xref: /dpdk/drivers/common/mlx5/mlx5_common_mr.c (revision 85c7005e84285a845f30cfd96fe4051c41c59ca9)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2020 Mellanox Technologies, Ltd
4  */
5 #include <stddef.h>
6 
7 #include <rte_eal_memconfig.h>
8 #include <rte_eal_paging.h>
9 #include <rte_errno.h>
10 #include <rte_mempool.h>
11 #include <rte_malloc.h>
12 #include <rte_rwlock.h>
13 
14 #include "mlx5_glue.h"
15 #include "mlx5_common_mp.h"
16 #include "mlx5_common_mr.h"
17 #include "mlx5_common_log.h"
18 #include "mlx5_malloc.h"
19 
20 struct mr_find_contig_memsegs_data {
21 	uintptr_t addr;
22 	uintptr_t start;
23 	uintptr_t end;
24 	const struct rte_memseg_list *msl;
25 };
26 
27 /* Virtual memory range. */
28 struct mlx5_range {
29 	uintptr_t start;
30 	uintptr_t end;
31 };
32 
33 /** Memory region for a mempool. */
34 struct mlx5_mempool_mr {
35 	struct mlx5_pmd_mr pmd_mr;
36 	uint32_t refcnt; /**< Number of mempools sharing this MR. */
37 };
38 
39 /* Mempool registration. */
40 struct mlx5_mempool_reg {
41 	LIST_ENTRY(mlx5_mempool_reg) next;
42 	/** Registered mempool, used to designate registrations. */
43 	struct rte_mempool *mp;
44 	/** Memory regions for the address ranges of the mempool. */
45 	struct mlx5_mempool_mr *mrs;
46 	/** Number of memory regions. */
47 	unsigned int mrs_n;
48 };
49 
50 /**
51  * Expand B-tree table to a given size. Can't be called with holding
52  * memory_hotplug_lock or share_cache.rwlock due to rte_realloc().
53  *
54  * @param bt
55  *   Pointer to B-tree structure.
56  * @param n
57  *   Number of entries for expansion.
58  *
59  * @return
60  *   0 on success, -1 on failure.
61  */
62 static int
63 mr_btree_expand(struct mlx5_mr_btree *bt, int n)
64 {
65 	void *mem;
66 	int ret = 0;
67 
68 	if (n <= bt->size)
69 		return ret;
70 	/*
71 	 * Downside of directly using rte_realloc() is that SOCKET_ID_ANY is
72 	 * used inside if there's no room to expand. Because this is a quite
73 	 * rare case and a part of very slow path, it is very acceptable.
74 	 * Initially cache_bh[] will be given practically enough space and once
75 	 * it is expanded, expansion wouldn't be needed again ever.
76 	 */
77 	mem = mlx5_realloc(bt->table, MLX5_MEM_RTE | MLX5_MEM_ZERO,
78 			   n * sizeof(struct mr_cache_entry), 0, SOCKET_ID_ANY);
79 	if (mem == NULL) {
80 		/* Not an error, B-tree search will be skipped. */
81 		DRV_LOG(WARNING, "failed to expand MR B-tree (%p) table",
82 			(void *)bt);
83 		ret = -1;
84 	} else {
85 		DRV_LOG(DEBUG, "expanded MR B-tree table (size=%u)", n);
86 		bt->table = mem;
87 		bt->size = n;
88 	}
89 	return ret;
90 }
91 
92 /**
93  * Look up LKey from given B-tree lookup table, store the last index and return
94  * searched LKey.
95  *
96  * @param bt
97  *   Pointer to B-tree structure.
98  * @param[out] idx
99  *   Pointer to index. Even on search failure, returns index where it stops
100  *   searching so that index can be used when inserting a new entry.
101  * @param addr
102  *   Search key.
103  *
104  * @return
105  *   Searched LKey on success, UINT32_MAX on no match.
106  */
107 static uint32_t
108 mr_btree_lookup(struct mlx5_mr_btree *bt, uint16_t *idx, uintptr_t addr)
109 {
110 	struct mr_cache_entry *lkp_tbl;
111 	uint16_t n;
112 	uint16_t base = 0;
113 
114 	MLX5_ASSERT(bt != NULL);
115 	lkp_tbl = *bt->table;
116 	n = bt->len;
117 	/* First entry must be NULL for comparison. */
118 	MLX5_ASSERT(bt->len > 0 || (lkp_tbl[0].start == 0 &&
119 				    lkp_tbl[0].lkey == UINT32_MAX));
120 	/* Binary search. */
121 	do {
122 		register uint16_t delta = n >> 1;
123 
124 		if (addr < lkp_tbl[base + delta].start) {
125 			n = delta;
126 		} else {
127 			base += delta;
128 			n -= delta;
129 		}
130 	} while (n > 1);
131 	MLX5_ASSERT(addr >= lkp_tbl[base].start);
132 	*idx = base;
133 	if (addr < lkp_tbl[base].end)
134 		return lkp_tbl[base].lkey;
135 	/* Not found. */
136 	return UINT32_MAX;
137 }
138 
139 /**
140  * Insert an entry to B-tree lookup table.
141  *
142  * @param bt
143  *   Pointer to B-tree structure.
144  * @param entry
145  *   Pointer to new entry to insert.
146  *
147  * @return
148  *   0 on success, -1 on failure.
149  */
150 static int
151 mr_btree_insert(struct mlx5_mr_btree *bt, struct mr_cache_entry *entry)
152 {
153 	struct mr_cache_entry *lkp_tbl;
154 	uint16_t idx = 0;
155 	size_t shift;
156 
157 	MLX5_ASSERT(bt != NULL);
158 	MLX5_ASSERT(bt->len <= bt->size);
159 	MLX5_ASSERT(bt->len > 0);
160 	lkp_tbl = *bt->table;
161 	/* Find out the slot for insertion. */
162 	if (mr_btree_lookup(bt, &idx, entry->start) != UINT32_MAX) {
163 		DRV_LOG(DEBUG,
164 			"abort insertion to B-tree(%p): already exist at"
165 			" idx=%u [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
166 			(void *)bt, idx, entry->start, entry->end, entry->lkey);
167 		/* Already exist, return. */
168 		return 0;
169 	}
170 	/* If table is full, return error. */
171 	if (unlikely(bt->len == bt->size)) {
172 		bt->overflow = 1;
173 		return -1;
174 	}
175 	/* Insert entry. */
176 	++idx;
177 	shift = (bt->len - idx) * sizeof(struct mr_cache_entry);
178 	if (shift)
179 		memmove(&lkp_tbl[idx + 1], &lkp_tbl[idx], shift);
180 	lkp_tbl[idx] = *entry;
181 	bt->len++;
182 	DRV_LOG(DEBUG,
183 		"inserted B-tree(%p)[%u],"
184 		" [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
185 		(void *)bt, idx, entry->start, entry->end, entry->lkey);
186 	return 0;
187 }
188 
189 /**
190  * Initialize B-tree and allocate memory for lookup table.
191  *
192  * @param bt
193  *   Pointer to B-tree structure.
194  * @param n
195  *   Number of entries to allocate.
196  * @param socket
197  *   NUMA socket on which memory must be allocated.
198  *
199  * @return
200  *   0 on success, a negative errno value otherwise and rte_errno is set.
201  */
202 int
203 mlx5_mr_btree_init(struct mlx5_mr_btree *bt, int n, int socket)
204 {
205 	if (bt == NULL) {
206 		rte_errno = EINVAL;
207 		return -rte_errno;
208 	}
209 	MLX5_ASSERT(!bt->table && !bt->size);
210 	memset(bt, 0, sizeof(*bt));
211 	bt->table = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO,
212 				sizeof(struct mr_cache_entry) * n,
213 				0, socket);
214 	if (bt->table == NULL) {
215 		rte_errno = ENOMEM;
216 		DRV_LOG(DEBUG,
217 			"failed to allocate memory for btree cache on socket "
218 			"%d", socket);
219 		return -rte_errno;
220 	}
221 	bt->size = n;
222 	/* First entry must be NULL for binary search. */
223 	(*bt->table)[bt->len++] = (struct mr_cache_entry) {
224 		.lkey = UINT32_MAX,
225 	};
226 	DRV_LOG(DEBUG, "initialized B-tree %p with table %p",
227 	      (void *)bt, (void *)bt->table);
228 	return 0;
229 }
230 
231 /**
232  * Free B-tree resources.
233  *
234  * @param bt
235  *   Pointer to B-tree structure.
236  */
237 void
238 mlx5_mr_btree_free(struct mlx5_mr_btree *bt)
239 {
240 	if (bt == NULL)
241 		return;
242 	DRV_LOG(DEBUG, "freeing B-tree %p with table %p",
243 	      (void *)bt, (void *)bt->table);
244 	mlx5_free(bt->table);
245 	memset(bt, 0, sizeof(*bt));
246 }
247 
248 /**
249  * Dump all the entries in a B-tree
250  *
251  * @param bt
252  *   Pointer to B-tree structure.
253  */
254 void
255 mlx5_mr_btree_dump(struct mlx5_mr_btree *bt __rte_unused)
256 {
257 #ifdef RTE_LIBRTE_MLX5_DEBUG
258 	int idx;
259 	struct mr_cache_entry *lkp_tbl;
260 
261 	if (bt == NULL)
262 		return;
263 	lkp_tbl = *bt->table;
264 	for (idx = 0; idx < bt->len; ++idx) {
265 		struct mr_cache_entry *entry = &lkp_tbl[idx];
266 
267 		DRV_LOG(DEBUG, "B-tree(%p)[%u],"
268 		      " [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
269 		      (void *)bt, idx, entry->start, entry->end, entry->lkey);
270 	}
271 #endif
272 }
273 
274 /**
275  * Initialize per-queue MR control descriptor.
276  *
277  * @param mr_ctrl
278  *   Pointer to MR control structure.
279  * @param dev_gen_ptr
280  *   Pointer to generation number of global cache.
281  * @param socket
282  *   NUMA socket on which memory must be allocated.
283  *
284  * @return
285  *   0 on success, a negative errno value otherwise and rte_errno is set.
286  */
287 int
288 mlx5_mr_ctrl_init(struct mlx5_mr_ctrl *mr_ctrl, uint32_t *dev_gen_ptr,
289 		  int socket)
290 {
291 	if (mr_ctrl == NULL) {
292 		rte_errno = EINVAL;
293 		return -rte_errno;
294 	}
295 	/* Save pointer of global generation number to check memory event. */
296 	mr_ctrl->dev_gen_ptr = dev_gen_ptr;
297 	/* Initialize B-tree and allocate memory for bottom-half cache table. */
298 	return mlx5_mr_btree_init(&mr_ctrl->cache_bh, MLX5_MR_BTREE_CACHE_N,
299 				  socket);
300 }
301 
302 /**
303  * Find virtually contiguous memory chunk in a given MR.
304  *
305  * @param dev
306  *   Pointer to MR structure.
307  * @param[out] entry
308  *   Pointer to returning MR cache entry. If not found, this will not be
309  *   updated.
310  * @param start_idx
311  *   Start index of the memseg bitmap.
312  *
313  * @return
314  *   Next index to go on lookup.
315  */
316 static int
317 mr_find_next_chunk(struct mlx5_mr *mr, struct mr_cache_entry *entry,
318 		   int base_idx)
319 {
320 	uintptr_t start = 0;
321 	uintptr_t end = 0;
322 	uint32_t idx = 0;
323 
324 	/* MR for external memory doesn't have memseg list. */
325 	if (mr->msl == NULL) {
326 		MLX5_ASSERT(mr->ms_bmp_n == 1);
327 		MLX5_ASSERT(mr->ms_n == 1);
328 		MLX5_ASSERT(base_idx == 0);
329 		/*
330 		 * Can't search it from memseg list but get it directly from
331 		 * pmd_mr as there's only one chunk.
332 		 */
333 		entry->start = (uintptr_t)mr->pmd_mr.addr;
334 		entry->end = (uintptr_t)mr->pmd_mr.addr + mr->pmd_mr.len;
335 		entry->lkey = rte_cpu_to_be_32(mr->pmd_mr.lkey);
336 		/* Returning 1 ends iteration. */
337 		return 1;
338 	}
339 	for (idx = base_idx; idx < mr->ms_bmp_n; ++idx) {
340 		if (rte_bitmap_get(mr->ms_bmp, idx)) {
341 			const struct rte_memseg_list *msl;
342 			const struct rte_memseg *ms;
343 
344 			msl = mr->msl;
345 			ms = rte_fbarray_get(&msl->memseg_arr,
346 					     mr->ms_base_idx + idx);
347 			MLX5_ASSERT(msl->page_sz == ms->hugepage_sz);
348 			if (!start)
349 				start = ms->addr_64;
350 			end = ms->addr_64 + ms->hugepage_sz;
351 		} else if (start) {
352 			/* Passed the end of a fragment. */
353 			break;
354 		}
355 	}
356 	if (start) {
357 		/* Found one chunk. */
358 		entry->start = start;
359 		entry->end = end;
360 		entry->lkey = rte_cpu_to_be_32(mr->pmd_mr.lkey);
361 	}
362 	return idx;
363 }
364 
365 /**
366  * Insert a MR to the global B-tree cache. It may fail due to low-on-memory.
367  * Then, this entry will have to be searched by mr_lookup_list() in
368  * mlx5_mr_create() on miss.
369  *
370  * @param share_cache
371  *   Pointer to a global shared MR cache.
372  * @param mr
373  *   Pointer to MR to insert.
374  *
375  * @return
376  *   0 on success, -1 on failure.
377  */
378 int
379 mlx5_mr_insert_cache(struct mlx5_mr_share_cache *share_cache,
380 		     struct mlx5_mr *mr)
381 {
382 	unsigned int n;
383 
384 	DRV_LOG(DEBUG, "Inserting MR(%p) to global cache(%p)",
385 		(void *)mr, (void *)share_cache);
386 	for (n = 0; n < mr->ms_bmp_n; ) {
387 		struct mr_cache_entry entry;
388 
389 		memset(&entry, 0, sizeof(entry));
390 		/* Find a contiguous chunk and advance the index. */
391 		n = mr_find_next_chunk(mr, &entry, n);
392 		if (!entry.end)
393 			break;
394 		if (mr_btree_insert(&share_cache->cache, &entry) < 0) {
395 			/*
396 			 * Overflowed, but the global table cannot be expanded
397 			 * because of deadlock.
398 			 */
399 			return -1;
400 		}
401 	}
402 	return 0;
403 }
404 
405 /**
406  * Look up address in the original global MR list.
407  *
408  * @param share_cache
409  *   Pointer to a global shared MR cache.
410  * @param[out] entry
411  *   Pointer to returning MR cache entry. If no match, this will not be updated.
412  * @param addr
413  *   Search key.
414  *
415  * @return
416  *   Found MR on match, NULL otherwise.
417  */
418 struct mlx5_mr *
419 mlx5_mr_lookup_list(struct mlx5_mr_share_cache *share_cache,
420 		    struct mr_cache_entry *entry, uintptr_t addr)
421 {
422 	struct mlx5_mr *mr;
423 
424 	/* Iterate all the existing MRs. */
425 	LIST_FOREACH(mr, &share_cache->mr_list, mr) {
426 		unsigned int n;
427 
428 		if (mr->ms_n == 0)
429 			continue;
430 		for (n = 0; n < mr->ms_bmp_n; ) {
431 			struct mr_cache_entry ret;
432 
433 			memset(&ret, 0, sizeof(ret));
434 			n = mr_find_next_chunk(mr, &ret, n);
435 			if (addr >= ret.start && addr < ret.end) {
436 				/* Found. */
437 				*entry = ret;
438 				return mr;
439 			}
440 		}
441 	}
442 	return NULL;
443 }
444 
445 /**
446  * Look up address on global MR cache.
447  *
448  * @param share_cache
449  *   Pointer to a global shared MR cache.
450  * @param[out] entry
451  *   Pointer to returning MR cache entry. If no match, this will not be updated.
452  * @param addr
453  *   Search key.
454  *
455  * @return
456  *   Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
457  */
458 uint32_t
459 mlx5_mr_lookup_cache(struct mlx5_mr_share_cache *share_cache,
460 		     struct mr_cache_entry *entry, uintptr_t addr)
461 {
462 	uint16_t idx;
463 	uint32_t lkey = UINT32_MAX;
464 	struct mlx5_mr *mr;
465 
466 	/*
467 	 * If the global cache has overflowed since it failed to expand the
468 	 * B-tree table, it can't have all the existing MRs. Then, the address
469 	 * has to be searched by traversing the original MR list instead, which
470 	 * is very slow path. Otherwise, the global cache is all inclusive.
471 	 */
472 	if (!unlikely(share_cache->cache.overflow)) {
473 		lkey = mr_btree_lookup(&share_cache->cache, &idx, addr);
474 		if (lkey != UINT32_MAX)
475 			*entry = (*share_cache->cache.table)[idx];
476 	} else {
477 		/* Falling back to the slowest path. */
478 		mr = mlx5_mr_lookup_list(share_cache, entry, addr);
479 		if (mr != NULL)
480 			lkey = entry->lkey;
481 	}
482 	MLX5_ASSERT(lkey == UINT32_MAX || (addr >= entry->start &&
483 					   addr < entry->end));
484 	return lkey;
485 }
486 
487 /**
488  * Free MR resources. MR lock must not be held to avoid a deadlock. rte_free()
489  * can raise memory free event and the callback function will spin on the lock.
490  *
491  * @param mr
492  *   Pointer to MR to free.
493  */
494 void
495 mlx5_mr_free(struct mlx5_mr *mr, mlx5_dereg_mr_t dereg_mr_cb)
496 {
497 	if (mr == NULL)
498 		return;
499 	DRV_LOG(DEBUG, "freeing MR(%p):", (void *)mr);
500 	dereg_mr_cb(&mr->pmd_mr);
501 	if (mr->ms_bmp != NULL)
502 		rte_bitmap_free(mr->ms_bmp);
503 	mlx5_free(mr);
504 }
505 
506 void
507 mlx5_mr_rebuild_cache(struct mlx5_mr_share_cache *share_cache)
508 {
509 	struct mlx5_mr *mr;
510 
511 	DRV_LOG(DEBUG, "Rebuild dev cache[] %p", (void *)share_cache);
512 	/* Flush cache to rebuild. */
513 	share_cache->cache.len = 1;
514 	share_cache->cache.overflow = 0;
515 	/* Iterate all the existing MRs. */
516 	LIST_FOREACH(mr, &share_cache->mr_list, mr)
517 		if (mlx5_mr_insert_cache(share_cache, mr) < 0)
518 			return;
519 }
520 
521 /**
522  * Release resources of detached MR having no online entry.
523  *
524  * @param share_cache
525  *   Pointer to a global shared MR cache.
526  */
527 static void
528 mlx5_mr_garbage_collect(struct mlx5_mr_share_cache *share_cache)
529 {
530 	struct mlx5_mr *mr_next;
531 	struct mlx5_mr_list free_list = LIST_HEAD_INITIALIZER(free_list);
532 
533 	/* Must be called from the primary process. */
534 	MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY);
535 	/*
536 	 * MR can't be freed with holding the lock because rte_free() could call
537 	 * memory free callback function. This will be a deadlock situation.
538 	 */
539 	rte_rwlock_write_lock(&share_cache->rwlock);
540 	/* Detach the whole free list and release it after unlocking. */
541 	free_list = share_cache->mr_free_list;
542 	LIST_INIT(&share_cache->mr_free_list);
543 	rte_rwlock_write_unlock(&share_cache->rwlock);
544 	/* Release resources. */
545 	mr_next = LIST_FIRST(&free_list);
546 	while (mr_next != NULL) {
547 		struct mlx5_mr *mr = mr_next;
548 
549 		mr_next = LIST_NEXT(mr, mr);
550 		mlx5_mr_free(mr, share_cache->dereg_mr_cb);
551 	}
552 }
553 
554 /* Called during rte_memseg_contig_walk() by mlx5_mr_create(). */
555 static int
556 mr_find_contig_memsegs_cb(const struct rte_memseg_list *msl,
557 			  const struct rte_memseg *ms, size_t len, void *arg)
558 {
559 	struct mr_find_contig_memsegs_data *data = arg;
560 
561 	if (data->addr < ms->addr_64 || data->addr >= ms->addr_64 + len)
562 		return 0;
563 	/* Found, save it and stop walking. */
564 	data->start = ms->addr_64;
565 	data->end = ms->addr_64 + len;
566 	data->msl = msl;
567 	return 1;
568 }
569 
570 /**
571  * Create a new global Memory Region (MR) for a missing virtual address.
572  * This API should be called on a secondary process, then a request is sent to
573  * the primary process in order to create a MR for the address. As the global MR
574  * list is on the shared memory, following LKey lookup should succeed unless the
575  * request fails.
576  *
577  * @param pd
578  *   Pointer to pd of a device (net, regex, vdpa,...).
579  * @param share_cache
580  *   Pointer to a global shared MR cache.
581  * @param[out] entry
582  *   Pointer to returning MR cache entry, found in the global cache or newly
583  *   created. If failed to create one, this will not be updated.
584  * @param addr
585  *   Target virtual address to register.
586  * @param mr_ext_memseg_en
587  *   Configurable flag about external memory segment enable or not.
588  *
589  * @return
590  *   Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
591  */
592 static uint32_t
593 mlx5_mr_create_secondary(void *pd __rte_unused,
594 			 struct mlx5_mp_id *mp_id,
595 			 struct mlx5_mr_share_cache *share_cache,
596 			 struct mr_cache_entry *entry, uintptr_t addr,
597 			 unsigned int mr_ext_memseg_en __rte_unused)
598 {
599 	int ret;
600 
601 	DRV_LOG(DEBUG, "port %u requesting MR creation for address (%p)",
602 	      mp_id->port_id, (void *)addr);
603 	ret = mlx5_mp_req_mr_create(mp_id, addr);
604 	if (ret) {
605 		DRV_LOG(DEBUG, "Fail to request MR creation for address (%p)",
606 		      (void *)addr);
607 		return UINT32_MAX;
608 	}
609 	rte_rwlock_read_lock(&share_cache->rwlock);
610 	/* Fill in output data. */
611 	mlx5_mr_lookup_cache(share_cache, entry, addr);
612 	/* Lookup can't fail. */
613 	MLX5_ASSERT(entry->lkey != UINT32_MAX);
614 	rte_rwlock_read_unlock(&share_cache->rwlock);
615 	DRV_LOG(DEBUG, "MR CREATED by primary process for %p:\n"
616 	      "  [0x%" PRIxPTR ", 0x%" PRIxPTR "), lkey=0x%x",
617 	      (void *)addr, entry->start, entry->end, entry->lkey);
618 	return entry->lkey;
619 }
620 
621 /**
622  * Create a new global Memory Region (MR) for a missing virtual address.
623  * Register entire virtually contiguous memory chunk around the address.
624  *
625  * @param pd
626  *   Pointer to pd of a device (net, regex, vdpa,...).
627  * @param share_cache
628  *   Pointer to a global shared MR cache.
629  * @param[out] entry
630  *   Pointer to returning MR cache entry, found in the global cache or newly
631  *   created. If failed to create one, this will not be updated.
632  * @param addr
633  *   Target virtual address to register.
634  * @param mr_ext_memseg_en
635  *   Configurable flag about external memory segment enable or not.
636  *
637  * @return
638  *   Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
639  */
640 uint32_t
641 mlx5_mr_create_primary(void *pd,
642 		       struct mlx5_mr_share_cache *share_cache,
643 		       struct mr_cache_entry *entry, uintptr_t addr,
644 		       unsigned int mr_ext_memseg_en)
645 {
646 	struct mr_find_contig_memsegs_data data = {.addr = addr, };
647 	struct mr_find_contig_memsegs_data data_re;
648 	const struct rte_memseg_list *msl;
649 	const struct rte_memseg *ms;
650 	struct mlx5_mr *mr = NULL;
651 	int ms_idx_shift = -1;
652 	uint32_t bmp_size;
653 	void *bmp_mem;
654 	uint32_t ms_n;
655 	uint32_t n;
656 	size_t len;
657 
658 	DRV_LOG(DEBUG, "Creating a MR using address (%p)", (void *)addr);
659 	/*
660 	 * Release detached MRs if any. This can't be called with holding either
661 	 * memory_hotplug_lock or share_cache->rwlock. MRs on the free list have
662 	 * been detached by the memory free event but it couldn't be released
663 	 * inside the callback due to deadlock. As a result, releasing resources
664 	 * is quite opportunistic.
665 	 */
666 	mlx5_mr_garbage_collect(share_cache);
667 	/*
668 	 * If enabled, find out a contiguous virtual address chunk in use, to
669 	 * which the given address belongs, in order to register maximum range.
670 	 * In the best case where mempools are not dynamically recreated and
671 	 * '--socket-mem' is specified as an EAL option, it is very likely to
672 	 * have only one MR(LKey) per a socket and per a hugepage-size even
673 	 * though the system memory is highly fragmented. As the whole memory
674 	 * chunk will be pinned by kernel, it can't be reused unless entire
675 	 * chunk is freed from EAL.
676 	 *
677 	 * If disabled, just register one memseg (page). Then, memory
678 	 * consumption will be minimized but it may drop performance if there
679 	 * are many MRs to lookup on the datapath.
680 	 */
681 	if (!mr_ext_memseg_en) {
682 		data.msl = rte_mem_virt2memseg_list((void *)addr);
683 		data.start = RTE_ALIGN_FLOOR(addr, data.msl->page_sz);
684 		data.end = data.start + data.msl->page_sz;
685 	} else if (!rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data)) {
686 		DRV_LOG(WARNING,
687 			"Unable to find virtually contiguous"
688 			" chunk for address (%p)."
689 			" rte_memseg_contig_walk() failed.", (void *)addr);
690 		rte_errno = ENXIO;
691 		goto err_nolock;
692 	}
693 alloc_resources:
694 	/* Addresses must be page-aligned. */
695 	MLX5_ASSERT(data.msl);
696 	MLX5_ASSERT(rte_is_aligned((void *)data.start, data.msl->page_sz));
697 	MLX5_ASSERT(rte_is_aligned((void *)data.end, data.msl->page_sz));
698 	msl = data.msl;
699 	ms = rte_mem_virt2memseg((void *)data.start, msl);
700 	len = data.end - data.start;
701 	MLX5_ASSERT(ms);
702 	MLX5_ASSERT(msl->page_sz == ms->hugepage_sz);
703 	/* Number of memsegs in the range. */
704 	ms_n = len / msl->page_sz;
705 	DRV_LOG(DEBUG, "Extending %p to [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
706 	      " page_sz=0x%" PRIx64 ", ms_n=%u",
707 	      (void *)addr, data.start, data.end, msl->page_sz, ms_n);
708 	/* Size of memory for bitmap. */
709 	bmp_size = rte_bitmap_get_memory_footprint(ms_n);
710 	mr = mlx5_malloc(MLX5_MEM_RTE |  MLX5_MEM_ZERO,
711 			 RTE_ALIGN_CEIL(sizeof(*mr), RTE_CACHE_LINE_SIZE) +
712 			 bmp_size, RTE_CACHE_LINE_SIZE, msl->socket_id);
713 	if (mr == NULL) {
714 		DRV_LOG(DEBUG, "Unable to allocate memory for a new MR of"
715 		      " address (%p).", (void *)addr);
716 		rte_errno = ENOMEM;
717 		goto err_nolock;
718 	}
719 	mr->msl = msl;
720 	/*
721 	 * Save the index of the first memseg and initialize memseg bitmap. To
722 	 * see if a memseg of ms_idx in the memseg-list is still valid, check:
723 	 *	rte_bitmap_get(mr->bmp, ms_idx - mr->ms_base_idx)
724 	 */
725 	mr->ms_base_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
726 	bmp_mem = RTE_PTR_ALIGN_CEIL(mr + 1, RTE_CACHE_LINE_SIZE);
727 	mr->ms_bmp = rte_bitmap_init(ms_n, bmp_mem, bmp_size);
728 	if (mr->ms_bmp == NULL) {
729 		DRV_LOG(DEBUG, "Unable to initialize bitmap for a new MR of"
730 		      " address (%p).", (void *)addr);
731 		rte_errno = EINVAL;
732 		goto err_nolock;
733 	}
734 	/*
735 	 * Should recheck whether the extended contiguous chunk is still valid.
736 	 * Because memory_hotplug_lock can't be held if there's any memory
737 	 * related calls in a critical path, resource allocation above can't be
738 	 * locked. If the memory has been changed at this point, try again with
739 	 * just single page. If not, go on with the big chunk atomically from
740 	 * here.
741 	 */
742 	rte_mcfg_mem_read_lock();
743 	data_re = data;
744 	if (len > msl->page_sz &&
745 	    !rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data_re)) {
746 		DRV_LOG(DEBUG,
747 			"Unable to find virtually contiguous chunk for address "
748 			"(%p). rte_memseg_contig_walk() failed.", (void *)addr);
749 		rte_errno = ENXIO;
750 		goto err_memlock;
751 	}
752 	if (data.start != data_re.start || data.end != data_re.end) {
753 		/*
754 		 * The extended contiguous chunk has been changed. Try again
755 		 * with single memseg instead.
756 		 */
757 		data.start = RTE_ALIGN_FLOOR(addr, msl->page_sz);
758 		data.end = data.start + msl->page_sz;
759 		rte_mcfg_mem_read_unlock();
760 		mlx5_mr_free(mr, share_cache->dereg_mr_cb);
761 		goto alloc_resources;
762 	}
763 	MLX5_ASSERT(data.msl == data_re.msl);
764 	rte_rwlock_write_lock(&share_cache->rwlock);
765 	/*
766 	 * Check the address is really missing. If other thread already created
767 	 * one or it is not found due to overflow, abort and return.
768 	 */
769 	if (mlx5_mr_lookup_cache(share_cache, entry, addr) != UINT32_MAX) {
770 		/*
771 		 * Insert to the global cache table. It may fail due to
772 		 * low-on-memory. Then, this entry will have to be searched
773 		 * here again.
774 		 */
775 		mr_btree_insert(&share_cache->cache, entry);
776 		DRV_LOG(DEBUG, "Found MR for %p on final lookup, abort",
777 			(void *)addr);
778 		rte_rwlock_write_unlock(&share_cache->rwlock);
779 		rte_mcfg_mem_read_unlock();
780 		/*
781 		 * Must be unlocked before calling rte_free() because
782 		 * mlx5_mr_mem_event_free_cb() can be called inside.
783 		 */
784 		mlx5_mr_free(mr, share_cache->dereg_mr_cb);
785 		return entry->lkey;
786 	}
787 	/*
788 	 * Trim start and end addresses for verbs MR. Set bits for registering
789 	 * memsegs but exclude already registered ones. Bitmap can be
790 	 * fragmented.
791 	 */
792 	for (n = 0; n < ms_n; ++n) {
793 		uintptr_t start;
794 		struct mr_cache_entry ret;
795 
796 		memset(&ret, 0, sizeof(ret));
797 		start = data_re.start + n * msl->page_sz;
798 		/* Exclude memsegs already registered by other MRs. */
799 		if (mlx5_mr_lookup_cache(share_cache, &ret, start) ==
800 		    UINT32_MAX) {
801 			/*
802 			 * Start from the first unregistered memseg in the
803 			 * extended range.
804 			 */
805 			if (ms_idx_shift == -1) {
806 				mr->ms_base_idx += n;
807 				data.start = start;
808 				ms_idx_shift = n;
809 			}
810 			data.end = start + msl->page_sz;
811 			rte_bitmap_set(mr->ms_bmp, n - ms_idx_shift);
812 			++mr->ms_n;
813 		}
814 	}
815 	len = data.end - data.start;
816 	mr->ms_bmp_n = len / msl->page_sz;
817 	MLX5_ASSERT(ms_idx_shift + mr->ms_bmp_n <= ms_n);
818 	/*
819 	 * Finally create an MR for the memory chunk. Verbs: ibv_reg_mr() can
820 	 * be called with holding the memory lock because it doesn't use
821 	 * mlx5_alloc_buf_extern() which eventually calls rte_malloc_socket()
822 	 * through mlx5_alloc_verbs_buf().
823 	 */
824 	share_cache->reg_mr_cb(pd, (void *)data.start, len, &mr->pmd_mr);
825 	if (mr->pmd_mr.obj == NULL) {
826 		DRV_LOG(DEBUG, "Fail to create an MR for address (%p)",
827 		      (void *)addr);
828 		rte_errno = EINVAL;
829 		goto err_mrlock;
830 	}
831 	MLX5_ASSERT((uintptr_t)mr->pmd_mr.addr == data.start);
832 	MLX5_ASSERT(mr->pmd_mr.len);
833 	LIST_INSERT_HEAD(&share_cache->mr_list, mr, mr);
834 	DRV_LOG(DEBUG, "MR CREATED (%p) for %p:\n"
835 	      "  [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
836 	      " lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u",
837 	      (void *)mr, (void *)addr, data.start, data.end,
838 	      rte_cpu_to_be_32(mr->pmd_mr.lkey),
839 	      mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n);
840 	/* Insert to the global cache table. */
841 	mlx5_mr_insert_cache(share_cache, mr);
842 	/* Fill in output data. */
843 	mlx5_mr_lookup_cache(share_cache, entry, addr);
844 	/* Lookup can't fail. */
845 	MLX5_ASSERT(entry->lkey != UINT32_MAX);
846 	rte_rwlock_write_unlock(&share_cache->rwlock);
847 	rte_mcfg_mem_read_unlock();
848 	return entry->lkey;
849 err_mrlock:
850 	rte_rwlock_write_unlock(&share_cache->rwlock);
851 err_memlock:
852 	rte_mcfg_mem_read_unlock();
853 err_nolock:
854 	/*
855 	 * In case of error, as this can be called in a datapath, a warning
856 	 * message per an error is preferable instead. Must be unlocked before
857 	 * calling rte_free() because mlx5_mr_mem_event_free_cb() can be called
858 	 * inside.
859 	 */
860 	mlx5_mr_free(mr, share_cache->dereg_mr_cb);
861 	return UINT32_MAX;
862 }
863 
864 /**
865  * Create a new global Memory Region (MR) for a missing virtual address.
866  * This can be called from primary and secondary process.
867  *
868  * @param pd
869  *   Pointer to pd handle of a device (net, regex, vdpa,...).
870  * @param share_cache
871  *   Pointer to a global shared MR cache.
872  * @param[out] entry
873  *   Pointer to returning MR cache entry, found in the global cache or newly
874  *   created. If failed to create one, this will not be updated.
875  * @param addr
876  *   Target virtual address to register.
877  *
878  * @return
879  *   Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
880  */
881 static uint32_t
882 mlx5_mr_create(void *pd, struct mlx5_mp_id *mp_id,
883 	       struct mlx5_mr_share_cache *share_cache,
884 	       struct mr_cache_entry *entry, uintptr_t addr,
885 	       unsigned int mr_ext_memseg_en)
886 {
887 	uint32_t ret = 0;
888 
889 	switch (rte_eal_process_type()) {
890 	case RTE_PROC_PRIMARY:
891 		ret = mlx5_mr_create_primary(pd, share_cache, entry,
892 					     addr, mr_ext_memseg_en);
893 		break;
894 	case RTE_PROC_SECONDARY:
895 		ret = mlx5_mr_create_secondary(pd, mp_id, share_cache, entry,
896 					       addr, mr_ext_memseg_en);
897 		break;
898 	default:
899 		break;
900 	}
901 	return ret;
902 }
903 
904 /**
905  * Look up address in the global MR cache table. If not found, create a new MR.
906  * Insert the found/created entry to local bottom-half cache table.
907  *
908  * @param pd
909  *   Pointer to pd of a device (net, regex, vdpa,...).
910  * @param share_cache
911  *   Pointer to a global shared MR cache.
912  * @param mr_ctrl
913  *   Pointer to per-queue MR control structure.
914  * @param[out] entry
915  *   Pointer to returning MR cache entry, found in the global cache or newly
916  *   created. If failed to create one, this is not written.
917  * @param addr
918  *   Search key.
919  *
920  * @return
921  *   Searched LKey on success, UINT32_MAX on no match.
922  */
923 static uint32_t
924 mr_lookup_caches(void *pd, struct mlx5_mp_id *mp_id,
925 		 struct mlx5_mr_share_cache *share_cache,
926 		 struct mlx5_mr_ctrl *mr_ctrl,
927 		 struct mr_cache_entry *entry, uintptr_t addr,
928 		 unsigned int mr_ext_memseg_en)
929 {
930 	struct mlx5_mr_btree *bt = &mr_ctrl->cache_bh;
931 	uint32_t lkey;
932 	uint16_t idx;
933 
934 	/* If local cache table is full, try to double it. */
935 	if (unlikely(bt->len == bt->size))
936 		mr_btree_expand(bt, bt->size << 1);
937 	/* Look up in the global cache. */
938 	rte_rwlock_read_lock(&share_cache->rwlock);
939 	lkey = mr_btree_lookup(&share_cache->cache, &idx, addr);
940 	if (lkey != UINT32_MAX) {
941 		/* Found. */
942 		*entry = (*share_cache->cache.table)[idx];
943 		rte_rwlock_read_unlock(&share_cache->rwlock);
944 		/*
945 		 * Update local cache. Even if it fails, return the found entry
946 		 * to update top-half cache. Next time, this entry will be found
947 		 * in the global cache.
948 		 */
949 		mr_btree_insert(bt, entry);
950 		return lkey;
951 	}
952 	rte_rwlock_read_unlock(&share_cache->rwlock);
953 	/* First time to see the address? Create a new MR. */
954 	lkey = mlx5_mr_create(pd, mp_id, share_cache, entry, addr,
955 			      mr_ext_memseg_en);
956 	/*
957 	 * Update the local cache if successfully created a new global MR. Even
958 	 * if failed to create one, there's no action to take in this datapath
959 	 * code. As returning LKey is invalid, this will eventually make HW
960 	 * fail.
961 	 */
962 	if (lkey != UINT32_MAX)
963 		mr_btree_insert(bt, entry);
964 	return lkey;
965 }
966 
967 /**
968  * Bottom-half of LKey search on datapath. First search in cache_bh[] and if
969  * misses, search in the global MR cache table and update the new entry to
970  * per-queue local caches.
971  *
972  * @param pd
973  *   Pointer to pd of a device (net, regex, vdpa,...).
974  * @param share_cache
975  *   Pointer to a global shared MR cache.
976  * @param mr_ctrl
977  *   Pointer to per-queue MR control structure.
978  * @param addr
979  *   Search key.
980  *
981  * @return
982  *   Searched LKey on success, UINT32_MAX on no match.
983  */
984 uint32_t mlx5_mr_addr2mr_bh(void *pd, struct mlx5_mp_id *mp_id,
985 			    struct mlx5_mr_share_cache *share_cache,
986 			    struct mlx5_mr_ctrl *mr_ctrl,
987 			    uintptr_t addr, unsigned int mr_ext_memseg_en)
988 {
989 	uint32_t lkey;
990 	uint16_t bh_idx = 0;
991 	/* Victim in top-half cache to replace with new entry. */
992 	struct mr_cache_entry *repl = &mr_ctrl->cache[mr_ctrl->head];
993 
994 	/* Binary-search MR translation table. */
995 	lkey = mr_btree_lookup(&mr_ctrl->cache_bh, &bh_idx, addr);
996 	/* Update top-half cache. */
997 	if (likely(lkey != UINT32_MAX)) {
998 		*repl = (*mr_ctrl->cache_bh.table)[bh_idx];
999 	} else {
1000 		/*
1001 		 * If missed in local lookup table, search in the global cache
1002 		 * and local cache_bh[] will be updated inside if possible.
1003 		 * Top-half cache entry will also be updated.
1004 		 */
1005 		lkey = mr_lookup_caches(pd, mp_id, share_cache, mr_ctrl,
1006 					repl, addr, mr_ext_memseg_en);
1007 		if (unlikely(lkey == UINT32_MAX))
1008 			return UINT32_MAX;
1009 	}
1010 	/* Update the most recently used entry. */
1011 	mr_ctrl->mru = mr_ctrl->head;
1012 	/* Point to the next victim, the oldest. */
1013 	mr_ctrl->head = (mr_ctrl->head + 1) % MLX5_MR_CACHE_N;
1014 	return lkey;
1015 }
1016 
1017 /**
1018  * Release all the created MRs and resources on global MR cache of a device.
1019  * list.
1020  *
1021  * @param share_cache
1022  *   Pointer to a global shared MR cache.
1023  */
1024 void
1025 mlx5_mr_release_cache(struct mlx5_mr_share_cache *share_cache)
1026 {
1027 	struct mlx5_mr *mr_next;
1028 
1029 	rte_rwlock_write_lock(&share_cache->rwlock);
1030 	/* Detach from MR list and move to free list. */
1031 	mr_next = LIST_FIRST(&share_cache->mr_list);
1032 	while (mr_next != NULL) {
1033 		struct mlx5_mr *mr = mr_next;
1034 
1035 		mr_next = LIST_NEXT(mr, mr);
1036 		LIST_REMOVE(mr, mr);
1037 		LIST_INSERT_HEAD(&share_cache->mr_free_list, mr, mr);
1038 	}
1039 	LIST_INIT(&share_cache->mr_list);
1040 	/* Free global cache. */
1041 	mlx5_mr_btree_free(&share_cache->cache);
1042 	rte_rwlock_write_unlock(&share_cache->rwlock);
1043 	/* Free all remaining MRs. */
1044 	mlx5_mr_garbage_collect(share_cache);
1045 }
1046 
1047 /**
1048  * Flush all of the local cache entries.
1049  *
1050  * @param mr_ctrl
1051  *   Pointer to per-queue MR local cache.
1052  */
1053 void
1054 mlx5_mr_flush_local_cache(struct mlx5_mr_ctrl *mr_ctrl)
1055 {
1056 	/* Reset the most-recently-used index. */
1057 	mr_ctrl->mru = 0;
1058 	/* Reset the linear search array. */
1059 	mr_ctrl->head = 0;
1060 	memset(mr_ctrl->cache, 0, sizeof(mr_ctrl->cache));
1061 	/* Reset the B-tree table. */
1062 	mr_ctrl->cache_bh.len = 1;
1063 	mr_ctrl->cache_bh.overflow = 0;
1064 	/* Update the generation number. */
1065 	mr_ctrl->cur_gen = *mr_ctrl->dev_gen_ptr;
1066 	DRV_LOG(DEBUG, "mr_ctrl(%p): flushed, cur_gen=%d",
1067 		(void *)mr_ctrl, mr_ctrl->cur_gen);
1068 }
1069 
1070 /**
1071  * Creates a memory region for external memory, that is memory which is not
1072  * part of the DPDK memory segments.
1073  *
1074  * @param pd
1075  *   Pointer to pd of a device (net, regex, vdpa,...).
1076  * @param addr
1077  *   Starting virtual address of memory.
1078  * @param len
1079  *   Length of memory segment being mapped.
1080  * @param socked_id
1081  *   Socket to allocate heap memory for the control structures.
1082  *
1083  * @return
1084  *   Pointer to MR structure on success, NULL otherwise.
1085  */
1086 struct mlx5_mr *
1087 mlx5_create_mr_ext(void *pd, uintptr_t addr, size_t len, int socket_id,
1088 		   mlx5_reg_mr_t reg_mr_cb)
1089 {
1090 	struct mlx5_mr *mr = NULL;
1091 
1092 	mr = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO,
1093 			 RTE_ALIGN_CEIL(sizeof(*mr), RTE_CACHE_LINE_SIZE),
1094 			 RTE_CACHE_LINE_SIZE, socket_id);
1095 	if (mr == NULL)
1096 		return NULL;
1097 	reg_mr_cb(pd, (void *)addr, len, &mr->pmd_mr);
1098 	if (mr->pmd_mr.obj == NULL) {
1099 		DRV_LOG(WARNING,
1100 			"Fail to create MR for address (%p)",
1101 			(void *)addr);
1102 		mlx5_free(mr);
1103 		return NULL;
1104 	}
1105 	mr->msl = NULL; /* Mark it is external memory. */
1106 	mr->ms_bmp = NULL;
1107 	mr->ms_n = 1;
1108 	mr->ms_bmp_n = 1;
1109 	DRV_LOG(DEBUG,
1110 		"MR CREATED (%p) for external memory %p:\n"
1111 		"  [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
1112 		" lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u",
1113 		(void *)mr, (void *)addr,
1114 		addr, addr + len, rte_cpu_to_be_32(mr->pmd_mr.lkey),
1115 		mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n);
1116 	return mr;
1117 }
1118 
1119 /**
1120  * Callback for memory free event. Iterate freed memsegs and check whether it
1121  * belongs to an existing MR. If found, clear the bit from bitmap of MR. As a
1122  * result, the MR would be fragmented. If it becomes empty, the MR will be freed
1123  * later by mlx5_mr_garbage_collect(). Even if this callback is called from a
1124  * secondary process, the garbage collector will be called in primary process
1125  * as the secondary process can't call mlx5_mr_create().
1126  *
1127  * The global cache must be rebuilt if there's any change and this event has to
1128  * be propagated to dataplane threads to flush the local caches.
1129  *
1130  * @param share_cache
1131  *   Pointer to a global shared MR cache.
1132  * @param ibdev_name
1133  *   Name of ibv device.
1134  * @param addr
1135  *   Address of freed memory.
1136  * @param len
1137  *   Size of freed memory.
1138  */
1139 void
1140 mlx5_free_mr_by_addr(struct mlx5_mr_share_cache *share_cache,
1141 		     const char *ibdev_name, const void *addr, size_t len)
1142 {
1143 	const struct rte_memseg_list *msl;
1144 	struct mlx5_mr *mr;
1145 	int ms_n;
1146 	int i;
1147 	int rebuild = 0;
1148 
1149 	DRV_LOG(DEBUG, "device %s free callback: addr=%p, len=%zu",
1150 		ibdev_name, addr, len);
1151 	msl = rte_mem_virt2memseg_list(addr);
1152 	/* addr and len must be page-aligned. */
1153 	MLX5_ASSERT((uintptr_t)addr ==
1154 		    RTE_ALIGN((uintptr_t)addr, msl->page_sz));
1155 	MLX5_ASSERT(len == RTE_ALIGN(len, msl->page_sz));
1156 	ms_n = len / msl->page_sz;
1157 	rte_rwlock_write_lock(&share_cache->rwlock);
1158 	/* Clear bits of freed memsegs from MR. */
1159 	for (i = 0; i < ms_n; ++i) {
1160 		const struct rte_memseg *ms;
1161 		struct mr_cache_entry entry;
1162 		uintptr_t start;
1163 		int ms_idx;
1164 		uint32_t pos;
1165 
1166 		/* Find MR having this memseg. */
1167 		start = (uintptr_t)addr + i * msl->page_sz;
1168 		mr = mlx5_mr_lookup_list(share_cache, &entry, start);
1169 		if (mr == NULL)
1170 			continue;
1171 		MLX5_ASSERT(mr->msl); /* Can't be external memory. */
1172 		ms = rte_mem_virt2memseg((void *)start, msl);
1173 		MLX5_ASSERT(ms != NULL);
1174 		MLX5_ASSERT(msl->page_sz == ms->hugepage_sz);
1175 		ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
1176 		pos = ms_idx - mr->ms_base_idx;
1177 		MLX5_ASSERT(rte_bitmap_get(mr->ms_bmp, pos));
1178 		MLX5_ASSERT(pos < mr->ms_bmp_n);
1179 		DRV_LOG(DEBUG, "device %s MR(%p): clear bitmap[%u] for addr %p",
1180 			ibdev_name, (void *)mr, pos, (void *)start);
1181 		rte_bitmap_clear(mr->ms_bmp, pos);
1182 		if (--mr->ms_n == 0) {
1183 			LIST_REMOVE(mr, mr);
1184 			LIST_INSERT_HEAD(&share_cache->mr_free_list, mr, mr);
1185 			DRV_LOG(DEBUG, "device %s remove MR(%p) from list",
1186 				ibdev_name, (void *)mr);
1187 		}
1188 		/*
1189 		 * MR is fragmented or will be freed. the global cache must be
1190 		 * rebuilt.
1191 		 */
1192 		rebuild = 1;
1193 	}
1194 	if (rebuild) {
1195 		mlx5_mr_rebuild_cache(share_cache);
1196 		/*
1197 		 * No explicit wmb is needed after updating dev_gen due to
1198 		 * store-release ordering in unlock that provides the
1199 		 * implicit barrier at the software visible level.
1200 		 */
1201 		++share_cache->dev_gen;
1202 		DRV_LOG(DEBUG, "broadcasting local cache flush, gen=%d",
1203 			share_cache->dev_gen);
1204 	}
1205 	rte_rwlock_write_unlock(&share_cache->rwlock);
1206 }
1207 
1208 /**
1209  * Dump all the created MRs and the global cache entries.
1210  *
1211  * @param sh
1212  *   Pointer to Ethernet device shared context.
1213  */
1214 void
1215 mlx5_mr_dump_cache(struct mlx5_mr_share_cache *share_cache __rte_unused)
1216 {
1217 #ifdef RTE_LIBRTE_MLX5_DEBUG
1218 	struct mlx5_mr *mr;
1219 	int mr_n = 0;
1220 	int chunk_n = 0;
1221 
1222 	rte_rwlock_read_lock(&share_cache->rwlock);
1223 	/* Iterate all the existing MRs. */
1224 	LIST_FOREACH(mr, &share_cache->mr_list, mr) {
1225 		unsigned int n;
1226 
1227 		DRV_LOG(DEBUG, "MR[%u], LKey = 0x%x, ms_n = %u, ms_bmp_n = %u",
1228 		      mr_n++, rte_cpu_to_be_32(mr->pmd_mr.lkey),
1229 		      mr->ms_n, mr->ms_bmp_n);
1230 		if (mr->ms_n == 0)
1231 			continue;
1232 		for (n = 0; n < mr->ms_bmp_n; ) {
1233 			struct mr_cache_entry ret = { 0, };
1234 
1235 			n = mr_find_next_chunk(mr, &ret, n);
1236 			if (!ret.end)
1237 				break;
1238 			DRV_LOG(DEBUG,
1239 				"  chunk[%u], [0x%" PRIxPTR ", 0x%" PRIxPTR ")",
1240 				chunk_n++, ret.start, ret.end);
1241 		}
1242 	}
1243 	DRV_LOG(DEBUG, "Dumping global cache %p", (void *)share_cache);
1244 	mlx5_mr_btree_dump(&share_cache->cache);
1245 	rte_rwlock_read_unlock(&share_cache->rwlock);
1246 #endif
1247 }
1248 
1249 static int
1250 mlx5_range_compare_start(const void *lhs, const void *rhs)
1251 {
1252 	const struct mlx5_range *r1 = lhs, *r2 = rhs;
1253 
1254 	if (r1->start > r2->start)
1255 		return 1;
1256 	else if (r1->start < r2->start)
1257 		return -1;
1258 	return 0;
1259 }
1260 
1261 static void
1262 mlx5_range_from_mempool_chunk(struct rte_mempool *mp, void *opaque,
1263 			      struct rte_mempool_memhdr *memhdr,
1264 			      unsigned int idx)
1265 {
1266 	struct mlx5_range *ranges = opaque, *range = &ranges[idx];
1267 	uint64_t page_size = rte_mem_page_size();
1268 
1269 	RTE_SET_USED(mp);
1270 	range->start = RTE_ALIGN_FLOOR((uintptr_t)memhdr->addr, page_size);
1271 	range->end = RTE_ALIGN_CEIL(range->start + memhdr->len, page_size);
1272 }
1273 
1274 /**
1275  * Get VA-contiguous ranges of the mempool memory.
1276  * Each range start and end is aligned to the system page size.
1277  *
1278  * @param[in] mp
1279  *   Analyzed mempool.
1280  * @param[out] out
1281  *   Receives the ranges, caller must release it with free().
1282  * @param[out] ount_n
1283  *   Receives the number of @p out elements.
1284  *
1285  * @return
1286  *   0 on success, (-1) on failure.
1287  */
1288 static int
1289 mlx5_get_mempool_ranges(struct rte_mempool *mp, struct mlx5_range **out,
1290 			unsigned int *out_n)
1291 {
1292 	struct mlx5_range *chunks;
1293 	unsigned int chunks_n = mp->nb_mem_chunks, contig_n, i;
1294 
1295 	/* Collect page-aligned memory ranges of the mempool. */
1296 	chunks = calloc(sizeof(chunks[0]), chunks_n);
1297 	if (chunks == NULL)
1298 		return -1;
1299 	rte_mempool_mem_iter(mp, mlx5_range_from_mempool_chunk, chunks);
1300 	/* Merge adjacent chunks and place them at the beginning. */
1301 	qsort(chunks, chunks_n, sizeof(chunks[0]), mlx5_range_compare_start);
1302 	contig_n = 1;
1303 	for (i = 1; i < chunks_n; i++)
1304 		if (chunks[i - 1].end != chunks[i].start) {
1305 			chunks[contig_n - 1].end = chunks[i - 1].end;
1306 			chunks[contig_n] = chunks[i];
1307 			contig_n++;
1308 		}
1309 	/* Extend the last contiguous chunk to the end of the mempool. */
1310 	chunks[contig_n - 1].end = chunks[i - 1].end;
1311 	*out = chunks;
1312 	*out_n = contig_n;
1313 	return 0;
1314 }
1315 
1316 /**
1317  * Analyze mempool memory to select memory ranges to register.
1318  *
1319  * @param[in] mp
1320  *   Mempool to analyze.
1321  * @param[out] out
1322  *   Receives memory ranges to register, aligned to the system page size.
1323  *   The caller must release them with free().
1324  * @param[out] out_n
1325  *   Receives the number of @p out items.
1326  * @param[out] share_hugepage
1327  *   Receives True if the entire pool resides within a single hugepage.
1328  *
1329  * @return
1330  *   0 on success, (-1) on failure.
1331  */
1332 static int
1333 mlx5_mempool_reg_analyze(struct rte_mempool *mp, struct mlx5_range **out,
1334 			 unsigned int *out_n, bool *share_hugepage)
1335 {
1336 	struct mlx5_range *ranges = NULL;
1337 	unsigned int i, ranges_n = 0;
1338 	struct rte_memseg_list *msl;
1339 
1340 	if (mlx5_get_mempool_ranges(mp, &ranges, &ranges_n) < 0) {
1341 		DRV_LOG(ERR, "Cannot get address ranges for mempool %s",
1342 			mp->name);
1343 		return -1;
1344 	}
1345 	/* Check if the hugepage of the pool can be shared. */
1346 	*share_hugepage = false;
1347 	msl = rte_mem_virt2memseg_list((void *)ranges[0].start);
1348 	if (msl != NULL) {
1349 		uint64_t hugepage_sz = 0;
1350 
1351 		/* Check that all ranges are on pages of the same size. */
1352 		for (i = 0; i < ranges_n; i++) {
1353 			if (hugepage_sz != 0 && hugepage_sz != msl->page_sz)
1354 				break;
1355 			hugepage_sz = msl->page_sz;
1356 		}
1357 		if (i == ranges_n) {
1358 			/*
1359 			 * If the entire pool is within one hugepage,
1360 			 * combine all ranges into one of the hugepage size.
1361 			 */
1362 			uintptr_t reg_start = ranges[0].start;
1363 			uintptr_t reg_end = ranges[ranges_n - 1].end;
1364 			uintptr_t hugepage_start =
1365 				RTE_ALIGN_FLOOR(reg_start, hugepage_sz);
1366 			uintptr_t hugepage_end = hugepage_start + hugepage_sz;
1367 			if (reg_end < hugepage_end) {
1368 				ranges[0].start = hugepage_start;
1369 				ranges[0].end = hugepage_end;
1370 				ranges_n = 1;
1371 				*share_hugepage = true;
1372 			}
1373 		}
1374 	}
1375 	*out = ranges;
1376 	*out_n = ranges_n;
1377 	return 0;
1378 }
1379 
1380 /** Create a registration object for the mempool. */
1381 static struct mlx5_mempool_reg *
1382 mlx5_mempool_reg_create(struct rte_mempool *mp, unsigned int mrs_n)
1383 {
1384 	struct mlx5_mempool_reg *mpr = NULL;
1385 
1386 	mpr = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO,
1387 			  sizeof(*mpr) + mrs_n * sizeof(mpr->mrs[0]),
1388 			  RTE_CACHE_LINE_SIZE, SOCKET_ID_ANY);
1389 	if (mpr == NULL) {
1390 		DRV_LOG(ERR, "Cannot allocate mempool %s registration object",
1391 			mp->name);
1392 		return NULL;
1393 	}
1394 	mpr->mp = mp;
1395 	mpr->mrs = (struct mlx5_mempool_mr *)(mpr + 1);
1396 	mpr->mrs_n = mrs_n;
1397 	return mpr;
1398 }
1399 
1400 /**
1401  * Destroy a mempool registration object.
1402  *
1403  * @param standalone
1404  *   Whether @p mpr owns its MRs excludively, i.e. they are not shared.
1405  */
1406 static void
1407 mlx5_mempool_reg_destroy(struct mlx5_mr_share_cache *share_cache,
1408 			 struct mlx5_mempool_reg *mpr, bool standalone)
1409 {
1410 	if (standalone) {
1411 		unsigned int i;
1412 
1413 		for (i = 0; i < mpr->mrs_n; i++)
1414 			share_cache->dereg_mr_cb(&mpr->mrs[i].pmd_mr);
1415 	}
1416 	mlx5_free(mpr);
1417 }
1418 
1419 /** Find registration object of a mempool. */
1420 static struct mlx5_mempool_reg *
1421 mlx5_mempool_reg_lookup(struct mlx5_mr_share_cache *share_cache,
1422 			struct rte_mempool *mp)
1423 {
1424 	struct mlx5_mempool_reg *mpr;
1425 
1426 	LIST_FOREACH(mpr, &share_cache->mempool_reg_list, next)
1427 		if (mpr->mp == mp)
1428 			break;
1429 	return mpr;
1430 }
1431 
1432 /** Increment reference counters of MRs used in the registration. */
1433 static void
1434 mlx5_mempool_reg_attach(struct mlx5_mempool_reg *mpr)
1435 {
1436 	unsigned int i;
1437 
1438 	for (i = 0; i < mpr->mrs_n; i++)
1439 		__atomic_add_fetch(&mpr->mrs[i].refcnt, 1, __ATOMIC_RELAXED);
1440 }
1441 
1442 /**
1443  * Decrement reference counters of MRs used in the registration.
1444  *
1445  * @return True if no more references to @p mpr MRs exist, False otherwise.
1446  */
1447 static bool
1448 mlx5_mempool_reg_detach(struct mlx5_mempool_reg *mpr)
1449 {
1450 	unsigned int i;
1451 	bool ret = false;
1452 
1453 	for (i = 0; i < mpr->mrs_n; i++)
1454 		ret |= __atomic_sub_fetch(&mpr->mrs[i].refcnt, 1,
1455 					  __ATOMIC_RELAXED) == 0;
1456 	return ret;
1457 }
1458 
1459 static int
1460 mlx5_mr_mempool_register_primary(struct mlx5_mr_share_cache *share_cache,
1461 				 void *pd, struct rte_mempool *mp)
1462 {
1463 	struct mlx5_range *ranges = NULL;
1464 	struct mlx5_mempool_reg *mpr, *new_mpr;
1465 	unsigned int i, ranges_n;
1466 	bool share_hugepage;
1467 	int ret = -1;
1468 
1469 	/* Early check to avoid unnecessary creation of MRs. */
1470 	rte_rwlock_read_lock(&share_cache->rwlock);
1471 	mpr = mlx5_mempool_reg_lookup(share_cache, mp);
1472 	rte_rwlock_read_unlock(&share_cache->rwlock);
1473 	if (mpr != NULL) {
1474 		DRV_LOG(DEBUG, "Mempool %s is already registered for PD %p",
1475 			mp->name, pd);
1476 		rte_errno = EEXIST;
1477 		goto exit;
1478 	}
1479 	if (mlx5_mempool_reg_analyze(mp, &ranges, &ranges_n,
1480 				     &share_hugepage) < 0) {
1481 		DRV_LOG(ERR, "Cannot get mempool %s memory ranges", mp->name);
1482 		rte_errno = ENOMEM;
1483 		goto exit;
1484 	}
1485 	new_mpr = mlx5_mempool_reg_create(mp, ranges_n);
1486 	if (new_mpr == NULL) {
1487 		DRV_LOG(ERR,
1488 			"Cannot create a registration object for mempool %s in PD %p",
1489 			mp->name, pd);
1490 		rte_errno = ENOMEM;
1491 		goto exit;
1492 	}
1493 	/*
1494 	 * If the entire mempool fits in a single hugepage, the MR for this
1495 	 * hugepage can be shared across mempools that also fit in it.
1496 	 */
1497 	if (share_hugepage) {
1498 		rte_rwlock_write_lock(&share_cache->rwlock);
1499 		LIST_FOREACH(mpr, &share_cache->mempool_reg_list, next) {
1500 			if (mpr->mrs[0].pmd_mr.addr == (void *)ranges[0].start)
1501 				break;
1502 		}
1503 		if (mpr != NULL) {
1504 			new_mpr->mrs = mpr->mrs;
1505 			mlx5_mempool_reg_attach(new_mpr);
1506 			LIST_INSERT_HEAD(&share_cache->mempool_reg_list,
1507 					 new_mpr, next);
1508 		}
1509 		rte_rwlock_write_unlock(&share_cache->rwlock);
1510 		if (mpr != NULL) {
1511 			DRV_LOG(DEBUG, "Shared MR %#x in PD %p for mempool %s with mempool %s",
1512 				mpr->mrs[0].pmd_mr.lkey, pd, mp->name,
1513 				mpr->mp->name);
1514 			ret = 0;
1515 			goto exit;
1516 		}
1517 	}
1518 	for (i = 0; i < ranges_n; i++) {
1519 		struct mlx5_mempool_mr *mr = &new_mpr->mrs[i];
1520 		const struct mlx5_range *range = &ranges[i];
1521 		size_t len = range->end - range->start;
1522 
1523 		if (share_cache->reg_mr_cb(pd, (void *)range->start, len,
1524 		    &mr->pmd_mr) < 0) {
1525 			DRV_LOG(ERR,
1526 				"Failed to create an MR in PD %p for address range "
1527 				"[0x%" PRIxPTR ", 0x%" PRIxPTR "] (%zu bytes) for mempool %s",
1528 				pd, range->start, range->end, len, mp->name);
1529 			break;
1530 		}
1531 		DRV_LOG(DEBUG,
1532 			"Created a new MR %#x in PD %p for address range "
1533 			"[0x%" PRIxPTR ", 0x%" PRIxPTR "] (%zu bytes) for mempool %s",
1534 			mr->pmd_mr.lkey, pd, range->start, range->end, len,
1535 			mp->name);
1536 	}
1537 	if (i != ranges_n) {
1538 		mlx5_mempool_reg_destroy(share_cache, new_mpr, true);
1539 		rte_errno = EINVAL;
1540 		goto exit;
1541 	}
1542 	/* Concurrent registration is not supposed to happen. */
1543 	rte_rwlock_write_lock(&share_cache->rwlock);
1544 	mpr = mlx5_mempool_reg_lookup(share_cache, mp);
1545 	if (mpr == NULL) {
1546 		mlx5_mempool_reg_attach(new_mpr);
1547 		LIST_INSERT_HEAD(&share_cache->mempool_reg_list,
1548 				 new_mpr, next);
1549 		ret = 0;
1550 	}
1551 	rte_rwlock_write_unlock(&share_cache->rwlock);
1552 	if (mpr != NULL) {
1553 		DRV_LOG(DEBUG, "Mempool %s is already registered for PD %p",
1554 			mp->name, pd);
1555 		mlx5_mempool_reg_destroy(share_cache, new_mpr, true);
1556 		rte_errno = EEXIST;
1557 		goto exit;
1558 	}
1559 exit:
1560 	free(ranges);
1561 	return ret;
1562 }
1563 
1564 static int
1565 mlx5_mr_mempool_register_secondary(struct mlx5_mr_share_cache *share_cache,
1566 				   void *pd, struct rte_mempool *mp,
1567 				   struct mlx5_mp_id *mp_id)
1568 {
1569 	if (mp_id == NULL) {
1570 		rte_errno = EINVAL;
1571 		return -1;
1572 	}
1573 	return mlx5_mp_req_mempool_reg(mp_id, share_cache, pd, mp, true);
1574 }
1575 
1576 /**
1577  * Register the memory of a mempool in the protection domain.
1578  *
1579  * @param share_cache
1580  *   Shared MR cache of the protection domain.
1581  * @param pd
1582  *   Protection domain object.
1583  * @param mp
1584  *   Mempool to register.
1585  * @param mp_id
1586  *   Multi-process identifier, may be NULL for the primary process.
1587  *
1588  * @return
1589  *   0 on success, (-1) on failure and rte_errno is set.
1590  */
1591 int
1592 mlx5_mr_mempool_register(struct mlx5_mr_share_cache *share_cache, void *pd,
1593 			 struct rte_mempool *mp, struct mlx5_mp_id *mp_id)
1594 {
1595 	if (mp->flags & RTE_MEMPOOL_F_NON_IO)
1596 		return 0;
1597 	switch (rte_eal_process_type()) {
1598 	case RTE_PROC_PRIMARY:
1599 		return mlx5_mr_mempool_register_primary(share_cache, pd, mp);
1600 	case RTE_PROC_SECONDARY:
1601 		return mlx5_mr_mempool_register_secondary(share_cache, pd, mp,
1602 							  mp_id);
1603 	default:
1604 		return -1;
1605 	}
1606 }
1607 
1608 static int
1609 mlx5_mr_mempool_unregister_primary(struct mlx5_mr_share_cache *share_cache,
1610 				   struct rte_mempool *mp)
1611 {
1612 	struct mlx5_mempool_reg *mpr;
1613 	bool standalone = false;
1614 
1615 	rte_rwlock_write_lock(&share_cache->rwlock);
1616 	LIST_FOREACH(mpr, &share_cache->mempool_reg_list, next)
1617 		if (mpr->mp == mp) {
1618 			LIST_REMOVE(mpr, next);
1619 			standalone = mlx5_mempool_reg_detach(mpr);
1620 			if (standalone)
1621 				/*
1622 				 * The unlock operation below provides a memory
1623 				 * barrier due to its store-release semantics.
1624 				 */
1625 				++share_cache->dev_gen;
1626 			break;
1627 		}
1628 	rte_rwlock_write_unlock(&share_cache->rwlock);
1629 	if (mpr == NULL) {
1630 		rte_errno = ENOENT;
1631 		return -1;
1632 	}
1633 	mlx5_mempool_reg_destroy(share_cache, mpr, standalone);
1634 	return 0;
1635 }
1636 
1637 static int
1638 mlx5_mr_mempool_unregister_secondary(struct mlx5_mr_share_cache *share_cache,
1639 				     struct rte_mempool *mp,
1640 				     struct mlx5_mp_id *mp_id)
1641 {
1642 	if (mp_id == NULL) {
1643 		rte_errno = EINVAL;
1644 		return -1;
1645 	}
1646 	return mlx5_mp_req_mempool_reg(mp_id, share_cache, NULL, mp, false);
1647 }
1648 
1649 /**
1650  * Unregister the memory of a mempool from the protection domain.
1651  *
1652  * @param share_cache
1653  *   Shared MR cache of the protection domain.
1654  * @param mp
1655  *   Mempool to unregister.
1656  * @param mp_id
1657  *   Multi-process identifier, may be NULL for the primary process.
1658  *
1659  * @return
1660  *   0 on success, (-1) on failure and rte_errno is set.
1661  */
1662 int
1663 mlx5_mr_mempool_unregister(struct mlx5_mr_share_cache *share_cache,
1664 			   struct rte_mempool *mp, struct mlx5_mp_id *mp_id)
1665 {
1666 	if (mp->flags & RTE_MEMPOOL_F_NON_IO)
1667 		return 0;
1668 	switch (rte_eal_process_type()) {
1669 	case RTE_PROC_PRIMARY:
1670 		return mlx5_mr_mempool_unregister_primary(share_cache, mp);
1671 	case RTE_PROC_SECONDARY:
1672 		return mlx5_mr_mempool_unregister_secondary(share_cache, mp,
1673 							    mp_id);
1674 	default:
1675 		return -1;
1676 	}
1677 }
1678 
1679 /**
1680  * Lookup a MR key by and address in a registered mempool.
1681  *
1682  * @param mpr
1683  *   Mempool registration object.
1684  * @param addr
1685  *   Address within the mempool.
1686  * @param entry
1687  *   Bottom-half cache entry to fill.
1688  *
1689  * @return
1690  *   MR key or UINT32_MAX on failure, which can only happen
1691  *   if the address is not from within the mempool.
1692  */
1693 static uint32_t
1694 mlx5_mempool_reg_addr2mr(struct mlx5_mempool_reg *mpr, uintptr_t addr,
1695 			 struct mr_cache_entry *entry)
1696 {
1697 	uint32_t lkey = UINT32_MAX;
1698 	unsigned int i;
1699 
1700 	for (i = 0; i < mpr->mrs_n; i++) {
1701 		const struct mlx5_pmd_mr *mr = &mpr->mrs[i].pmd_mr;
1702 		uintptr_t mr_addr = (uintptr_t)mr->addr;
1703 
1704 		if (mr_addr <= addr) {
1705 			lkey = rte_cpu_to_be_32(mr->lkey);
1706 			entry->start = mr_addr;
1707 			entry->end = mr_addr + mr->len;
1708 			entry->lkey = lkey;
1709 			break;
1710 		}
1711 	}
1712 	return lkey;
1713 }
1714 
1715 /**
1716  * Update bottom-half cache from the list of mempool registrations.
1717  *
1718  * @param share_cache
1719  *   Pointer to a global shared MR cache.
1720  * @param mr_ctrl
1721  *   Per-queue MR control handle.
1722  * @param entry
1723  *   Pointer to an entry in the bottom-half cache to update
1724  *   with the MR lkey looked up.
1725  * @param mp
1726  *   Mempool containing the address.
1727  * @param addr
1728  *   Address to lookup.
1729  * @return
1730  *   MR lkey on success, UINT32_MAX on failure.
1731  */
1732 static uint32_t
1733 mlx5_lookup_mempool_regs(struct mlx5_mr_share_cache *share_cache,
1734 			 struct mlx5_mr_ctrl *mr_ctrl,
1735 			 struct mr_cache_entry *entry,
1736 			 struct rte_mempool *mp, uintptr_t addr)
1737 {
1738 	struct mlx5_mr_btree *bt = &mr_ctrl->cache_bh;
1739 	struct mlx5_mempool_reg *mpr;
1740 	uint32_t lkey = UINT32_MAX;
1741 
1742 	/* If local cache table is full, try to double it. */
1743 	if (unlikely(bt->len == bt->size))
1744 		mr_btree_expand(bt, bt->size << 1);
1745 	/* Look up in mempool registrations. */
1746 	rte_rwlock_read_lock(&share_cache->rwlock);
1747 	mpr = mlx5_mempool_reg_lookup(share_cache, mp);
1748 	if (mpr != NULL)
1749 		lkey = mlx5_mempool_reg_addr2mr(mpr, addr, entry);
1750 	rte_rwlock_read_unlock(&share_cache->rwlock);
1751 	/*
1752 	 * Update local cache. Even if it fails, return the found entry
1753 	 * to update top-half cache. Next time, this entry will be found
1754 	 * in the global cache.
1755 	 */
1756 	if (lkey != UINT32_MAX)
1757 		mr_btree_insert(bt, entry);
1758 	return lkey;
1759 }
1760 
1761 /**
1762  * Bottom-half lookup for the address from the mempool.
1763  *
1764  * @param share_cache
1765  *   Pointer to a global shared MR cache.
1766  * @param mr_ctrl
1767  *   Per-queue MR control handle.
1768  * @param mp
1769  *   Mempool containing the address.
1770  * @param addr
1771  *   Address to lookup.
1772  * @return
1773  *   MR lkey on success, UINT32_MAX on failure.
1774  */
1775 uint32_t
1776 mlx5_mr_mempool2mr_bh(struct mlx5_mr_share_cache *share_cache,
1777 		      struct mlx5_mr_ctrl *mr_ctrl,
1778 		      struct rte_mempool *mp, uintptr_t addr)
1779 {
1780 	struct mr_cache_entry *repl = &mr_ctrl->cache[mr_ctrl->head];
1781 	uint32_t lkey;
1782 	uint16_t bh_idx = 0;
1783 
1784 	/* Binary-search MR translation table. */
1785 	lkey = mr_btree_lookup(&mr_ctrl->cache_bh, &bh_idx, addr);
1786 	/* Update top-half cache. */
1787 	if (likely(lkey != UINT32_MAX)) {
1788 		*repl = (*mr_ctrl->cache_bh.table)[bh_idx];
1789 	} else {
1790 		lkey = mlx5_lookup_mempool_regs(share_cache, mr_ctrl, repl,
1791 						mp, addr);
1792 		/* Can only fail if the address is not from the mempool. */
1793 		if (unlikely(lkey == UINT32_MAX))
1794 			return UINT32_MAX;
1795 	}
1796 	/* Update the most recently used entry. */
1797 	mr_ctrl->mru = mr_ctrl->head;
1798 	/* Point to the next victim, the oldest. */
1799 	mr_ctrl->head = (mr_ctrl->head + 1) % MLX5_MR_CACHE_N;
1800 	return lkey;
1801 }
1802