entry->end, entry->lkey);
185 		/* Already exist, return. */
186 		return 0;
187 	}
188 	/* Caller must ensure that there is enough place for a new entry. */
189 	MLX5_ASSERT(bt->len < bt->size);
190 	/* Insert entry. */
191 	++idx;
192 	shift = (bt->len - idx) * sizeof(struct mr_cache_entry);
193 	if (shift)
194 		memmove(&lkp_tbl[idx + 1], &lkp_tbl[idx], shift);
195 	lkp_tbl[idx] = *entry;
196 	bt->len++;
197 	DRV_LOG(DEBUG,
198 		"inserted B-tree(%p)[%u],"
199 		" [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
200 		(void *)bt, idx, entry->start, entry->end, entry->lkey);
201 	return 0;
202 }
203 
204 /**
205  * Initialize B-tree and allocate memory for lookup table.
206  *
207  * @param bt
208  *   Pointer to B-tree structure.
209  * @param n
210  *   Number of entries to allocate.
211  * @param socket
212  *   NUMA socket on which memory must be allocated.
213  *
214  * @return
215  *   0 on success, a negative errno value otherwise and rte_errno is set.
216  */
217 static int
mlx5_mr_btree_init(struct mlx5_mr_btree * bt,int n,int socket)218 mlx5_mr_btree_init(struct mlx5_mr_btree *bt, int n, int socket)
219 {
220 	if (bt == NULL) {
221 		rte_errno = EINVAL;
222 		return -rte_errno;
223 	}
224 	MLX5_ASSERT(!bt->table && !bt->size);
225 	memset(bt, 0, sizeof(*bt));
226 	bt->table = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO,
227 				sizeof(struct mr_cache_entry) * n,
228 				0, socket);
229 	if (bt->table == NULL) {
230 		rte_errno = ENOMEM;
231 		DRV_LOG(DEBUG,
232 			"failed to allocate memory for btree cache on socket "
233 			"%d", socket);
234 		return -rte_errno;
235 	}
236 	bt->size = n;
237 	/* First entry must be NULL for binary search. */
238 	(*bt->table)[bt->len++] = (struct mr_cache_entry) {
239 		.lkey = UINT32_MAX,
240 	};
241 	DRV_LOG(DEBUG, "initialized B-tree %p with table %p",
242 	      (void *)bt, (void *)bt->table);
243 	return 0;
244 }
245 
246 /**
247  * Free B-tree resources.
248  *
249  * @param bt
250  *   Pointer to B-tree structure.
251  */
252 void
mlx5_mr_btree_free(struct mlx5_mr_btree * bt)253 mlx5_mr_btree_free(struct mlx5_mr_btree *bt)
254 {
255 	if (bt == NULL)
256 		return;
257 	DRV_LOG(DEBUG, "freeing B-tree %p with table %p",
258 	      (void *)bt, (void *)bt->table);
259 	mlx5_free(bt->table);
260 	memset(bt, 0, sizeof(*bt));
261 }
262 
263 /**
264  * Dump all the entries in a B-tree
265  *
266  * @param bt
267  *   Pointer to B-tree structure.
268  */
269 void
mlx5_mr_btree_dump(struct mlx5_mr_btree * bt __rte_unused)270 mlx5_mr_btree_dump(struct mlx5_mr_btree *bt __rte_unused)
271 {
272 #ifdef RTE_LIBRTE_MLX5_DEBUG
273 	uint32_t idx;
274 	struct mr_cache_entry *lkp_tbl;
275 
276 	if (bt == NULL)
277 		return;
278 	lkp_tbl = *bt->table;
279 	for (idx = 0; idx < bt->len; ++idx) {
280 		struct mr_cache_entry *entry = &lkp_tbl[idx];
281 
282 		DRV_LOG(DEBUG, "B-tree(%p)[%u],"
283 		      " [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
284 		      (void *)bt, idx, entry->start, entry->end, entry->lkey);
285 	}
286 #endif
287 }
288 
289 /**
290  * Initialize per-queue MR control descriptor.
291  *
292  * @param mr_ctrl
293  *   Pointer to MR control structure.
294  * @param dev_gen_ptr
295  *   Pointer to generation number of global cache.
296  * @param socket
297  *   NUMA socket on which memory must be allocated.
298  *
299  * @return
300  *   0 on success, a negative errno value otherwise and rte_errno is set.
301  */
302 int
mlx5_mr_ctrl_init(struct mlx5_mr_ctrl * mr_ctrl,uint32_t * dev_gen_ptr,int socket)303 mlx5_mr_ctrl_init(struct mlx5_mr_ctrl *mr_ctrl, uint32_t *dev_gen_ptr,
304 		  int socket)
305 {
306 	if (mr_ctrl == NULL) {
307 		rte_errno = EINVAL;
308 		return -rte_errno;
309 	}
310 	/* Save pointer of global generation number to check memory event. */
311 	mr_ctrl->dev_gen_ptr = dev_gen_ptr;
312 	/* Initialize B-tree and allocate memory for bottom-half cache table. */
313 	return mlx5_mr_btree_init(&mr_ctrl->cache_bh, MLX5_MR_BTREE_CACHE_N,
314 				  socket);
315 }
316 
317 /**
318  * Find virtually contiguous memory chunk in a given MR.
319  *
320  * @param dev
321  *   Pointer to MR structure.
322  * @param[out] entry
323  *   Pointer to returning MR cache entry. If not found, this will not be
324  *   updated.
325  * @param start_idx
326  *   Start index of the memseg bitmap.
327  *
328  * @return
329  *   Next index to go on lookup.
330  */
331 static int
mr_find_next_chunk(struct mlx5_mr * mr,struct mr_cache_entry * entry,int base_idx)332 mr_find_next_chunk(struct mlx5_mr *mr, struct mr_cache_entry *entry,
333 		   int base_idx)
334 {
335 	uintptr_t start = 0;
336 	uintptr_t end = 0;
337 	uint32_t idx = 0;
338 
339 	/* MR for external memory doesn't have memseg list. */
340 	if (mr->msl == NULL) {
341 		MLX5_ASSERT(mr->ms_bmp_n == 1);
342 		MLX5_ASSERT(mr->ms_n == 1);
343 		MLX5_ASSERT(base_idx == 0);
344 		/*
345 		 * Can't search it from memseg list but get it directly from
346 		 * pmd_mr as there's only one chunk.
347 		 */
348 		entry->start = (uintptr_t)mr->pmd_mr.addr;
349 		entry->end = (uintptr_t)mr->pmd_mr.addr + mr->pmd_mr.len;
350 		entry->lkey = rte_cpu_to_be_32(mr->pmd_mr.lkey);
351 		/* Returning 1 ends iteration. */
352 		return 1;
353 	}
354 	for (idx = base_idx; idx < mr->ms_bmp_n; ++idx) {
355 		if (rte_bitmap_get(mr->ms_bmp, idx)) {
356 			const struct rte_memseg_list *msl;
357 			const struct rte_memseg *ms;
358 
359 			msl = mr->msl;
360 			ms = rte_fbarray_get(&msl->memseg_arr,
361 					     mr->ms_base_idx + idx);
362 			MLX5_ASSERT(msl->page_sz == ms->hugepage_sz);
363 			if (!start)
364 				start = ms->addr_64;
365 			end = ms->addr_64 + ms->hugepage_sz;
366 		} else if (start) {
367 			/* Passed the end of a fragment. */
368 			break;
369 		}
370 	}
371 	if (start) {
372 		/* Found one chunk. */
373 		entry->start = start;
374 		entry->end = end;
375 		entry->lkey = rte_cpu_to_be_32(mr->pmd_mr.lkey);
376 	}
377 	return idx;
378 }
379 
380 /**
381  * Insert a MR to the global B-tree cache. It may fail due to low-on-memory.
382  * Then, this entry will have to be searched by mr_lookup_list() in
383  * mlx5_mr_create() on miss.
384  *
385  * @param share_cache
386  *   Pointer to a global shared MR cache.
387  * @param mr
388  *   Pointer to MR to insert.
389  *
390  * @return
391  *   0 on success, -1 on failure.
392  */
393 int
mlx5_mr_insert_cache(struct mlx5_mr_share_cache * share_cache,struct mlx5_mr * mr)394 mlx5_mr_insert_cache(struct mlx5_mr_share_cache *share_cache,
395 		     struct mlx5_mr *mr)
396 {
397 	unsigned int n;
398 
399 	DRV_LOG(DEBUG, "Inserting MR(%p) to global cache(%p)",
400 		(void *)mr, (void *)share_cache);
401 	for (n = 0; n < mr->ms_bmp_n; ) {
402 		struct mr_cache_entry entry;
403 
404 		memset(&entry, 0, sizeof(entry));
405 		/* Find a contiguous chunk and advance the index. */
406 		n = mr_find_next_chunk(mr, &entry, n);
407 		if (!entry.end)
408 			break;
409 		if (mr_btree_insert(&share_cache->cache, &entry) < 0)
410 			return -1;
411 	}
412 	return 0;
413 }
414 
415 /**
416  * Look up address in the original global MR list.
417  *
418  * @param share_cache
419  *   Pointer to a global shared MR cache.
420  * @param[out] entry
421  *   Pointer to returning MR cache entry. If no match, this will not be updated.
422  * @param addr
423  *   Search key.
424  *
425  * @return
426  *   Found MR on match, NULL otherwise.
427  */
428 struct mlx5_mr *
mlx5_mr_lookup_list(struct mlx5_mr_share_cache * share_cache,struct mr_cache_entry * entry,uintptr_t addr)429 mlx5_mr_lookup_list(struct mlx5_mr_share_cache *share_cache,
430 		    struct mr_cache_entry *entry, uintptr_t addr)
431 {
432 	struct mlx5_mr *mr;
433 
434 	/* Iterate all the existing MRs. */
435 	LIST_FOREACH(mr, &share_cache->mr_list, mr) {
436 		unsigned int n;
437 
438 		if (mr->ms_n == 0)
439 			continue;
440 		for (n = 0; n < mr->ms_bmp_n; ) {
441 			struct mr_cache_entry ret;
442 
443 			memset(&ret, 0, sizeof(ret));
444 			n = mr_find_next_chunk(mr, &ret, n);
445 			if (addr >= ret.start && addr < ret.end) {
446 				/* Found. */
447 				*entry = ret;
448 				return mr;
449 			}
450 		}
451 	}
452 	return NULL;
453 }
454 
455 /**
456  * Look up address on global MR cache.
457  *
458  * @param share_cache
459  *   Pointer to a global shared MR cache.
460  * @param[out] entry
461  *   Pointer to returning MR cache entry. If no match, this will not be updated.
462  * @param addr
463  *   Search key.
464  *
465  * @return
466  *   Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
467  */
468 static uint32_t
mlx5_mr_lookup_cache(struct mlx5_mr_share_cache * share_cache,struct mr_cache_entry * entry,uintptr_t addr)469 mlx5_mr_lookup_cache(struct mlx5_mr_share_cache *share_cache,
470 		     struct mr_cache_entry *entry, uintptr_t addr)
471 {
472 	uint32_t idx;
473 	uint32_t lkey;
474 
475 	lkey = mr_btree_lookup(&share_cache->cache, &idx, addr);
476 	if (lkey != UINT32_MAX)
477 		*entry = (*share_cache->cache.table)[idx];
478 	MLX5_ASSERT(lkey == UINT32_MAX || (addr >= entry->start &&
479 					   addr < entry->end));
480 	return lkey;
481 }
482 
483 /**
484  * Free MR resources. MR lock must not be held to avoid a deadlock. rte_free()
485  * can raise memory free event and the callback function will spin on the lock.
486  *
487  * @param mr
488  *   Pointer to MR to free.
489  */
490 void
mlx5_mr_free(struct mlx5_mr * mr,mlx5_dereg_mr_t dereg_mr_cb)491 mlx5_mr_free(struct mlx5_mr *mr, mlx5_dereg_mr_t dereg_mr_cb)
492 {
493 	if (mr == NULL)
494 		return;
495 	DRV_LOG(DEBUG, "freeing MR(%p):", (void *)mr);
496 	dereg_mr_cb(&mr->pmd_mr);
497 	rte_bitmap_free(mr->ms_bmp);
498 	mlx5_free(mr);
499 }
500 
501 void
mlx5_mr_rebuild_cache(struct mlx5_mr_share_cache * share_cache)502 mlx5_mr_rebuild_cache(struct mlx5_mr_share_cache *share_cache)
503 {
504 	struct mlx5_mr *mr;
505 
506 	DRV_LOG(DEBUG, "Rebuild dev cache[] %p", (void *)share_cache);
507 	/* Flush cache to rebuild. */
508 	share_cache->cache.len = 1;
509 	/* Iterate all the existing MRs. */
510 	LIST_FOREACH(mr, &share_cache->mr_list, mr)
511 		if (mlx5_mr_insert_cache(share_cache, mr) < 0)
512 			return;
513 }
514 
515 /**
516  * Release resources of detached MR having no online entry.
517  *
518  * @param share_cache
519  *   Pointer to a global shared MR cache.
520  */
521 static void
mlx5_mr_garbage_collect(struct mlx5_mr_share_cache * share_cache)522 mlx5_mr_garbage_collect(struct mlx5_mr_share_cache *share_cache)
523 {
524 	struct mlx5_mr *mr_next;
525 	struct mlx5_mr_list free_list = LIST_HEAD_INITIALIZER(free_list);
526 
527 	/* Must be called from the primary process. */
528 	MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY);
529 	/*
530 	 * MR can't be freed with holding the lock because rte_free() could call
531 	 * memory free callback function. This will be a deadlock situation.
532 	 */
533 	rte_rwlock_write_lock(&share_cache->rwlock);
534 	/* Detach the whole free list and release it after unlocking. */
535 	free_list = share_cache->mr_free_list;
536 	LIST_INIT(&share_cache->mr_free_list);
537 	rte_rwlock_write_unlock(&share_cache->rwlock);
538 	/* Release resources. */
539 	mr_next = LIST_FIRST(&free_list);
540 	while (mr_next != NULL) {
541 		struct mlx5_mr *mr = mr_next;
542 
543 		mr_next = LIST_NEXT(mr, mr);
544 		mlx5_mr_free(mr, share_cache->dereg_mr_cb);
545 	}
546 }
547 
548 /* Called during rte_memseg_contig_walk() by mlx5_mr_create(). */
549 static int
mr_find_contig_memsegs_cb(const struct rte_memseg_list * msl,const struct rte_memseg * ms,size_t len,void * arg)550 mr_find_contig_memsegs_cb(const struct rte_memseg_list *msl,
551 			  const struct rte_memseg *ms, size_t len, void *arg)
552 {
553 	struct mr_find_contig_memsegs_data *data = arg;
554 
555 	if (data->addr < ms->addr_64 || data->addr >= ms->addr_64 + len)
556 		return 0;
557 	/* Found, save it and stop walking. */
558 	data->start = ms->addr_64;
559 	data->end = ms->addr_64 + len;
560 	data->msl = msl;
561 	return 1;
562 }
563 
564 /**
565  * Get the number of virtually-contiguous chunks in the MR.
566  * HW MR does not need to be already created to use this function.
567  *
568  * @param mr
569  *   Pointer to the MR.
570  *
571  * @return
572  *   Number of chunks.
573  */
574 static uint32_t
mr_get_chunk_count(const struct mlx5_mr * mr)575 mr_get_chunk_count(const struct mlx5_mr *mr)
576 {
577 	uint32_t i, count = 0;
578 	bool was_in_chunk = false;
579 	bool is_in_chunk;
580 
581 	/* There is only one chunk in case of external memory. */
582 	if (mr->msl == NULL)
583 		return 1;
584 	for (i = 0; i < mr->ms_bmp_n; i++) {
585 		is_in_chunk = rte_bitmap_get(mr->ms_bmp, i);
586 		if (!was_in_chunk && is_in_chunk)
587 			count++;
588 		was_in_chunk = is_in_chunk;
589 	}
590 	return count;
591 }
592 
593 /**
594  * Thread-safely expand the global MR cache to at least @p new_size slots.
595  *
596  * @param share_cache
597  *  Shared MR cache for locking.
598  * @param new_size
599  *  Desired cache size.
600  * @param socket
601  *  NUMA node.
602  *
603  * @return
604  *  0 in success, negative on failure and rte_errno is set.
605  */
606 int
mlx5_mr_expand_cache(struct mlx5_mr_share_cache * share_cache,uint32_t size,int socket)607 mlx5_mr_expand_cache(struct mlx5_mr_share_cache *share_cache,
608 		     uint32_t size, int socket)
609 {
610 	struct mlx5_mr_btree cache = {0};
611 	struct mlx5_mr_btree *bt;
612 	struct mr_cache_entry *lkp_tbl;
613 	int ret;
614 
615 	size = rte_align32pow2(size);
616 	ret = mlx5_mr_btree_init(&cache, size, socket);
617 	if (ret < 0)
618 		return ret;
619 	rte_rwlock_write_lock(&share_cache->rwlock);
620 	bt = &share_cache->cache;
621 	lkp_tbl = *bt->table;
622 	if (cache.size > bt->size) {
623 		rte_memcpy(cache.table, lkp_tbl, bt->len * sizeof(lkp_tbl[0]));
624 		RTE_SWAP(*bt, cache);
625 		DRV_LOG(DEBUG, "Global MR cache expanded to %u slots", size);
626 	}
627 	rte_rwlock_write_unlock(&share_cache->rwlock);
628 	mlx5_mr_btree_free(&cache);
629 	return 0;
630 }
631 
632 /**
633  * Create a new global Memory Region (MR) for a missing virtual address.
634  * This API should be called on a secondary process, then a request is sent to
635  * the primary process in order to create a MR for the address. As the global MR
636  * list is on the shared memory, following LKey lookup should succeed unless the
637  * request fails.
638  *
639  * @param cdev
640  *   Pointer to the mlx5 common device.
641  * @param share_cache
642  *   Pointer to a global shared MR cache.
643  * @param[out] entry
644  *   Pointer to returning MR cache entry, found in the global cache or newly
645  *   created. If failed to create one, this will not be updated.
646  * @param addr
647  *   Target virtual address to register.
648  *
649  * @return
650  *   Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
651  */
652 static uint32_t
mlx5_mr_create_secondary(struct mlx5_common_device * cdev,struct mlx5_mr_share_cache * share_cache,struct mr_cache_entry * entry,uintptr_t addr)653 mlx5_mr_create_secondary(struct mlx5_common_device *cdev,
654 			 struct mlx5_mr_share_cache *share_cache,
655 			 struct mr_cache_entry *entry, uintptr_t addr)
656 {
657 	int ret;
658 
659 	DRV_LOG(DEBUG, "Requesting MR creation for address (%p)", (void *)addr);
660 	ret = mlx5_mp_req_mr_create(cdev, addr);
661 	if (ret) {
662 		DRV_LOG(DEBUG, "Fail to request MR creation for address (%p)",
663 			(void *)addr);
664 		return UINT32_MAX;
665 	}
666 	rte_rwlock_read_lock(&share_cache->rwlock);
667 	/* Fill in output data. */
668 	mlx5_mr_lookup_cache(share_cache, entry, addr);
669 	/* Lookup can't fail. */
670 	MLX5_ASSERT(entry->lkey != UINT32_MAX);
671 	rte_rwlock_read_unlock(&share_cache->rwlock);
672 	DRV_LOG(DEBUG, "MR CREATED by primary process for %p:\n"
673 		"  [0x%" PRIxPTR ", 0x%" PRIxPTR "), lkey=0x%x",
674 		(void *)addr, entry->start, entry->end, entry->lkey);
675 	return entry->lkey;
676 }
677 
678 /**
679  * Create a new global Memory Region (MR) for a missing virtual address.
680  * Register entire virtually contiguous memory chunk around the address.
681  *
682  * @param pd
683  *   Pointer to pd of a device (net, regex, vdpa,...).
684  * @param share_cache
685  *   Pointer to a global shared MR cache.
686  * @param[out] entry
687  *   Pointer to returning MR cache entry, found in the global cache or newly
688  *   created. If failed to create one, this will not be updated.
689  * @param addr
690  *   Target virtual address to register.
691  * @param mr_ext_memseg_en
692  *   Configurable flag about external memory segment enable or not.
693  *
694  * @return
695  *   Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
696  */
697 static uint32_t
mlx5_mr_create_primary(void * pd,struct mlx5_mr_share_cache * share_cache,struct mr_cache_entry * entry,uintptr_t addr,unsigned int mr_ext_memseg_en)698 mlx5_mr_create_primary(void *pd,
699 		       struct mlx5_mr_share_cache *share_cache,
700 		       struct mr_cache_entry *entry, uintptr_t addr,
701 		       unsigned int mr_ext_memseg_en)
702 {
703 	struct mr_find_contig_memsegs_data data = {.addr = addr, };
704 	struct mr_find_contig_memsegs_data data_re;
705 	const struct rte_memseg_list *msl;
706 	const struct rte_memseg *ms;
707 	struct mlx5_mr_btree *bt;
708 	struct mlx5_mr *mr = NULL;
709 	int ms_idx_shift = -1;
710 	uint32_t bmp_size;
711 	void *bmp_mem;
712 	uint32_t ms_n;
713 	uint32_t n;
714 	uint32_t chunks_n;
715 	size_t len;
716 
717 	DRV_LOG(DEBUG, "Creating a MR using address (%p)", (void *)addr);
718 	/*
719 	 * Release detached MRs if any. This can't be called with holding either
720 	 * memory_hotplug_lock or share_cache->rwlock. MRs on the free list have
721 	 * been detached by the memory free event but it couldn't be released
722 	 * inside the callback due to deadlock. As a result, releasing resources
723 	 * is quite opportunistic.
724 	 */
725 	mlx5_mr_garbage_collect(share_cache);
726 find_range:
727 	/*
728 	 * If enabled, find out a contiguous virtual address chunk in use, to
729 	 * which the given address belongs, in order to register maximum range.
730 	 * In the best case where mempools are not dynamically recreated and
731 	 * '--socket-mem' is specified as an EAL option, it is very likely to
732 	 * have only one MR(LKey) per a socket and per a hugepage-size even
733 	 * though the system memory is highly fragmented. As the whole memory
734 	 * chunk will be pinned by kernel, it can't be reused unless entire
735 	 * chunk is freed from EAL.
736 	 *
737 	 * If disabled, just register one memseg (page). Then, memory
738 	 * consumption will be minimized but it may drop performance if there
739 	 * are many MRs to lookup on the datapath.
740 	 */
741 	if (!mr_ext_memseg_en) {
742 		data.msl = rte_mem_virt2memseg_list((void *)addr);
743 		data.start = RTE_ALIGN_FLOOR(addr, data.msl->page_sz);
744 		data.end = data.start + data.msl->page_sz;
745 	} else if (!rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data)) {
746 		DRV_LOG(WARNING,
747 			"Unable to find virtually contiguous"
748 			" chunk for address (%p)."
749 			" rte_memseg_contig_walk() failed.", (void *)addr);
750 		rte_errno = ENXIO;
751 		goto err_nolock;
752 	}
753 alloc_resources:
754 	/* Addresses must be page-aligned. */
755 	MLX5_ASSERT(data.msl);
756 	MLX5_ASSERT(rte_is_aligned((void *)data.start, data.msl->page_sz));
757 	MLX5_ASSERT(rte_is_aligned((void *)data.end, data.msl->page_sz));
758 	msl = data.msl;
759 	ms = rte_mem_virt2memseg((void *)data.start, msl);
760 	len = data.end - data.start;
761 	MLX5_ASSERT(ms);
762 	MLX5_ASSERT(msl->page_sz == ms->hugepage_sz);
763 	/* Number of memsegs in the range. */
764 	ms_n = len / msl->page_sz;
765 	DRV_LOG(DEBUG, "Extending %p to [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
766 	      " page_sz=0x%" PRIx64 ", ms_n=%u",
767 	      (void *)addr, data.start, data.end, msl->page_sz, ms_n);
768 	/* Size of memory for bitmap. */
769 	bmp_size = rte_bitmap_get_memory_footprint(ms_n);
770 	mr = mlx5_malloc(MLX5_MEM_RTE |  MLX5_MEM_ZERO,
771 			 RTE_ALIGN_CEIL(sizeof(*mr), RTE_CACHE_LINE_SIZE) +
772 			 bmp_size, RTE_CACHE_LINE_SIZE, msl->socket_id);
773 	if (mr == NULL) {
774 		DRV_LOG(DEBUG, "Unable to allocate memory for a new MR of"
775 		      " address (%p).", (void *)addr);
776 		rte_errno = ENOMEM;
777 		goto err_nolock;
778 	}
779 	mr->msl = msl;
780 	/*
781 	 * Save the index of the first memseg and initialize memseg bitmap. To
782 	 * see if a memseg of ms_idx in the memseg-list is still valid, check:
783 	 *	rte_bitmap_get(mr->bmp, ms_idx - mr->ms_base_idx)
784 	 */
785 	mr->ms_base_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
786 	bmp_mem = RTE_PTR_ALIGN_CEIL(mr + 1, RTE_CACHE_LINE_SIZE);
787 	mr->ms_bmp = rte_bitmap_init(ms_n, bmp_mem, bmp_size);
788 	if (mr->ms_bmp == NULL) {
789 		DRV_LOG(DEBUG, "Unable to initialize bitmap for a new MR of"
790 		      " address (%p).", (void *)addr);
791 		rte_errno = EINVAL;
792 		goto err_nolock;
793 	}
794 	/*
795 	 * Should recheck whether the extended contiguous chunk is still valid.
796 	 * Because memory_hotplug_lock can't be held if there's any memory
797 	 * related calls in a critical path, resource allocation above can't be
798 	 * locked. If the memory has been changed at this point, try again with
799 	 * just single page. If not, go on with the big chunk atomically from
800 	 * here.
801 	 */
802 	rte_mcfg_mem_read_lock();
803 	data_re = data;
804 	if (len > msl->page_sz &&
805 	    !rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data_re)) {
806 		DRV_LOG(DEBUG,
807 			"Unable to find virtually contiguous chunk for address "
808 			"(%p). rte_memseg_contig_walk() failed.", (void *)addr);
809 		rte_errno = ENXIO;
810 		goto err_memlock;
811 	}
812 	if (data.start != data_re.start || data.end != data_re.end) {
813 		/*
814 		 * The extended contiguous chunk has been changed. Try again
815 		 * with single memseg instead.
816 		 */
817 		data.start = RTE_ALIGN_FLOOR(addr, msl->page_sz);
818 		data.end = data.start + msl->page_sz;
819 		rte_mcfg_mem_read_unlock();
820 		mlx5_mr_free(mr, share_cache->dereg_mr_cb);
821 		goto alloc_resources;
822 	}
823 	MLX5_ASSERT(data.msl == data_re.msl);
824 	rte_rwlock_write_lock(&share_cache->rwlock);
825 	/*
826 	 * Check the address is really missing. If other thread already created
827 	 * one or it is not found due to overflow, abort and return.
828 	 */
829 	if (mlx5_mr_lookup_cache(share_cache, entry, addr) != UINT32_MAX) {
830 		/*
831 		 * Insert to the global cache table. It may fail due to
832 		 * low-on-memory. Then, this entry will have to be searched
833 		 * here again.
834 		 */
835 		mr_btree_insert(&share_cache->cache, entry);
836 		DRV_LOG(DEBUG, "Found MR for %p on final lookup, abort",
837 			(void *)addr);
838 		rte_rwlock_write_unlock(&share_cache->rwlock);
839 		rte_mcfg_mem_read_unlock();
840 		/*
841 		 * Must be unlocked before calling rte_free() because
842 		 * mlx5_mr_mem_event_free_cb() can be called inside.
843 		 */
844 		mlx5_mr_free(mr, share_cache->dereg_mr_cb);
845 		return entry->lkey;
846 	}
847 	/*
848 	 * Trim start and end addresses for verbs MR. Set bits for registering
849 	 * memsegs but exclude already registered ones. Bitmap can be
850 	 * fragmented.
851 	 */
852 	for (n = 0; n < ms_n; ++n) {
853 		uintptr_t start;
854 		struct mr_cache_entry ret;
855 
856 		memset(&ret, 0, sizeof(ret));
857 		start = data_re.start + n * msl->page_sz;
858 		/* Exclude memsegs already registered by other MRs. */
859 		if (mlx5_mr_lookup_cache(share_cache, &ret, start) ==
860 		    UINT32_MAX) {
861 			/*
862 			 * Start from the first unregistered memseg in the
863 			 * extended range.
864 			 */
865 			if (ms_idx_shift == -1) {
866 				mr->ms_base_idx += n;
867 				data.start = start;
868 				ms_idx_shift = n;
869 			}
870 			data.end = start + msl->page_sz;
871 			rte_bitmap_set(mr->ms_bmp, n - ms_idx_shift);
872 			++mr->ms_n;
873 		}
874 	}
875 	len = data.end - data.start;
876 	mr->ms_bmp_n = len / msl->page_sz;
877 	MLX5_ASSERT(ms_idx_shift + mr->ms_bmp_n <= ms_n);
878 	/*
879 	 * It is now known how many entries will be used in the global cache.
880 	 * If there is not enough, expand the cache.
881 	 * This cannot be done while holding the memory hotplug lock.
882 	 * While it is released, memory layout may change,
883 	 * so the process must be repeated from the beginning.
884 	 */
885 	bt = &share_cache->cache;
886 	chunks_n = mr_get_chunk_count(mr);
887 	if (bt->len + chunks_n > bt->size) {
888 		struct mlx5_common_device *cdev;
889 		uint32_t size;
890 
891 		size = bt->size + chunks_n;
892 		MLX5_ASSERT(size > bt->size);
893 		cdev = container_of(share_cache, struct mlx5_common_device,
894 				    mr_scache);
895 		rte_rwlock_write_unlock(&share_cache->rwlock);
896 		rte_mcfg_mem_read_unlock();
897 		if (mlx5_mr_expand_cache(share_cache, size,
898 					 cdev->dev->numa_node) < 0) {
899 			DRV_LOG(ERR, "Failed to expand global MR cache to %u slots",
900 				size);
901 			goto err_nolock;
902 		}
903 		goto find_range;
904 	}
905 	/*
906 	 * Finally create an MR for the memory chunk. Verbs: ibv_reg_mr() can
907 	 * be called with holding the memory lock because it doesn't use
908 	 * mlx5_alloc_buf_extern() which eventually calls rte_malloc_socket()
909 	 * through mlx5_alloc_verbs_buf().
910 	 */
911 	share_cache->reg_mr_cb(pd, (void *)data.start, len, &mr->pmd_mr);
912 	if (mr->pmd_mr.obj == NULL) {
913 		DRV_LOG(DEBUG, "Fail to create an MR for address (%p)",
914 		      (void *)addr);
915 		rte_errno = EINVAL;
916 		goto err_mrlock;
917 	}
918 	MLX5_ASSERT((uintptr_t)mr->pmd_mr.addr == data.start);
919 	MLX5_ASSERT(mr->pmd_mr.len);
920 	LIST_INSERT_HEAD(&share_cache->mr_list, mr, mr);
921 	DRV_LOG(DEBUG, "MR CREATED (%p) for %p:\n"
922 	      "  [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
923 	      " lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u",
924 	      (void *)mr, (void *)addr, data.start, data.end,
925 	      rte_cpu_to_be_32(mr->pmd_mr.lkey),
926 	      mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n);
927 	/* Insert to the global cache table. */
928 	mlx5_mr_insert_cache(share_cache, mr);
929 	/* Fill in output data. */
930 	mlx5_mr_lookup_cache(share_cache, entry, addr);
931 	/* Lookup can't fail. */
932 	MLX5_ASSERT(entry->lkey != UINT32_MAX);
933 	rte_rwlock_write_unlock(&share_cache->rwlock);
934 	rte_mcfg_mem_read_unlock();
935 	return entry->lkey;
936 err_mrlock:
937 	rte_rwlock_write_unlock(&share_cache->rwlock);
938 err_memlock:
939 	rte_mcfg_mem_read_unlock();
940 err_nolock:
941 	/*
942 	 * In case of error, as this can be called in a datapath, a warning
943 	 * message per an error is preferable instead. Must be unlocked before
944 	 * calling rte_free() because mlx5_mr_mem_event_free_cb() can be called
945 	 * inside.
946 	 */
947 	mlx5_mr_free(mr, share_cache->dereg_mr_cb);
948 	return UINT32_MAX;
949 }
950 
951 /**
952  * Create a new global Memory Region (MR) for a missing virtual address.
953  * This can be called from primary and secondary process.
954  *
955  * @param cdev
956  *   Pointer to the mlx5 common device.
957  * @param share_cache
958  *   Pointer to a global shared MR cache.
959  * @param[out] entry
960  *   Pointer to returning MR cache entry, found in the global cache or newly
961  *   created. If failed to create one, this will not be updated.
962  * @param addr
963  *   Target virtual address to register.
964  *
965  * @return
966  *   Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
967  */
968 uint32_t
mlx5_mr_create(struct mlx5_common_device * cdev,struct mlx5_mr_share_cache * share_cache,struct mr_cache_entry * entry,uintptr_t addr)969 mlx5_mr_create(struct mlx5_common_device *cdev,
970 	       struct mlx5_mr_share_cache *share_cache,
971 	       struct mr_cache_entry *entry, uintptr_t addr)
972 {
973 	uint32_t ret = 0;
974 
975 	switch (rte_eal_process_type()) {
976 	case RTE_PROC_PRIMARY:
977 		ret = mlx5_mr_create_primary(cdev->pd, share_cache, entry, addr,
978 					     cdev->config.mr_ext_memseg_en);
979 		break;
980 	case RTE_PROC_SECONDARY:
981 		ret = mlx5_mr_create_secondary(cdev, share_cache, entry, addr);
982 		break;
983 	default:
984 		break;
985 	}
986 	return ret;
987 }
988 
989 /**
990  * Look up address in the global MR cache table. If not found, create a new MR.
991  * Insert the found/created entry to local bottom-half cache table.
992  *
993  * @param mr_ctrl
994  *   Pointer to per-queue MR control structure.
995  * @param[out] entry
996  *   Pointer to returning MR cache entry, found in the global cache or newly
997  *   created. If failed to create one, this is not written.
998  * @param addr
999  *   Search key.
1000  *
1001  * @return
1002  *   Searched LKey on success, UINT32_MAX on no match.
1003  */
1004 static uint32_t
mr_lookup_caches(struct mlx5_mr_ctrl * mr_ctrl,struct mr_cache_entry * entry,uintptr_t addr)1005 mr_lookup_caches(struct mlx5_mr_ctrl *mr_ctrl,
1006 		 struct mr_cache_entry *entry, uintptr_t addr)
1007 {
1008 	struct mlx5_mr_share_cache *share_cache =
1009 		container_of(mr_ctrl->dev_gen_ptr, struct mlx5_mr_share_cache,
1010 			     dev_gen);
1011 	struct mlx5_common_device *cdev =
1012 		container_of(share_cache, struct mlx5_common_device, mr_scache);
1013 	struct mlx5_mr_btree *bt = &mr_ctrl->cache_bh;
1014 	uint32_t lkey;
1015 	uint32_t idx;
1016 
1017 	/* If local cache table is full, try to double it. */
1018 	if (unlikely(bt->len == bt->size))
1019 		mr_btree_expand(bt, bt->size << 1);
1020 	/* Look up in the global cache. */
1021 	rte_rwlock_read_lock(&share_cache->rwlock);
1022 	lkey = mr_btree_lookup(&share_cache->cache, &idx, addr);
1023 	if (lkey != UINT32_MAX) {
1024 		/* Found. */
1025 		*entry = (*share_cache->cache.table)[idx];
1026 		rte_rwlock_read_unlock(&share_cache->rwlock);
1027 		/*
1028 		 * Update local cache. Even if it fails, return the found entry
1029 		 * to update top-half cache. Next time, this entry will be found
1030 		 * in the global cache.
1031 		 */
1032 		mr_btree_insert(bt, entry);
1033 		return lkey;
1034 	}
1035 	rte_rwlock_read_unlock(&share_cache->rwlock);
1036 	/* First time to see the address? Create a new MR. */
1037 	lkey = mlx5_mr_create(cdev, share_cache, entry, addr);
1038 	/*
1039 	 * Update the local cache if successfully created a new global MR. Even
1040 	 * if failed to create one, there's no action to take in this datapath
1041 	 * code. As returning LKey is invalid, this will eventually make HW
1042 	 * fail.
1043 	 */
1044 	if (lkey != UINT32_MAX)
1045 		mr_btree_insert(bt, entry);
1046 	return lkey;
1047 }
1048 
1049 /**
1050  * Bottom-half of LKey search on datapath. First search in cache_bh[] and if
1051  * misses, search in the global MR cache table and update the new entry to
1052  * per-queue local caches.
1053  *
1054  * @param mr_ctrl
1055  *   Pointer to per-queue MR control structure.
1056  * @param addr
1057  *   Search key.
1058  *
1059  * @return
1060  *   Searched LKey on success, UINT32_MAX on no match.
1061  */
1062 uint32_t
mlx5_mr_addr2mr_bh(struct mlx5_mr_ctrl * mr_ctrl,uintptr_t addr)1063 mlx5_mr_addr2mr_bh(struct mlx5_mr_ctrl *mr_ctrl, uintptr_t addr)
1064 {
1065 	uint32_t lkey;
1066 	uint32_t bh_idx = 0;
1067 	/* Victim in top-half cache to replace with new entry. */
1068 	struct mr_cache_entry *repl = &mr_ctrl->cache[mr_ctrl->head];
1069 
1070 	/* Binary-search MR translation table. */
1071 	lkey = mr_btree_lookup(&mr_ctrl->cache_bh, &bh_idx, addr);
1072 	/* Update top-half cache. */
1073 	if (likely(lkey != UINT32_MAX)) {
1074 		*repl = (*mr_ctrl->cache_bh.table)[bh_idx];
1075 	} else {
1076 		/*
1077 		 * If missed in local lookup table, search in the global cache
1078 		 * and local cache_bh[] will be updated inside if possible.
1079 		 * Top-half cache entry will also be updated.
1080 		 */
1081 		lkey = mr_lookup_caches(mr_ctrl, repl, addr);
1082 		if (unlikely(lkey == UINT32_MAX))
1083 			return UINT32_MAX;
1084 	}
1085 	/* Update the most recently used entry. */
1086 	mr_ctrl->mru = mr_ctrl->head;
1087 	/* Point to the next victim, the oldest. */
1088 	mr_ctrl->head = (mr_ctrl->head + 1) % MLX5_MR_CACHE_N;
1089 	return lkey;
1090 }
1091 
1092 /**
1093  * Release all the created MRs and resources on global MR cache of a device
1094  * list.
1095  *
1096  * @param share_cache
1097  *   Pointer to a global shared MR cache.
1098  */
1099 void
mlx5_mr_release_cache(struct mlx5_mr_share_cache * share_cache)1100 mlx5_mr_release_cache(struct mlx5_mr_share_cache *share_cache)
1101 {
1102 	struct mlx5_mr *mr_next;
1103 
1104 	rte_rwlock_write_lock(&share_cache->rwlock);
1105 	/* Detach from MR list and move to free list. */
1106 	mr_next = LIST_FIRST(&share_cache->mr_list);
1107 	while (mr_next != NULL) {
1108 		struct mlx5_mr *mr = mr_next;
1109 
1110 		mr_next = LIST_NEXT(mr, mr);
1111 		LIST_REMOVE(mr, mr);
1112 		LIST_INSERT_HEAD(&share_cache->mr_free_list, mr, mr);
1113 	}
1114 	LIST_INIT(&share_cache->mr_list);
1115 	/* Free global cache. */
1116 	mlx5_mr_btree_free(&share_cache->cache);
1117 	rte_rwlock_write_unlock(&share_cache->rwlock);
1118 	/* Free all remaining MRs. */
1119 	mlx5_mr_garbage_collect(share_cache);
1120 }
1121 
1122 /**
1123  * Initialize global MR cache of a device.
1124  *
1125  * @param share_cache
1126  *   Pointer to a global shared MR cache.
1127  * @param socket
1128  *   NUMA socket on which memory must be allocated.
1129  *
1130  * @return
1131  *   0 on success, a negative errno value otherwise and rte_errno is set.
1132  */
1133 int
mlx5_mr_create_cache(struct mlx5_mr_share_cache * share_cache,int socket)1134 mlx5_mr_create_cache(struct mlx5_mr_share_cache *share_cache, int socket)
1135 {
1136 	/* Set the reg_mr and dereg_mr callback functions */
1137 	mlx5_os_set_reg_mr_cb(&share_cache->reg_mr_cb,
1138 			      &share_cache->dereg_mr_cb);
1139 	rte_rwlock_init(&share_cache->rwlock);
1140 	rte_rwlock_init(&share_cache->mprwlock);
1141 	/* Initialize B-tree and allocate memory for global MR cache table. */
1142 	return mlx5_mr_btree_init(&share_cache->cache,
1143 				  MLX5_MR_BTREE_CACHE_N * 2, socket);
1144 }
1145 
1146 /**
1147  * Flush all of the local cache entries.
1148  *
1149  * @param mr_ctrl
1150  *   Pointer to per-queue MR local cache.
1151  */
1152 void
mlx5_mr_flush_local_cache(struct mlx5_mr_ctrl * mr_ctrl)1153 mlx5_mr_flush_local_cache(struct mlx5_mr_ctrl *mr_ctrl)
1154 {
1155 	/* Reset the most-recently-used index. */
1156 	mr_ctrl->mru = 0;
1157 	/* Reset the linear search array. */
1158 	mr_ctrl->head = 0;
1159 	memset(mr_ctrl->cache, 0, sizeof(mr_ctrl->cache));
1160 	/* Reset the B-tree table. */
1161 	mr_ctrl->cache_bh.len = 1;
1162 	/* Update the generation number. */
1163 	mr_ctrl->cur_gen = *mr_ctrl->dev_gen_ptr;
1164 	DRV_LOG(DEBUG, "mr_ctrl(%p): flushed, cur_gen=%d",
1165 		(void *)mr_ctrl, mr_ctrl->cur_gen);
1166 }
1167 
1168 /**
1169  * Creates a memory region for external memory, that is memory which is not
1170  * part of the DPDK memory segments.
1171  *
1172  * @param pd
1173  *   Pointer to pd of a device (net, regex, vdpa,...).
1174  * @param addr
1175  *   Starting virtual address of memory.
1176  * @param len
1177  *   Length of memory segment being mapped.
1178  * @param socked_id
1179  *   Socket to allocate heap memory for the control structures.
1180  *
1181  * @return
1182  *   Pointer to MR structure on success, NULL otherwise.
1183  */
1184 struct mlx5_mr *
mlx5_create_mr_ext(void * pd,uintptr_t addr,size_t len,int socket_id,mlx5_reg_mr_t reg_mr_cb)1185 mlx5_create_mr_ext(void *pd, uintptr_t addr, size_t len, int socket_id,
1186 		   mlx5_reg_mr_t reg_mr_cb)
1187 {
1188 	struct mlx5_mr *mr = NULL;
1189 
1190 	mr = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO,
1191 			 RTE_ALIGN_CEIL(sizeof(*mr), RTE_CACHE_LINE_SIZE),
1192 			 RTE_CACHE_LINE_SIZE, socket_id);
1193 	if (mr == NULL)
1194 		return NULL;
1195 	reg_mr_cb(pd, (void *)addr, len, &mr->pmd_mr);
1196 	if (mr->pmd_mr.obj == NULL) {
1197 		DRV_LOG(WARNING,
1198 			"Fail to create MR for address (%p)",
1199 			(void *)addr);
1200 		mlx5_free(mr);
1201 		return NULL;
1202 	}
1203 	mr->msl = NULL; /* Mark it is external memory. */
1204 	mr->ms_bmp = NULL;
1205 	mr->ms_n = 1;
1206 	mr->ms_bmp_n = 1;
1207 	DRV_LOG(DEBUG,
1208 		"MR CREATED (%p) for external memory %p:\n"
1209 		"  [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
1210 		" lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u",
1211 		(void *)mr, (void *)addr,
1212 		addr, addr + len, rte_cpu_to_be_32(mr->pmd_mr.lkey),
1213 		mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n);
1214 	return mr;
1215 }
1216 
1217 /**
1218  * Callback for memory free event. Iterate freed memsegs and check whether it
1219  * belongs to an existing MR. If found, clear the bit from bitmap of MR. As a
1220  * result, the MR would be fragmented. If it becomes empty, the MR will be freed
1221  * later by mlx5_mr_garbage_collect(). Even if this callback is called from a
1222  * secondary process, the garbage collector will be called in primary process
1223  * as the secondary process can't call mlx5_mr_create().
1224  *
1225  * The global cache must be rebuilt if there's any change and this event has to
1226  * be propagated to dataplane threads to flush the local caches.
1227  *
1228  * @param share_cache
1229  *   Pointer to a global shared MR cache.
1230  * @param ibdev_name
1231  *   Name of ibv device.
1232  * @param addr
1233  *   Address of freed memory.
1234  * @param len
1235  *   Size of freed memory.
1236  */
1237 void
mlx5_free_mr_by_addr(struct mlx5_mr_share_cache * share_cache,const char * ibdev_name,const void * addr,size_t len)1238 mlx5_free_mr_by_addr(struct mlx5_mr_share_cache *share_cache,
1239 		     const char *ibdev_name, const void *addr, size_t len)
1240 {
1241 	const struct rte_memseg_list *msl;
1242 	struct mlx5_mr *mr;
1243 	int ms_n;
1244 	int i;
1245 	int rebuild = 0;
1246 
1247 	DRV_LOG(DEBUG, "device %s free callback: addr=%p, len=%zu",
1248 		ibdev_name, addr, len);
1249 	msl = rte_mem_virt2memseg_list(addr);
1250 	/* addr and len must be page-aligned. */
1251 	MLX5_ASSERT((uintptr_t)addr ==
1252 		    RTE_ALIGN((uintptr_t)addr, msl->page_sz));
1253 	MLX5_ASSERT(len == RTE_ALIGN(len, msl->page_sz));
1254 	ms_n = len / msl->page_sz;
1255 	rte_rwlock_write_lock(&share_cache->rwlock);
1256 	/* Clear bits of freed memsegs from MR. */
1257 	for (i = 0; i < ms_n; ++i) {
1258 		const struct rte_memseg *ms;
1259 		struct mr_cache_entry entry;
1260 		uintptr_t start;
1261 		int ms_idx;
1262 		uint32_t pos;
1263 
1264 		/* Find MR having this memseg. */
1265 		start = (uintptr_t)addr + i * msl->page_sz;
1266 		mr = mlx5_mr_lookup_list(share_cache, &entry, start);
1267 		if (mr == NULL)
1268 			continue;
1269 		MLX5_ASSERT(mr->msl); /* Can't be external memory. */
1270 		ms = rte_mem_virt2memseg((void *)start, msl);
1271 		MLX5_ASSERT(ms != NULL);
1272 		MLX5_ASSERT(msl->page_sz == ms->hugepage_sz);
1273 		ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
1274 		pos = ms_idx - mr->ms_base_idx;
1275 		MLX5_ASSERT(rte_bitmap_get(mr->ms_bmp, pos));
1276 		MLX5_ASSERT(pos < mr->ms_bmp_n);
1277 		DRV_LOG(DEBUG, "device %s MR(%p): clear bitmap[%u] for addr %p",
1278 			ibdev_name, (void *)mr, pos, (void *)start);
1279 		rte_bitmap_clear(mr->ms_bmp, pos);
1280 		if (--mr->ms_n == 0) {
1281 			LIST_REMOVE(mr, mr);
1282 			LIST_INSERT_HEAD(&share_cache->mr_free_list, mr, mr);
1283 			DRV_LOG(DEBUG, "device %s remove MR(%p) from list",
1284 				ibdev_name, (void *)mr);
1285 		}
1286 		/*
1287 		 * MR is fragmented or will be freed. the global cache must be
1288 		 * rebuilt.
1289 		 */
1290 		rebuild = 1;
1291 	}
1292 	if (rebuild) {
1293 		mlx5_mr_rebuild_cache(share_cache);
1294 		/*
1295 		 * No explicit wmb is needed after updating dev_gen due to
1296 		 * store-release ordering in unlock that provides the
1297 		 * implicit barrier at the software visible level.
1298 		 */
1299 		++share_cache->dev_gen;
1300 		DRV_LOG(DEBUG, "broadcasting local cache flush, gen=%d",
1301 			share_cache->dev_gen);
1302 	}
1303 	rte_rwlock_write_unlock(&share_cache->rwlock);
1304 }
1305 
1306 /**
1307  * Dump all the created MRs and the global cache entries.
1308  *
1309  * @param share_cache
1310  *   Pointer to a global shared MR cache.
1311  */
1312 void
mlx5_mr_dump_cache(struct mlx5_mr_share_cache * share_cache __rte_unused)1313 mlx5_mr_dump_cache(struct mlx5_mr_share_cache *share_cache __rte_unused)
1314 {
1315 #ifdef RTE_LIBRTE_MLX5_DEBUG
1316 	struct mlx5_mr *mr;
1317 	int mr_n = 0;
1318 	int chunk_n = 0;
1319 
1320 	rte_rwlock_read_lock(&share_cache->rwlock);
1321 	/* Iterate all the existing MRs. */
1322 	LIST_FOREACH(mr, &share_cache->mr_list, mr) {
1323 		unsigned int n;
1324 
1325 		DRV_LOG(DEBUG, "MR[%u], LKey = 0x%x, ms_n = %u, ms_bmp_n = %u",
1326 		      mr_n++, rte_cpu_to_be_32(mr->pmd_mr.lkey),
1327 		      mr->ms_n, mr->ms_bmp_n);
1328 		if (mr->ms_n == 0)
1329 			continue;
1330 		for (n = 0; n < mr->ms_bmp_n; ) {
1331 			struct mr_cache_entry ret = { 0, };
1332 
1333 			n = mr_find_next_chunk(mr, &ret, n);
1334 			if (!ret.end)
1335 				break;
1336 			DRV_LOG(DEBUG,
1337 				"  chunk[%u], [0x%" PRIxPTR ", 0x%" PRIxPTR ")",
1338 				chunk_n++, ret.start, ret.end);
1339 		}
1340 	}
1341 	DRV_LOG(DEBUG, "Dumping global cache %p", (void *)share_cache);
1342 	mlx5_mr_btree_dump(&share_cache->cache);
1343 	rte_rwlock_read_unlock(&share_cache->rwlock);
1344 #endif
1345 }
1346 
1347 static int
mlx5_range_compare_start(const void * lhs,const void * rhs)1348 mlx5_range_compare_start(const void *lhs, const void *rhs)
1349 {
1350 	const struct mlx5_range *r1 = lhs, *r2 = rhs;
1351 
1352 	if (r1->start > r2->start)
1353 		return 1;
1354 	else if (r1->start < r2->start)
1355 		return -1;
1356 	return 0;
1357 }
1358 
1359 static void
mlx5_range_from_mempool_chunk(struct rte_mempool * mp,void * opaque,struct rte_mempool_memhdr * memhdr,unsigned int idx)1360 mlx5_range_from_mempool_chunk(struct rte_mempool *mp, void *opaque,
1361 			      struct rte_mempool_memhdr *memhdr,
1362 			      unsigned int idx)
1363 {
1364 	struct mlx5_range *ranges = opaque, *range = &ranges[idx];
1365 	uintptr_t start = (uintptr_t)memhdr->addr;
1366 	uint64_t page_size = rte_mem_page_size();
1367 
1368 	RTE_SET_USED(mp);
1369 	range->start = RTE_ALIGN_FLOOR(start, page_size);
1370 	range->end = RTE_ALIGN_CEIL(start + memhdr->len, page_size);
1371 }
1372 
1373 /**
1374  * Collect page-aligned memory ranges of the mempool.
1375  */
1376 static int
mlx5_mempool_get_chunks(struct rte_mempool * mp,struct mlx5_range ** out,unsigned int * out_n)1377 mlx5_mempool_get_chunks(struct rte_mempool *mp, struct mlx5_range **out,
1378 			unsigned int *out_n)
1379 {
1380 	unsigned int n;
1381 
1382 	DRV_LOG(DEBUG, "Collecting chunks of regular mempool %s", mp->name);
1383 	n = mp->nb_mem_chunks;
1384 	*out = calloc(n, sizeof(**out));
1385 	if (*out == NULL)
1386 		return -1;
1387 	rte_mempool_mem_iter(mp, mlx5_range_from_mempool_chunk, *out);
1388 	*out_n = n;
1389 	return 0;
1390 }
1391 
1392 struct mlx5_mempool_get_extmem_data {
1393 	struct mlx5_range *heap;
1394 	unsigned int heap_size;
1395 	int ret;
1396 };
1397 
1398 static void
mlx5_mempool_get_extmem_cb(struct rte_mempool * mp,void * opaque,void * obj,unsigned int obj_idx)1399 mlx5_mempool_get_extmem_cb(struct rte_mempool *mp, void *opaque,
1400 			   void *obj, unsigned int obj_idx)
1401 {
1402 	struct mlx5_mempool_get_extmem_data *data = opaque;
1403 	struct rte_mbuf *mbuf = obj;
1404 	uintptr_t addr = (uintptr_t)mbuf->buf_addr;
1405 	struct mlx5_range *seg, *heap;
1406 	struct rte_memseg_list *msl;
1407 	size_t page_size;
1408 	uintptr_t page_start;
1409 	unsigned int pos = 0, len = data->heap_size, delta;
1410 
1411 	RTE_SET_USED(mp);
1412 	RTE_SET_USED(obj_idx);
1413 	if (data->ret < 0)
1414 		return;
1415 	/* Binary search for an already visited page. */
1416 	while (len > 1) {
1417 		delta = len / 2;
1418 		if (addr < data->heap[pos + delta].start) {
1419 			len = delta;
1420 		} else {
1421 			pos += delta;
1422 			len -= delta;
1423 		}
1424 	}
1425 	if (data->heap != NULL) {
1426 		seg = &data->heap[pos];
1427 		if (seg->start <= addr && addr < seg->end)
1428 			return;
1429 	}
1430 	/* Determine the page boundaries and remember them. */
1431 	heap = realloc(data->heap, sizeof(heap[0]) * (data->heap_size + 1));
1432 	if (heap == NULL) {
1433 		free(data->heap);
1434 		data->heap = NULL;
1435 		data->ret = -1;
1436 		return;
1437 	}
1438 	data->heap = heap;
1439 	data->heap_size++;
1440 	seg = &heap[data->heap_size - 1];
1441 	msl = rte_mem_virt2memseg_list((void *)addr);
1442 	page_size = msl != NULL ? msl->page_sz : rte_mem_page_size();
1443 	page_start = RTE_PTR_ALIGN_FLOOR(addr, page_size);
1444 	seg->start = page_start;
1445 	seg->end = page_start + page_size;
1446 	/* Maintain the heap order. */
1447 	qsort(data->heap, data->heap_size, sizeof(heap[0]),
1448 	      mlx5_range_compare_start);
1449 }
1450 
1451 /**
1452  * Recover pages of external memory as close as possible
1453  * for a mempool with RTE_PKTMBUF_POOL_PINNED_EXT_BUF.
1454  * Pages are stored in a heap for efficient search, for mbufs are many.
1455  */
1456 static int
mlx5_mempool_get_extmem(struct rte_mempool * mp,struct mlx5_range ** out,unsigned int * out_n)1457 mlx5_mempool_get_extmem(struct rte_mempool *mp, struct mlx5_range **out,
1458 			unsigned int *out_n)
1459 {
1460 	struct mlx5_mempool_get_extmem_data data;
1461 
1462 	DRV_LOG(DEBUG, "Recovering external pinned pages of mempool %s",
1463 		mp->name);
1464 	memset(&data, 0, sizeof(data));
1465 	rte_mempool_obj_iter(mp, mlx5_mempool_get_extmem_cb, &data);
1466 	*out = data.heap;
1467 	*out_n = data.heap_size;
1468 	return data.ret;
1469 }
1470 
1471 /**
1472  * Get VA-contiguous ranges of the mempool memory.
1473  * Each range start and end is aligned to the system page size.
1474  *
1475  * @param[in] mp
1476  *   Analyzed mempool.
1477  * @param[in] is_extmem
1478  *   Whether the pool is contains only external pinned buffers.
1479  * @param[out] out
1480  *   Receives the ranges, caller must release it with free().
1481  * @param[out] out_n
1482  *   Receives the number of @p out elements.
1483  *
1484  * @return
1485  *   0 on success, (-1) on failure.
1486  */
1487 static int
mlx5_get_mempool_ranges(struct rte_mempool * mp,bool is_extmem,struct mlx5_range ** out,unsigned int * out_n)1488 mlx5_get_mempool_ranges(struct rte_mempool *mp, bool is_extmem,
1489 			struct mlx5_range **out, unsigned int *out_n)
1490 {
1491 	struct mlx5_range *chunks;
1492 	unsigned int chunks_n, contig_n, i;
1493 	int ret;
1494 
1495 	/* Collect the pool underlying memory. */
1496 	ret = is_extmem ? mlx5_mempool_get_extmem(mp, &chunks, &chunks_n) :
1497 			  mlx5_mempool_get_chunks(mp, &chunks, &chunks_n);
1498 	if (ret < 0)
1499 		return ret;
1500 	/* Merge adjacent chunks and place them at the beginning. */
1501 	qsort(chunks, chunks_n, sizeof(chunks[0]), mlx5_range_compare_start);
1502 	contig_n = 1;
1503 	for (i = 1; i < chunks_n; i++)
1504 		if (chunks[i - 1].end != chunks[i].start) {
1505 			chunks[contig_n - 1].end = chunks[i - 1].end;
1506 			chunks[contig_n] = chunks[i];
1507 			contig_n++;
1508 		}
1509 	/* Extend the last contiguous chunk to the end of the mempool. */
1510 	chunks[contig_n - 1].end = chunks[i - 1].end;
1511 	*out = chunks;
1512 	*out_n = contig_n;
1513 	return 0;
1514 }
1515 
1516 /**
1517  * Analyze mempool memory to select memory ranges to register.
1518  *
1519  * @param[in] mp
1520  *   Mempool to analyze.
1521  * @param[in] is_extmem
1522  *   Whether the pool is contains only external pinned buffers.
1523  * @param[out] out
1524  *   Receives memory ranges to register, aligned to the system page size.
1525  *   The caller must release them with free().
1526  * @param[out] out_n
1527  *   Receives the number of @p out items.
1528  * @param[out] share_hugepage
1529  *   Receives True if the entire pool resides within a single hugepage.
1530  *
1531  * @return
1532  *   0 on success, (-1) on failure.
1533  */
1534 static int
mlx5_mempool_reg_analyze(struct rte_mempool * mp,bool is_extmem,struct mlx5_range ** out,unsigned int * out_n,bool * share_hugepage)1535 mlx5_mempool_reg_analyze(struct rte_mempool *mp, bool is_extmem,
1536 			 struct mlx5_range **out, unsigned int *out_n,
1537 			 bool *share_hugepage)
1538 {
1539 	struct mlx5_range *ranges = NULL;
1540 	unsigned int i, ranges_n = 0;
1541 	struct rte_memseg_list *msl;
1542 
1543 	if (mlx5_get_mempool_ranges(mp, is_extmem, &ranges, &ranges_n) < 0) {
1544 		DRV_LOG(ERR, "Cannot get address ranges for mempool %s",
1545 			mp->name);
1546 		return -1;
1547 	}
1548 	/* Check if the hugepage of the pool can be shared. */
1549 	*share_hugepage = false;
1550 	msl = rte_mem_virt2memseg_list((void *)ranges[0].start);
1551 	if (msl != NULL) {
1552 		uint64_t hugepage_sz = 0;
1553 
1554 		/* Check that all ranges are on pages of the same size. */
1555 		for (i = 0; i < ranges_n; i++) {
1556 			if (hugepage_sz != 0 && hugepage_sz != msl->page_sz)
1557 				break;
1558 			hugepage_sz = msl->page_sz;
1559 		}
1560 		if (i == ranges_n) {
1561 			/*
1562 			 * If the entire pool is within one hugepage,
1563 			 * combine all ranges into one of the hugepage size.
1564 			 */
1565 			uintptr_t reg_start = ranges[0].start;
1566 			uintptr_t reg_end = ranges[ranges_n - 1].end;
1567 			uintptr_t hugepage_start =
1568 				RTE_ALIGN_FLOOR(reg_start, hugepage_sz);
1569 			uintptr_t hugepage_end = hugepage_start + hugepage_sz;
1570 			if (reg_end < hugepage_end) {
1571 				ranges[0].start = hugepage_start;
1572 				ranges[0].end = hugepage_end;
1573 				ranges_n = 1;
1574 				*share_hugepage = true;
1575 			}
1576 		}
1577 	}
1578 	*out = ranges;
1579 	*out_n = ranges_n;
1580 	return 0;
1581 }
1582 
1583 /** Create a registration object for the mempool. */
1584 static struct mlx5_mempool_reg *
mlx5_mempool_reg_create(struct rte_mempool * mp,unsigned int mrs_n,bool is_extmem)1585 mlx5_mempool_reg_create(struct rte_mempool *mp, unsigned int mrs_n,
1586 			bool is_extmem)
1587 {
1588 	struct mlx5_mempool_reg *mpr = NULL;
1589 
1590 	mpr = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO,
1591 			  sizeof(struct mlx5_mempool_reg),
1592 			  RTE_CACHE_LINE_SIZE, SOCKET_ID_ANY);
1593 	if (mpr == NULL) {
1594 		DRV_LOG(ERR, "Cannot allocate mempool %s registration object",
1595 			mp->name);
1596 		return NULL;
1597 	}
1598 	mpr->mrs = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO,
1599 			       mrs_n * sizeof(struct mlx5_mempool_mr),
1600 			       RTE_CACHE_LINE_SIZE, SOCKET_ID_ANY);
1601 	if (!mpr->mrs) {
1602 		DRV_LOG(ERR, "Cannot allocate mempool %s registration MRs",
1603 			mp->name);
1604 		mlx5_free(mpr);
1605 		return NULL;
1606 	}
1607 	mpr->mp = mp;
1608 	mpr->mrs_n = mrs_n;
1609 	mpr->is_extmem = is_extmem;
1610 	return mpr;
1611 }
1612 
1613 /**
1614  * Destroy a mempool registration object.
1615  *
1616  * @param standalone
1617  *   Whether @p mpr owns its MRs exclusively, i.e. they are not shared.
1618  */
1619 static void
mlx5_mempool_reg_destroy(struct mlx5_mr_share_cache * share_cache,struct mlx5_mempool_reg * mpr,bool standalone)1620 mlx5_mempool_reg_destroy(struct mlx5_mr_share_cache *share_cache,
1621 			 struct mlx5_mempool_reg *mpr, bool standalone)
1622 {
1623 	if (standalone) {
1624 		unsigned int i;
1625 
1626 		for (i = 0; i < mpr->mrs_n; i++)
1627 			share_cache->dereg_mr_cb(&mpr->mrs[i].pmd_mr);
1628 		mlx5_free(mpr->mrs);
1629 	}
1630 	mlx5_free(mpr);
1631 }
1632 
1633 /** Find registration object of a mempool. */
1634 static struct mlx5_mempool_reg *
mlx5_mempool_reg_lookup(struct mlx5_mr_share_cache * share_cache,struct rte_mempool * mp)1635 mlx5_mempool_reg_lookup(struct mlx5_mr_share_cache *share_cache,
1636 			struct rte_mempool *mp)
1637 {
1638 	struct mlx5_mempool_reg *mpr;
1639 
1640 	LIST_FOREACH(mpr, &share_cache->mempool_reg_list, next)
1641 		if (mpr->mp == mp)
1642 			break;
1643 	return mpr;
1644 }
1645 
1646 /** Increment reference counters of MRs used in the registration. */
1647 static void
mlx5_mempool_reg_attach(struct mlx5_mempool_reg * mpr)1648 mlx5_mempool_reg_attach(struct mlx5_mempool_reg *mpr)
1649 {
1650 	unsigned int i;
1651 
1652 	for (i = 0; i < mpr->mrs_n; i++)
1653 		rte_atomic_fetch_add_explicit(&mpr->mrs[i].refcnt, 1, rte_memory_order_relaxed);
1654 }
1655 
1656 /**
1657  * Decrement reference counters of MRs used in the registration.
1658  *
1659  * @return True if no more references to @p mpr MRs exist, False otherwise.
1660  */
1661 static bool
mlx5_mempool_reg_detach(struct mlx5_mempool_reg * mpr)1662 mlx5_mempool_reg_detach(struct mlx5_mempool_reg *mpr)
1663 {
1664 	unsigned int i;
1665 	bool ret = false;
1666 
1667 	for (i = 0; i < mpr->mrs_n; i++)
1668 		ret |= rte_atomic_fetch_sub_explicit(&mpr->mrs[i].refcnt, 1,
1669 					  rte_memory_order_relaxed) - 1 == 0;
1670 	return ret;
1671 }
1672 
1673 static int
mlx5_mr_mempool_register_primary(struct mlx5_mr_share_cache * share_cache,void * pd,struct rte_mempool * mp,bool is_extmem)1674 mlx5_mr_mempool_register_primary(struct mlx5_mr_share_cache *share_cache,
1675 				 void *pd, struct rte_mempool *mp,
1676 				 bool is_extmem)
1677 {
1678 	struct mlx5_range *ranges = NULL;
1679 	struct mlx5_mempool_reg *mpr, *old_mpr, *new_mpr;
1680 	unsigned int i, ranges_n;
1681 	bool share_hugepage, standalone = false;
1682 	int ret = -1;
1683 
1684 	/* Early check to avoid unnecessary creation of MRs. */
1685 	rte_rwlock_read_lock(&share_cache->rwlock);
1686 	old_mpr = mlx5_mempool_reg_lookup(share_cache, mp);
1687 	rte_rwlock_read_unlock(&share_cache->rwlock);
1688 	if (old_mpr != NULL && (!is_extmem || old_mpr->is_extmem)) {
1689 		DRV_LOG(DEBUG, "Mempool %s is already registered for PD %p",
1690 			mp->name, pd);
1691 		rte_errno = EEXIST;
1692 		goto exit;
1693 	}
1694 	if (mlx5_mempool_reg_analyze(mp, is_extmem, &ranges, &ranges_n,
1695 				     &share_hugepage) < 0) {
1696 		DRV_LOG(ERR, "Cannot get mempool %s memory ranges", mp->name);
1697 		rte_errno = ENOMEM;
1698 		goto exit;
1699 	}
1700 	new_mpr = mlx5_mempool_reg_create(mp, ranges_n, is_extmem);
1701 	if (new_mpr == NULL) {
1702 		DRV_LOG(ERR,
1703 			"Cannot create a registration object for mempool %s in PD %p",
1704 			mp->name, pd);
1705 		rte_errno = ENOMEM;
1706 		goto exit;
1707 	}
1708 	/*
1709 	 * If the entire mempool fits in a single hugepage, the MR for this
1710 	 * hugepage can be shared across mempools that also fit in it.
1711 	 */
1712 	if (share_hugepage) {
1713 		rte_rwlock_write_lock(&share_cache->rwlock);
1714 		LIST_FOREACH(mpr, &share_cache->mempool_reg_list, next) {
1715 			if (mpr->mrs[0].pmd_mr.addr == (void *)ranges[0].start)
1716 				break;
1717 		}
1718 		if (mpr != NULL) {
1719 			new_mpr->mrs = mpr->mrs;
1720 			mlx5_mempool_reg_attach(new_mpr);
1721 			LIST_INSERT_HEAD(&share_cache->mempool_reg_list,
1722 					 new_mpr, next);
1723 		}
1724 		rte_rwlock_write_unlock(&share_cache->rwlock);
1725 		if (mpr != NULL) {
1726 			DRV_LOG(DEBUG, "Shared MR %#x in PD %p for mempool %s with mempool %s",
1727 				mpr->mrs[0].pmd_mr.lkey, pd, mp->name,
1728 				mpr->mp->name);
1729 			ret = 0;
1730 			goto exit;
1731 		}
1732 	}
1733 	for (i = 0; i < ranges_n; i++) {
1734 		struct mlx5_mempool_mr *mr = &new_mpr->mrs[i];
1735 		const struct mlx5_range *range = &ranges[i];
1736 		size_t len = range->end - range->start;
1737 
1738 		if (share_cache->reg_mr_cb(pd, (void *)range->start, len,
1739 		    &mr->pmd_mr) < 0) {
1740 			DRV_LOG(ERR,
1741 				"Failed to create an MR in PD %p for address range "
1742 				"[0x%" PRIxPTR ", 0x%" PRIxPTR "] (%zu bytes) for mempool %s",
1743 				pd, range->start, range->end, len, mp->name);
1744 			break;
1745 		}
1746 		DRV_LOG(DEBUG,
1747 			"Created a new MR %#x in PD %p for address range "
1748 			"[0x%" PRIxPTR ", 0x%" PRIxPTR "] (%zu bytes) for mempool %s",
1749 			mr->pmd_mr.lkey, pd, range->start, range->end, len,
1750 			mp->name);
1751 	}
1752 	if (i != ranges_n) {
1753 		mlx5_mempool_reg_destroy(share_cache, new_mpr, true);
1754 		rte_errno = EINVAL;
1755 		goto exit;
1756 	}
1757 	/* Concurrent registration is not supposed to happen. */
1758 	rte_rwlock_write_lock(&share_cache->rwlock);
1759 	mpr = mlx5_mempool_reg_lookup(share_cache, mp);
1760 	if (mpr == old_mpr && old_mpr != NULL) {
1761 		LIST_REMOVE(old_mpr, next);
1762 		standalone = mlx5_mempool_reg_detach(mpr);
1763 		/* No need to flush the cache: old MRs cannot be in use. */
1764 		mpr = NULL;
1765 	}
1766 	if (mpr == NULL) {
1767 		mlx5_mempool_reg_attach(new_mpr);
1768 		LIST_INSERT_HEAD(&share_cache->mempool_reg_list, new_mpr, next);
1769 		ret = 0;
1770 	}
1771 	rte_rwlock_write_unlock(&share_cache->rwlock);
1772 	if (mpr != NULL) {
1773 		DRV_LOG(DEBUG, "Mempool %s is already registered for PD %p",
1774 			mp->name, pd);
1775 		mlx5_mempool_reg_destroy(share_cache, new_mpr, true);
1776 		rte_errno = EEXIST;
1777 		goto exit;
1778 	} else if (old_mpr != NULL) {
1779 		DRV_LOG(DEBUG, "Mempool %s registration for PD %p updated for external memory",
1780 			mp->name, pd);
1781 		mlx5_mempool_reg_destroy(share_cache, old_mpr, standalone);
1782 	}
1783 exit:
1784 	free(ranges);
1785 	return ret;
1786 }
1787 
1788 static int
mlx5_mr_mempool_register_secondary(struct mlx5_common_device * cdev,struct rte_mempool * mp,bool is_extmem)1789 mlx5_mr_mempool_register_secondary(struct mlx5_common_device *cdev,
1790 				   struct rte_mempool *mp, bool is_extmem)
1791 {
1792 	return mlx5_mp_req_mempool_reg(cdev, mp, true, is_extmem);
1793 }
1794 
1795 /**
1796  * Register the memory of a mempool in the protection domain.
1797  *
1798  * @param cdev
1799  *   Pointer to the mlx5 common device.
1800  * @param mp
1801  *   Mempool to register.
1802  *
1803  * @return
1804  *   0 on success, (-1) on failure and rte_errno is set.
1805  */
1806 int
mlx5_mr_mempool_register(struct mlx5_common_device * cdev,struct rte_mempool * mp,bool is_extmem)1807 mlx5_mr_mempool_register(struct mlx5_common_device *cdev,
1808 			 struct rte_mempool *mp, bool is_extmem)
1809 {
1810 	if (mp->flags & RTE_MEMPOOL_F_NON_IO)
1811 		return 0;
1812 	switch (rte_eal_process_type()) {
1813 	case RTE_PROC_PRIMARY:
1814 		return mlx5_mr_mempool_register_primary(&cdev->mr_scache,
1815 							cdev->pd, mp,
1816 							is_extmem);
1817 	case RTE_PROC_SECONDARY:
1818 		return mlx5_mr_mempool_register_secondary(cdev, mp, is_extmem);
1819 	default:
1820 		return -1;
1821 	}
1822 }
1823 
1824 static int
mlx5_mr_mempool_unregister_primary(struct mlx5_mr_share_cache * share_cache,struct rte_mempool * mp)1825 mlx5_mr_mempool_unregister_primary(struct mlx5_mr_share_cache *share_cache,
1826 				   struct rte_mempool *mp)
1827 {
1828 	struct mlx5_mempool_reg *mpr;
1829 	bool standalone = false;
1830 
1831 	rte_rwlock_write_lock(&share_cache->rwlock);
1832 	LIST_FOREACH(mpr, &share_cache->mempool_reg_list, next)
1833 		if (mpr->mp == mp) {
1834 			LIST_REMOVE(mpr, next);
1835 			standalone = mlx5_mempool_reg_detach(mpr);
1836 			if (standalone)
1837 				/*
1838 				 * The unlock operation below provides a memory
1839 				 * barrier due to its store-release semantics.
1840 				 */
1841 				++share_cache->dev_gen;
1842 			break;
1843 		}
1844 	rte_rwlock_write_unlock(&share_cache->rwlock);
1845 	if (mpr == NULL) {
1846 		rte_errno = ENOENT;
1847 		return -1;
1848 	}
1849 	mlx5_mempool_reg_destroy(share_cache, mpr, standalone);
1850 	return 0;
1851 }
1852 
1853 static int
mlx5_mr_mempool_unregister_secondary(struct mlx5_common_device * cdev,struct rte_mempool * mp)1854 mlx5_mr_mempool_unregister_secondary(struct mlx5_common_device *cdev,
1855 				     struct rte_mempool *mp)
1856 {
1857 	return mlx5_mp_req_mempool_reg(cdev, mp, false, false /* is_extmem */);
1858 }
1859 
1860 /**
1861  * Unregister the memory of a mempool from the protection domain.
1862  *
1863  * @param cdev
1864  *   Pointer to the mlx5 common device.
1865  * @param mp
1866  *   Mempool to unregister.
1867  *
1868  * @return
1869  *   0 on success, (-1) on failure and rte_errno is set.
1870  */
1871 int
mlx5_mr_mempool_unregister(struct mlx5_common_device * cdev,struct rte_mempool * mp)1872 mlx5_mr_mempool_unregister(struct mlx5_common_device *cdev,
1873 			   struct rte_mempool *mp)
1874 {
1875 	if (mp->flags & RTE_MEMPOOL_F_NON_IO)
1876 		return 0;
1877 	switch (rte_eal_process_type()) {
1878 	case RTE_PROC_PRIMARY:
1879 		return mlx5_mr_mempool_unregister_primary(&cdev->mr_scache, mp);
1880 	case RTE_PROC_SECONDARY:
1881 		return mlx5_mr_mempool_unregister_secondary(cdev, mp);
1882 	default:
1883 		return -1;
1884 	}
1885 }
1886 
1887 /**
1888  * Lookup a MR key by and address in a registered mempool.
1889  *
1890  * @param mpr
1891  *   Mempool registration object.
1892  * @param addr
1893  *   Address within the mempool.
1894  * @param entry
1895  *   Bottom-half cache entry to fill.
1896  *
1897  * @return
1898  *   MR key or UINT32_MAX on failure, which can only happen
1899  *   if the address is not from within the mempool.
1900  */
1901 static uint32_t
mlx5_mempool_reg_addr2mr(struct mlx5_mempool_reg * mpr,uintptr_t addr,struct mr_cache_entry * entry)1902 mlx5_mempool_reg_addr2mr(struct mlx5_mempool_reg *mpr, uintptr_t addr,
1903 			 struct mr_cache_entry *entry)
1904 {
1905 	uint32_t lkey = UINT32_MAX;
1906 	unsigned int i;
1907 
1908 	for (i = 0; i < mpr->mrs_n; i++) {
1909 		const struct mlx5_pmd_mr *mr = &mpr->mrs[i].pmd_mr;
1910 		uintptr_t mr_start = (uintptr_t)mr->addr;
1911 		uintptr_t mr_end = mr_start + mr->len;
1912 
1913 		if (mr_start <= addr && addr < mr_end) {
1914 			lkey = rte_cpu_to_be_32(mr->lkey);
1915 			entry->start = mr_start;
1916 			entry->end = mr_end;
1917 			entry->lkey = lkey;
1918 			break;
1919 		}
1920 	}
1921 	return lkey;
1922 }
1923 
1924 /**
1925  * Update bottom-half cache from the list of mempool registrations.
1926  *
1927  * @param mr_ctrl
1928  *   Per-queue MR control handle.
1929  * @param entry
1930  *   Pointer to an entry in the bottom-half cache to update
1931  *   with the MR lkey looked up.
1932  * @param mp
1933  *   Mempool containing the address.
1934  * @param addr
1935  *   Address to lookup.
1936  * @return
1937  *   MR lkey on success, UINT32_MAX on failure.
1938  */
1939 static uint32_t
mlx5_lookup_mempool_regs(struct mlx5_mr_ctrl * mr_ctrl,struct mr_cache_entry * entry,struct rte_mempool * mp,uintptr_t addr)1940 mlx5_lookup_mempool_regs(struct mlx5_mr_ctrl *mr_ctrl,
1941 			 struct mr_cache_entry *entry,
1942 			 struct rte_mempool *mp, uintptr_t addr)
1943 {
1944 	struct mlx5_mr_share_cache *share_cache =
1945 		container_of(mr_ctrl->dev_gen_ptr, struct mlx5_mr_share_cache,
1946 			     dev_gen);
1947 	struct mlx5_mr_btree *bt = &mr_ctrl->cache_bh;
1948 	struct mlx5_mempool_reg *mpr;
1949 	uint32_t lkey = UINT32_MAX;
1950 
1951 	/* If local cache table is full, try to double it. */
1952 	if (unlikely(bt->len == bt->size))
1953 		mr_btree_expand(bt, bt->size << 1);
1954 	/* Look up in mempool registrations. */
1955 	rte_rwlock_read_lock(&share_cache->rwlock);
1956 	mpr = mlx5_mempool_reg_lookup(share_cache, mp);
1957 	if (mpr != NULL)
1958 		lkey = mlx5_mempool_reg_addr2mr(mpr, addr, entry);
1959 	rte_rwlock_read_unlock(&share_cache->rwlock);
1960 	/*
1961 	 * Update local cache. Even if it fails, return the found entry
1962 	 * to update top-half cache. Next time, this entry will be found
1963 	 * in the global cache.
1964 	 */
1965 	if (lkey != UINT32_MAX)
1966 		mr_btree_insert(bt, entry);
1967 	return lkey;
1968 }
1969 
1970 /**
1971  * Populate cache with LKeys of all MRs used by the mempool.
1972  * It is intended to be used to register Rx mempools in advance.
1973  *
1974  * @param mr_ctrl
1975  *  Per-queue MR control handle.
1976  * @param mp
1977  *  Registered memory pool.
1978  *
1979  * @return
1980  *  0 on success, (-1) on failure and rte_errno is set.
1981  */
1982 int
mlx5_mr_mempool_populate_cache(struct mlx5_mr_ctrl * mr_ctrl,struct rte_mempool * mp)1983 mlx5_mr_mempool_populate_cache(struct mlx5_mr_ctrl *mr_ctrl,
1984 			       struct rte_mempool *mp)
1985 {
1986 	struct mlx5_mr_share_cache *share_cache =
1987 		container_of(mr_ctrl->dev_gen_ptr, struct mlx5_mr_share_cache,
1988 			     dev_gen);
1989 	struct mlx5_mr_btree *bt = &mr_ctrl->cache_bh;
1990 	struct mlx5_mempool_reg *mpr;
1991 	unsigned int i;
1992 
1993 	/*
1994 	 * Registration is valid after the lock is released,
1995 	 * because the function is called after the mempool is registered.
1996 	 */
1997 	rte_rwlock_read_lock(&share_cache->rwlock);
1998 	mpr = mlx5_mempool_reg_lookup(share_cache, mp);
1999 	rte_rwlock_read_unlock(&share_cache->rwlock);
2000 	if (mpr == NULL) {
2001 		DRV_LOG(ERR, "Mempool %s is not registered", mp->name);
2002 		rte_errno = ENOENT;
2003 		return -1;
2004 	}
2005 	for (i = 0; i < mpr->mrs_n; i++) {
2006 		struct mlx5_mempool_mr *mr = &mpr->mrs[i];
2007 		struct mr_cache_entry entry;
2008 		uint32_t lkey;
2009 		uint32_t idx;
2010 
2011 		lkey = mr_btree_lookup(bt, &idx, (uintptr_t)mr->pmd_mr.addr);
2012 		if (lkey != UINT32_MAX)
2013 			continue;
2014 		if (bt->len == bt->size)
2015 			mr_btree_expand(bt, bt->size << 1);
2016 		entry.start = (uintptr_t)mr->pmd_mr.addr;
2017 		entry.end = entry.start + mr->pmd_mr.len;
2018 		entry.lkey = rte_cpu_to_be_32(mr->pmd_mr.lkey);
2019 		if (mr_btree_insert(bt, &entry) < 0) {
2020 			DRV_LOG(ERR, "Cannot insert cache entry for mempool %s MR %08x",
2021 				mp->name, entry.lkey);
2022 			rte_errno = EINVAL;
2023 			return -1;
2024 		}
2025 	}
2026 	return 0;
2027 }
2028 
2029 /**
2030  * Bottom-half lookup for the address from the mempool.
2031  *
2032  * @param mr_ctrl
2033  *   Per-queue MR control handle.
2034  * @param mp
2035  *   Mempool containing the address.
2036  * @param addr
2037  *   Address to lookup.
2038  * @return
2039  *   MR lkey on success, UINT32_MAX on failure.
2040  */
2041 uint32_t
mlx5_mr_mempool2mr_bh(struct mlx5_mr_ctrl * mr_ctrl,struct rte_mempool * mp,uintptr_t addr)2042 mlx5_mr_mempool2mr_bh(struct mlx5_mr_ctrl *mr_ctrl,
2043 		      struct rte_mempool *mp, uintptr_t addr)
2044 {
2045 	struct mr_cache_entry *repl = &mr_ctrl->cache[mr_ctrl->head];
2046 	uint32_t lkey;
2047 	uint32_t bh_idx = 0;
2048 
2049 	/* Binary-search MR translation table. */
2050 	lkey = mr_btree_lookup(&mr_ctrl->cache_bh, &bh_idx, addr);
2051 	/* Update top-half cache. */
2052 	if (likely(lkey != UINT32_MAX)) {
2053 		*repl = (*mr_ctrl->cache_bh.table)[bh_idx];
2054 	} else {
2055 		lkey = mlx5_lookup_mempool_regs(mr_ctrl, repl, mp, addr);
2056 		/* Can only fail if the address is not from the mempool. */
2057 		if (unlikely(lkey == UINT32_MAX))
2058 			return UINT32_MAX;
2059 	}
2060 	/* Update the most recently used entry. */
2061 	mr_ctrl->mru = mr_ctrl->head;
2062 	/* Point to the next victim, the oldest. */
2063 	mr_ctrl->head = (mr_ctrl->head + 1) % MLX5_MR_CACHE_N;
2064 	return lkey;
2065 }
2066 
2067 uint32_t
mlx5_mr_mb2mr_bh(struct mlx5_mr_ctrl * mr_ctrl,struct rte_mbuf * mb)2068 mlx5_mr_mb2mr_bh(struct mlx5_mr_ctrl *mr_ctrl, struct rte_mbuf *mb)
2069 {
2070 	struct rte_mempool *mp;
2071 	struct mlx5_mprq_buf *buf;
2072 	uint32_t lkey;
2073 	uintptr_t addr = (uintptr_t)mb->buf_addr;
2074 	struct mlx5_mr_share_cache *share_cache =
2075 		container_of(mr_ctrl->dev_gen_ptr, struct mlx5_mr_share_cache,
2076 			     dev_gen);
2077 	struct mlx5_common_device *cdev =
2078 		container_of(share_cache, struct mlx5_common_device, mr_scache);
2079 	bool external, mprq, pinned = false;
2080 
2081 	/* Recover MPRQ mempool. */
2082 	external = RTE_MBUF_HAS_EXTBUF(mb);
2083 	if (external && mb->shinfo->free_cb == mlx5_mprq_buf_free_cb) {
2084 		mprq = true;
2085 		buf = mb->shinfo->fcb_opaque;
2086 		mp = buf->mp;
2087 	} else {
2088 		mprq = false;
2089 		mp = mlx5_mb2mp(mb);
2090 		pinned = rte_pktmbuf_priv_flags(mp) &
2091 			 RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF;
2092 	}
2093 	if (!external || mprq || pinned) {
2094 		lkey = mlx5_mr_mempool2mr_bh(mr_ctrl, mp, addr);
2095 		if (lkey != UINT32_MAX)
2096 			return lkey;
2097 		/* MPRQ is always registered. */
2098 		MLX5_ASSERT(!mprq);
2099 	}
2100 	/* Register pinned external memory if the mempool is not used for Rx. */
2101 	if (cdev->config.mr_mempool_reg_en && pinned) {
2102 		if (mlx5_mr_mempool_register(cdev, mp, true) < 0)
2103 			return UINT32_MAX;
2104 		lkey = mlx5_mr_mempool2mr_bh(mr_ctrl, mp, addr);
2105 		MLX5_ASSERT(lkey != UINT32_MAX);
2106 		return lkey;
2107 	}
2108 	/* Fallback to generic mechanism in corner cases. */
2109 	return mlx5_mr_addr2mr_bh(mr_ctrl, addr);
2110 }
2111