1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright 2016 6WIND S.A. 3 * Copyright 2020 Mellanox Technologies, Ltd 4 */ 5 #include <stddef.h> 6 7 #include <rte_eal_memconfig.h> 8 #include <rte_eal_paging.h> 9 #include <rte_errno.h> 10 #include <rte_mempool.h> 11 #include <rte_malloc.h> 12 #include <rte_rwlock.h> 13 14 #include "mlx5_glue.h" 15 #include "mlx5_common.h" 16 #include "mlx5_common_mp.h" 17 #include "mlx5_common_mr.h" 18 #include "mlx5_common_os.h" 19 #include "mlx5_common_log.h" 20 #include "mlx5_malloc.h" 21 22 struct mr_find_contig_memsegs_data { 23 uintptr_t addr; 24 uintptr_t start; 25 uintptr_t end; 26 const struct rte_memseg_list *msl; 27 }; 28 29 /* Virtual memory range. */ 30 struct mlx5_range { 31 uintptr_t start; 32 uintptr_t end; 33 }; 34 35 /** Memory region for a mempool. */ 36 struct mlx5_mempool_mr { 37 struct mlx5_pmd_mr pmd_mr; 38 uint32_t refcnt; /**< Number of mempools sharing this MR. */ 39 }; 40 41 /* Mempool registration. */ 42 struct mlx5_mempool_reg { 43 LIST_ENTRY(mlx5_mempool_reg) next; 44 /** Registered mempool, used to designate registrations. */ 45 struct rte_mempool *mp; 46 /** Memory regions for the address ranges of the mempool. */ 47 struct mlx5_mempool_mr *mrs; 48 /** Number of memory regions. */ 49 unsigned int mrs_n; 50 }; 51 52 void 53 mlx5_mprq_buf_free_cb(void *addr __rte_unused, void *opaque) 54 { 55 struct mlx5_mprq_buf *buf = opaque; 56 57 if (__atomic_load_n(&buf->refcnt, __ATOMIC_RELAXED) == 1) { 58 rte_mempool_put(buf->mp, buf); 59 } else if (unlikely(__atomic_sub_fetch(&buf->refcnt, 1, 60 __ATOMIC_RELAXED) == 0)) { 61 __atomic_store_n(&buf->refcnt, 1, __ATOMIC_RELAXED); 62 rte_mempool_put(buf->mp, buf); 63 } 64 } 65 66 /** 67 * Expand B-tree table to a given size. Can't be called with holding 68 * memory_hotplug_lock or share_cache.rwlock due to rte_realloc(). 69 * 70 * @param bt 71 * Pointer to B-tree structure. 72 * @param n 73 * Number of entries for expansion. 74 * 75 * @return 76 * 0 on success, -1 on failure. 77 */ 78 static int 79 mr_btree_expand(struct mlx5_mr_btree *bt, int n) 80 { 81 void *mem; 82 int ret = 0; 83 84 if (n <= bt->size) 85 return ret; 86 /* 87 * Downside of directly using rte_realloc() is that SOCKET_ID_ANY is 88 * used inside if there's no room to expand. Because this is a quite 89 * rare case and a part of very slow path, it is very acceptable. 90 * Initially cache_bh[] will be given practically enough space and once 91 * it is expanded, expansion wouldn't be needed again ever. 92 */ 93 mem = mlx5_realloc(bt->table, MLX5_MEM_RTE | MLX5_MEM_ZERO, 94 n * sizeof(struct mr_cache_entry), 0, SOCKET_ID_ANY); 95 if (mem == NULL) { 96 /* Not an error, B-tree search will be skipped. */ 97 DRV_LOG(WARNING, "failed to expand MR B-tree (%p) table", 98 (void *)bt); 99 ret = -1; 100 } else { 101 DRV_LOG(DEBUG, "expanded MR B-tree table (size=%u)", n); 102 bt->table = mem; 103 bt->size = n; 104 } 105 return ret; 106 } 107 108 /** 109 * Look up LKey from given B-tree lookup table, store the last index and return 110 * searched LKey. 111 * 112 * @param bt 113 * Pointer to B-tree structure. 114 * @param[out] idx 115 * Pointer to index. Even on search failure, returns index where it stops 116 * searching so that index can be used when inserting a new entry. 117 * @param addr 118 * Search key. 119 * 120 * @return 121 * Searched LKey on success, UINT32_MAX on no match. 122 */ 123 static uint32_t 124 mr_btree_lookup(struct mlx5_mr_btree *bt, uint16_t *idx, uintptr_t addr) 125 { 126 struct mr_cache_entry *lkp_tbl; 127 uint16_t n; 128 uint16_t base = 0; 129 130 MLX5_ASSERT(bt != NULL); 131 lkp_tbl = *bt->table; 132 n = bt->len; 133 /* First entry must be NULL for comparison. */ 134 MLX5_ASSERT(bt->len > 0 || (lkp_tbl[0].start == 0 && 135 lkp_tbl[0].lkey == UINT32_MAX)); 136 /* Binary search. */ 137 do { 138 register uint16_t delta = n >> 1; 139 140 if (addr < lkp_tbl[base + delta].start) { 141 n = delta; 142 } else { 143 base += delta; 144 n -= delta; 145 } 146 } while (n > 1); 147 MLX5_ASSERT(addr >= lkp_tbl[base].start); 148 *idx = base; 149 if (addr < lkp_tbl[base].end) 150 return lkp_tbl[base].lkey; 151 /* Not found. */ 152 return UINT32_MAX; 153 } 154 155 /** 156 * Insert an entry to B-tree lookup table. 157 * 158 * @param bt 159 * Pointer to B-tree structure. 160 * @param entry 161 * Pointer to new entry to insert. 162 * 163 * @return 164 * 0 on success, -1 on failure. 165 */ 166 static int 167 mr_btree_insert(struct mlx5_mr_btree *bt, struct mr_cache_entry *entry) 168 { 169 struct mr_cache_entry *lkp_tbl; 170 uint16_t idx = 0; 171 size_t shift; 172 173 MLX5_ASSERT(bt != NULL); 174 MLX5_ASSERT(bt->len <= bt->size); 175 MLX5_ASSERT(bt->len > 0); 176 lkp_tbl = *bt->table; 177 /* Find out the slot for insertion. */ 178 if (mr_btree_lookup(bt, &idx, entry->start) != UINT32_MAX) { 179 DRV_LOG(DEBUG, 180 "abort insertion to B-tree(%p): already exist at" 181 " idx=%u [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x", 182 (void *)bt, idx, entry->start, entry->end, entry->lkey); 183 /* Already exist, return. */ 184 return 0; 185 } 186 /* If table is full, return error. */ 187 if (unlikely(bt->len == bt->size)) { 188 bt->overflow = 1; 189 return -1; 190 } 191 /* Insert entry. */ 192 ++idx; 193 shift = (bt->len - idx) * sizeof(struct mr_cache_entry); 194 if (shift) 195 memmove(&lkp_tbl[idx + 1], &lkp_tbl[idx], shift); 196 lkp_tbl[idx] = *entry; 197 bt->len++; 198 DRV_LOG(DEBUG, 199 "inserted B-tree(%p)[%u]," 200 " [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x", 201 (void *)bt, idx, entry->start, entry->end, entry->lkey); 202 return 0; 203 } 204 205 /** 206 * Initialize B-tree and allocate memory for lookup table. 207 * 208 * @param bt 209 * Pointer to B-tree structure. 210 * @param n 211 * Number of entries to allocate. 212 * @param socket 213 * NUMA socket on which memory must be allocated. 214 * 215 * @return 216 * 0 on success, a negative errno value otherwise and rte_errno is set. 217 */ 218 static int 219 mlx5_mr_btree_init(struct mlx5_mr_btree *bt, int n, int socket) 220 { 221 if (bt == NULL) { 222 rte_errno = EINVAL; 223 return -rte_errno; 224 } 225 MLX5_ASSERT(!bt->table && !bt->size); 226 memset(bt, 0, sizeof(*bt)); 227 bt->table = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, 228 sizeof(struct mr_cache_entry) * n, 229 0, socket); 230 if (bt->table == NULL) { 231 rte_errno = ENOMEM; 232 DRV_LOG(DEBUG, 233 "failed to allocate memory for btree cache on socket " 234 "%d", socket); 235 return -rte_errno; 236 } 237 bt->size = n; 238 /* First entry must be NULL for binary search. */ 239 (*bt->table)[bt->len++] = (struct mr_cache_entry) { 240 .lkey = UINT32_MAX, 241 }; 242 DRV_LOG(DEBUG, "initialized B-tree %p with table %p", 243 (void *)bt, (void *)bt->table); 244 return 0; 245 } 246 247 /** 248 * Free B-tree resources. 249 * 250 * @param bt 251 * Pointer to B-tree structure. 252 */ 253 void 254 mlx5_mr_btree_free(struct mlx5_mr_btree *bt) 255 { 256 if (bt == NULL) 257 return; 258 DRV_LOG(DEBUG, "freeing B-tree %p with table %p", 259 (void *)bt, (void *)bt->table); 260 mlx5_free(bt->table); 261 memset(bt, 0, sizeof(*bt)); 262 } 263 264 /** 265 * Dump all the entries in a B-tree 266 * 267 * @param bt 268 * Pointer to B-tree structure. 269 */ 270 void 271 mlx5_mr_btree_dump(struct mlx5_mr_btree *bt __rte_unused) 272 { 273 #ifdef RTE_LIBRTE_MLX5_DEBUG 274 int idx; 275 struct mr_cache_entry *lkp_tbl; 276 277 if (bt == NULL) 278 return; 279 lkp_tbl = *bt->table; 280 for (idx = 0; idx < bt->len; ++idx) { 281 struct mr_cache_entry *entry = &lkp_tbl[idx]; 282 283 DRV_LOG(DEBUG, "B-tree(%p)[%u]," 284 " [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x", 285 (void *)bt, idx, entry->start, entry->end, entry->lkey); 286 } 287 #endif 288 } 289 290 /** 291 * Initialize per-queue MR control descriptor. 292 * 293 * @param mr_ctrl 294 * Pointer to MR control structure. 295 * @param cdev 296 * Pointer to the mlx5 device structure. 297 * @param socket 298 * NUMA socket on which memory must be allocated. 299 * 300 * @return 301 * 0 on success, a negative errno value otherwise and rte_errno is set. 302 */ 303 int 304 mlx5_mr_ctrl_init(struct mlx5_mr_ctrl *mr_ctrl, struct mlx5_common_device *cdev, 305 int socket) 306 { 307 if (mr_ctrl == NULL) { 308 rte_errno = EINVAL; 309 return -rte_errno; 310 } 311 mr_ctrl->cdev = cdev; 312 /* Save pointer of global generation number to check memory event. */ 313 mr_ctrl->dev_gen_ptr = &cdev->mr_scache.dev_gen; 314 /* Initialize B-tree and allocate memory for bottom-half cache table. */ 315 return mlx5_mr_btree_init(&mr_ctrl->cache_bh, MLX5_MR_BTREE_CACHE_N, 316 socket); 317 } 318 319 /** 320 * Find virtually contiguous memory chunk in a given MR. 321 * 322 * @param dev 323 * Pointer to MR structure. 324 * @param[out] entry 325 * Pointer to returning MR cache entry. If not found, this will not be 326 * updated. 327 * @param start_idx 328 * Start index of the memseg bitmap. 329 * 330 * @return 331 * Next index to go on lookup. 332 */ 333 static int 334 mr_find_next_chunk(struct mlx5_mr *mr, struct mr_cache_entry *entry, 335 int base_idx) 336 { 337 uintptr_t start = 0; 338 uintptr_t end = 0; 339 uint32_t idx = 0; 340 341 /* MR for external memory doesn't have memseg list. */ 342 if (mr->msl == NULL) { 343 MLX5_ASSERT(mr->ms_bmp_n == 1); 344 MLX5_ASSERT(mr->ms_n == 1); 345 MLX5_ASSERT(base_idx == 0); 346 /* 347 * Can't search it from memseg list but get it directly from 348 * pmd_mr as there's only one chunk. 349 */ 350 entry->start = (uintptr_t)mr->pmd_mr.addr; 351 entry->end = (uintptr_t)mr->pmd_mr.addr + mr->pmd_mr.len; 352 entry->lkey = rte_cpu_to_be_32(mr->pmd_mr.lkey); 353 /* Returning 1 ends iteration. */ 354 return 1; 355 } 356 for (idx = base_idx; idx < mr->ms_bmp_n; ++idx) { 357 if (rte_bitmap_get(mr->ms_bmp, idx)) { 358 const struct rte_memseg_list *msl; 359 const struct rte_memseg *ms; 360 361 msl = mr->msl; 362 ms = rte_fbarray_get(&msl->memseg_arr, 363 mr->ms_base_idx + idx); 364 MLX5_ASSERT(msl->page_sz == ms->hugepage_sz); 365 if (!start) 366 start = ms->addr_64; 367 end = ms->addr_64 + ms->hugepage_sz; 368 } else if (start) { 369 /* Passed the end of a fragment. */ 370 break; 371 } 372 } 373 if (start) { 374 /* Found one chunk. */ 375 entry->start = start; 376 entry->end = end; 377 entry->lkey = rte_cpu_to_be_32(mr->pmd_mr.lkey); 378 } 379 return idx; 380 } 381 382 /** 383 * Insert a MR to the global B-tree cache. It may fail due to low-on-memory. 384 * Then, this entry will have to be searched by mr_lookup_list() in 385 * mlx5_mr_create() on miss. 386 * 387 * @param share_cache 388 * Pointer to a global shared MR cache. 389 * @param mr 390 * Pointer to MR to insert. 391 * 392 * @return 393 * 0 on success, -1 on failure. 394 */ 395 int 396 mlx5_mr_insert_cache(struct mlx5_mr_share_cache *share_cache, 397 struct mlx5_mr *mr) 398 { 399 unsigned int n; 400 401 DRV_LOG(DEBUG, "Inserting MR(%p) to global cache(%p)", 402 (void *)mr, (void *)share_cache); 403 for (n = 0; n < mr->ms_bmp_n; ) { 404 struct mr_cache_entry entry; 405 406 memset(&entry, 0, sizeof(entry)); 407 /* Find a contiguous chunk and advance the index. */ 408 n = mr_find_next_chunk(mr, &entry, n); 409 if (!entry.end) 410 break; 411 if (mr_btree_insert(&share_cache->cache, &entry) < 0) { 412 /* 413 * Overflowed, but the global table cannot be expanded 414 * because of deadlock. 415 */ 416 return -1; 417 } 418 } 419 return 0; 420 } 421 422 /** 423 * Look up address in the original global MR list. 424 * 425 * @param share_cache 426 * Pointer to a global shared MR cache. 427 * @param[out] entry 428 * Pointer to returning MR cache entry. If no match, this will not be updated. 429 * @param addr 430 * Search key. 431 * 432 * @return 433 * Found MR on match, NULL otherwise. 434 */ 435 struct mlx5_mr * 436 mlx5_mr_lookup_list(struct mlx5_mr_share_cache *share_cache, 437 struct mr_cache_entry *entry, uintptr_t addr) 438 { 439 struct mlx5_mr *mr; 440 441 /* Iterate all the existing MRs. */ 442 LIST_FOREACH(mr, &share_cache->mr_list, mr) { 443 unsigned int n; 444 445 if (mr->ms_n == 0) 446 continue; 447 for (n = 0; n < mr->ms_bmp_n; ) { 448 struct mr_cache_entry ret; 449 450 memset(&ret, 0, sizeof(ret)); 451 n = mr_find_next_chunk(mr, &ret, n); 452 if (addr >= ret.start && addr < ret.end) { 453 /* Found. */ 454 *entry = ret; 455 return mr; 456 } 457 } 458 } 459 return NULL; 460 } 461 462 /** 463 * Look up address on global MR cache. 464 * 465 * @param share_cache 466 * Pointer to a global shared MR cache. 467 * @param[out] entry 468 * Pointer to returning MR cache entry. If no match, this will not be updated. 469 * @param addr 470 * Search key. 471 * 472 * @return 473 * Searched LKey on success, UINT32_MAX on failure and rte_errno is set. 474 */ 475 static uint32_t 476 mlx5_mr_lookup_cache(struct mlx5_mr_share_cache *share_cache, 477 struct mr_cache_entry *entry, uintptr_t addr) 478 { 479 uint16_t idx; 480 uint32_t lkey = UINT32_MAX; 481 struct mlx5_mr *mr; 482 483 /* 484 * If the global cache has overflowed since it failed to expand the 485 * B-tree table, it can't have all the existing MRs. Then, the address 486 * has to be searched by traversing the original MR list instead, which 487 * is very slow path. Otherwise, the global cache is all inclusive. 488 */ 489 if (!unlikely(share_cache->cache.overflow)) { 490 lkey = mr_btree_lookup(&share_cache->cache, &idx, addr); 491 if (lkey != UINT32_MAX) 492 *entry = (*share_cache->cache.table)[idx]; 493 } else { 494 /* Falling back to the slowest path. */ 495 mr = mlx5_mr_lookup_list(share_cache, entry, addr); 496 if (mr != NULL) 497 lkey = entry->lkey; 498 } 499 MLX5_ASSERT(lkey == UINT32_MAX || (addr >= entry->start && 500 addr < entry->end)); 501 return lkey; 502 } 503 504 /** 505 * Free MR resources. MR lock must not be held to avoid a deadlock. rte_free() 506 * can raise memory free event and the callback function will spin on the lock. 507 * 508 * @param mr 509 * Pointer to MR to free. 510 */ 511 void 512 mlx5_mr_free(struct mlx5_mr *mr, mlx5_dereg_mr_t dereg_mr_cb) 513 { 514 if (mr == NULL) 515 return; 516 DRV_LOG(DEBUG, "freeing MR(%p):", (void *)mr); 517 dereg_mr_cb(&mr->pmd_mr); 518 if (mr->ms_bmp != NULL) 519 rte_bitmap_free(mr->ms_bmp); 520 mlx5_free(mr); 521 } 522 523 void 524 mlx5_mr_rebuild_cache(struct mlx5_mr_share_cache *share_cache) 525 { 526 struct mlx5_mr *mr; 527 528 DRV_LOG(DEBUG, "Rebuild dev cache[] %p", (void *)share_cache); 529 /* Flush cache to rebuild. */ 530 share_cache->cache.len = 1; 531 share_cache->cache.overflow = 0; 532 /* Iterate all the existing MRs. */ 533 LIST_FOREACH(mr, &share_cache->mr_list, mr) 534 if (mlx5_mr_insert_cache(share_cache, mr) < 0) 535 return; 536 } 537 538 /** 539 * Release resources of detached MR having no online entry. 540 * 541 * @param share_cache 542 * Pointer to a global shared MR cache. 543 */ 544 static void 545 mlx5_mr_garbage_collect(struct mlx5_mr_share_cache *share_cache) 546 { 547 struct mlx5_mr *mr_next; 548 struct mlx5_mr_list free_list = LIST_HEAD_INITIALIZER(free_list); 549 550 /* Must be called from the primary process. */ 551 MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY); 552 /* 553 * MR can't be freed with holding the lock because rte_free() could call 554 * memory free callback function. This will be a deadlock situation. 555 */ 556 rte_rwlock_write_lock(&share_cache->rwlock); 557 /* Detach the whole free list and release it after unlocking. */ 558 free_list = share_cache->mr_free_list; 559 LIST_INIT(&share_cache->mr_free_list); 560 rte_rwlock_write_unlock(&share_cache->rwlock); 561 /* Release resources. */ 562 mr_next = LIST_FIRST(&free_list); 563 while (mr_next != NULL) { 564 struct mlx5_mr *mr = mr_next; 565 566 mr_next = LIST_NEXT(mr, mr); 567 mlx5_mr_free(mr, share_cache->dereg_mr_cb); 568 } 569 } 570 571 /* Called during rte_memseg_contig_walk() by mlx5_mr_create(). */ 572 static int 573 mr_find_contig_memsegs_cb(const struct rte_memseg_list *msl, 574 const struct rte_memseg *ms, size_t len, void *arg) 575 { 576 struct mr_find_contig_memsegs_data *data = arg; 577 578 if (data->addr < ms->addr_64 || data->addr >= ms->addr_64 + len) 579 return 0; 580 /* Found, save it and stop walking. */ 581 data->start = ms->addr_64; 582 data->end = ms->addr_64 + len; 583 data->msl = msl; 584 return 1; 585 } 586 587 /** 588 * Create a new global Memory Region (MR) for a missing virtual address. 589 * This API should be called on a secondary process, then a request is sent to 590 * the primary process in order to create a MR for the address. As the global MR 591 * list is on the shared memory, following LKey lookup should succeed unless the 592 * request fails. 593 * 594 * @param cdev 595 * Pointer to the mlx5 common device. 596 * @param share_cache 597 * Pointer to a global shared MR cache. 598 * @param[out] entry 599 * Pointer to returning MR cache entry, found in the global cache or newly 600 * created. If failed to create one, this will not be updated. 601 * @param addr 602 * Target virtual address to register. 603 * 604 * @return 605 * Searched LKey on success, UINT32_MAX on failure and rte_errno is set. 606 */ 607 static uint32_t 608 mlx5_mr_create_secondary(struct mlx5_common_device *cdev, 609 struct mlx5_mr_share_cache *share_cache, 610 struct mr_cache_entry *entry, uintptr_t addr) 611 { 612 int ret; 613 614 DRV_LOG(DEBUG, "Requesting MR creation for address (%p)", (void *)addr); 615 ret = mlx5_mp_req_mr_create(cdev, addr); 616 if (ret) { 617 DRV_LOG(DEBUG, "Fail to request MR creation for address (%p)", 618 (void *)addr); 619 return UINT32_MAX; 620 } 621 rte_rwlock_read_lock(&share_cache->rwlock); 622 /* Fill in output data. */ 623 mlx5_mr_lookup_cache(share_cache, entry, addr); 624 /* Lookup can't fail. */ 625 MLX5_ASSERT(entry->lkey != UINT32_MAX); 626 rte_rwlock_read_unlock(&share_cache->rwlock); 627 DRV_LOG(DEBUG, "MR CREATED by primary process for %p:\n" 628 " [0x%" PRIxPTR ", 0x%" PRIxPTR "), lkey=0x%x", 629 (void *)addr, entry->start, entry->end, entry->lkey); 630 return entry->lkey; 631 } 632 633 /** 634 * Create a new global Memory Region (MR) for a missing virtual address. 635 * Register entire virtually contiguous memory chunk around the address. 636 * 637 * @param pd 638 * Pointer to pd of a device (net, regex, vdpa,...). 639 * @param share_cache 640 * Pointer to a global shared MR cache. 641 * @param[out] entry 642 * Pointer to returning MR cache entry, found in the global cache or newly 643 * created. If failed to create one, this will not be updated. 644 * @param addr 645 * Target virtual address to register. 646 * @param mr_ext_memseg_en 647 * Configurable flag about external memory segment enable or not. 648 * 649 * @return 650 * Searched LKey on success, UINT32_MAX on failure and rte_errno is set. 651 */ 652 static uint32_t 653 mlx5_mr_create_primary(void *pd, 654 struct mlx5_mr_share_cache *share_cache, 655 struct mr_cache_entry *entry, uintptr_t addr, 656 unsigned int mr_ext_memseg_en) 657 { 658 struct mr_find_contig_memsegs_data data = {.addr = addr, }; 659 struct mr_find_contig_memsegs_data data_re; 660 const struct rte_memseg_list *msl; 661 const struct rte_memseg *ms; 662 struct mlx5_mr *mr = NULL; 663 int ms_idx_shift = -1; 664 uint32_t bmp_size; 665 void *bmp_mem; 666 uint32_t ms_n; 667 uint32_t n; 668 size_t len; 669 670 DRV_LOG(DEBUG, "Creating a MR using address (%p)", (void *)addr); 671 /* 672 * Release detached MRs if any. This can't be called with holding either 673 * memory_hotplug_lock or share_cache->rwlock. MRs on the free list have 674 * been detached by the memory free event but it couldn't be released 675 * inside the callback due to deadlock. As a result, releasing resources 676 * is quite opportunistic. 677 */ 678 mlx5_mr_garbage_collect(share_cache); 679 /* 680 * If enabled, find out a contiguous virtual address chunk in use, to 681 * which the given address belongs, in order to register maximum range. 682 * In the best case where mempools are not dynamically recreated and 683 * '--socket-mem' is specified as an EAL option, it is very likely to 684 * have only one MR(LKey) per a socket and per a hugepage-size even 685 * though the system memory is highly fragmented. As the whole memory 686 * chunk will be pinned by kernel, it can't be reused unless entire 687 * chunk is freed from EAL. 688 * 689 * If disabled, just register one memseg (page). Then, memory 690 * consumption will be minimized but it may drop performance if there 691 * are many MRs to lookup on the datapath. 692 */ 693 if (!mr_ext_memseg_en) { 694 data.msl = rte_mem_virt2memseg_list((void *)addr); 695 data.start = RTE_ALIGN_FLOOR(addr, data.msl->page_sz); 696 data.end = data.start + data.msl->page_sz; 697 } else if (!rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data)) { 698 DRV_LOG(WARNING, 699 "Unable to find virtually contiguous" 700 " chunk for address (%p)." 701 " rte_memseg_contig_walk() failed.", (void *)addr); 702 rte_errno = ENXIO; 703 goto err_nolock; 704 } 705 alloc_resources: 706 /* Addresses must be page-aligned. */ 707 MLX5_ASSERT(data.msl); 708 MLX5_ASSERT(rte_is_aligned((void *)data.start, data.msl->page_sz)); 709 MLX5_ASSERT(rte_is_aligned((void *)data.end, data.msl->page_sz)); 710 msl = data.msl; 711 ms = rte_mem_virt2memseg((void *)data.start, msl); 712 len = data.end - data.start; 713 MLX5_ASSERT(ms); 714 MLX5_ASSERT(msl->page_sz == ms->hugepage_sz); 715 /* Number of memsegs in the range. */ 716 ms_n = len / msl->page_sz; 717 DRV_LOG(DEBUG, "Extending %p to [0x%" PRIxPTR ", 0x%" PRIxPTR ")," 718 " page_sz=0x%" PRIx64 ", ms_n=%u", 719 (void *)addr, data.start, data.end, msl->page_sz, ms_n); 720 /* Size of memory for bitmap. */ 721 bmp_size = rte_bitmap_get_memory_footprint(ms_n); 722 mr = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, 723 RTE_ALIGN_CEIL(sizeof(*mr), RTE_CACHE_LINE_SIZE) + 724 bmp_size, RTE_CACHE_LINE_SIZE, msl->socket_id); 725 if (mr == NULL) { 726 DRV_LOG(DEBUG, "Unable to allocate memory for a new MR of" 727 " address (%p).", (void *)addr); 728 rte_errno = ENOMEM; 729 goto err_nolock; 730 } 731 mr->msl = msl; 732 /* 733 * Save the index of the first memseg and initialize memseg bitmap. To 734 * see if a memseg of ms_idx in the memseg-list is still valid, check: 735 * rte_bitmap_get(mr->bmp, ms_idx - mr->ms_base_idx) 736 */ 737 mr->ms_base_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms); 738 bmp_mem = RTE_PTR_ALIGN_CEIL(mr + 1, RTE_CACHE_LINE_SIZE); 739 mr->ms_bmp = rte_bitmap_init(ms_n, bmp_mem, bmp_size); 740 if (mr->ms_bmp == NULL) { 741 DRV_LOG(DEBUG, "Unable to initialize bitmap for a new MR of" 742 " address (%p).", (void *)addr); 743 rte_errno = EINVAL; 744 goto err_nolock; 745 } 746 /* 747 * Should recheck whether the extended contiguous chunk is still valid. 748 * Because memory_hotplug_lock can't be held if there's any memory 749 * related calls in a critical path, resource allocation above can't be 750 * locked. If the memory has been changed at this point, try again with 751 * just single page. If not, go on with the big chunk atomically from 752 * here. 753 */ 754 rte_mcfg_mem_read_lock(); 755 data_re = data; 756 if (len > msl->page_sz && 757 !rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data_re)) { 758 DRV_LOG(DEBUG, 759 "Unable to find virtually contiguous chunk for address " 760 "(%p). rte_memseg_contig_walk() failed.", (void *)addr); 761 rte_errno = ENXIO; 762 goto err_memlock; 763 } 764 if (data.start != data_re.start || data.end != data_re.end) { 765 /* 766 * The extended contiguous chunk has been changed. Try again 767 * with single memseg instead. 768 */ 769 data.start = RTE_ALIGN_FLOOR(addr, msl->page_sz); 770 data.end = data.start + msl->page_sz; 771 rte_mcfg_mem_read_unlock(); 772 mlx5_mr_free(mr, share_cache->dereg_mr_cb); 773 goto alloc_resources; 774 } 775 MLX5_ASSERT(data.msl == data_re.msl); 776 rte_rwlock_write_lock(&share_cache->rwlock); 777 /* 778 * Check the address is really missing. If other thread already created 779 * one or it is not found due to overflow, abort and return. 780 */ 781 if (mlx5_mr_lookup_cache(share_cache, entry, addr) != UINT32_MAX) { 782 /* 783 * Insert to the global cache table. It may fail due to 784 * low-on-memory. Then, this entry will have to be searched 785 * here again. 786 */ 787 mr_btree_insert(&share_cache->cache, entry); 788 DRV_LOG(DEBUG, "Found MR for %p on final lookup, abort", 789 (void *)addr); 790 rte_rwlock_write_unlock(&share_cache->rwlock); 791 rte_mcfg_mem_read_unlock(); 792 /* 793 * Must be unlocked before calling rte_free() because 794 * mlx5_mr_mem_event_free_cb() can be called inside. 795 */ 796 mlx5_mr_free(mr, share_cache->dereg_mr_cb); 797 return entry->lkey; 798 } 799 /* 800 * Trim start and end addresses for verbs MR. Set bits for registering 801 * memsegs but exclude already registered ones. Bitmap can be 802 * fragmented. 803 */ 804 for (n = 0; n < ms_n; ++n) { 805 uintptr_t start; 806 struct mr_cache_entry ret; 807 808 memset(&ret, 0, sizeof(ret)); 809 start = data_re.start + n * msl->page_sz; 810 /* Exclude memsegs already registered by other MRs. */ 811 if (mlx5_mr_lookup_cache(share_cache, &ret, start) == 812 UINT32_MAX) { 813 /* 814 * Start from the first unregistered memseg in the 815 * extended range. 816 */ 817 if (ms_idx_shift == -1) { 818 mr->ms_base_idx += n; 819 data.start = start; 820 ms_idx_shift = n; 821 } 822 data.end = start + msl->page_sz; 823 rte_bitmap_set(mr->ms_bmp, n - ms_idx_shift); 824 ++mr->ms_n; 825 } 826 } 827 len = data.end - data.start; 828 mr->ms_bmp_n = len / msl->page_sz; 829 MLX5_ASSERT(ms_idx_shift + mr->ms_bmp_n <= ms_n); 830 /* 831 * Finally create an MR for the memory chunk. Verbs: ibv_reg_mr() can 832 * be called with holding the memory lock because it doesn't use 833 * mlx5_alloc_buf_extern() which eventually calls rte_malloc_socket() 834 * through mlx5_alloc_verbs_buf(). 835 */ 836 share_cache->reg_mr_cb(pd, (void *)data.start, len, &mr->pmd_mr); 837 if (mr->pmd_mr.obj == NULL) { 838 DRV_LOG(DEBUG, "Fail to create an MR for address (%p)", 839 (void *)addr); 840 rte_errno = EINVAL; 841 goto err_mrlock; 842 } 843 MLX5_ASSERT((uintptr_t)mr->pmd_mr.addr == data.start); 844 MLX5_ASSERT(mr->pmd_mr.len); 845 LIST_INSERT_HEAD(&share_cache->mr_list, mr, mr); 846 DRV_LOG(DEBUG, "MR CREATED (%p) for %p:\n" 847 " [0x%" PRIxPTR ", 0x%" PRIxPTR ")," 848 " lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u", 849 (void *)mr, (void *)addr, data.start, data.end, 850 rte_cpu_to_be_32(mr->pmd_mr.lkey), 851 mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n); 852 /* Insert to the global cache table. */ 853 mlx5_mr_insert_cache(share_cache, mr); 854 /* Fill in output data. */ 855 mlx5_mr_lookup_cache(share_cache, entry, addr); 856 /* Lookup can't fail. */ 857 MLX5_ASSERT(entry->lkey != UINT32_MAX); 858 rte_rwlock_write_unlock(&share_cache->rwlock); 859 rte_mcfg_mem_read_unlock(); 860 return entry->lkey; 861 err_mrlock: 862 rte_rwlock_write_unlock(&share_cache->rwlock); 863 err_memlock: 864 rte_mcfg_mem_read_unlock(); 865 err_nolock: 866 /* 867 * In case of error, as this can be called in a datapath, a warning 868 * message per an error is preferable instead. Must be unlocked before 869 * calling rte_free() because mlx5_mr_mem_event_free_cb() can be called 870 * inside. 871 */ 872 mlx5_mr_free(mr, share_cache->dereg_mr_cb); 873 return UINT32_MAX; 874 } 875 876 /** 877 * Create a new global Memory Region (MR) for a missing virtual address. 878 * This can be called from primary and secondary process. 879 * 880 * @param cdev 881 * Pointer to the mlx5 common device. 882 * @param share_cache 883 * Pointer to a global shared MR cache. 884 * @param[out] entry 885 * Pointer to returning MR cache entry, found in the global cache or newly 886 * created. If failed to create one, this will not be updated. 887 * @param addr 888 * Target virtual address to register. 889 * 890 * @return 891 * Searched LKey on success, UINT32_MAX on failure and rte_errno is set. 892 */ 893 uint32_t 894 mlx5_mr_create(struct mlx5_common_device *cdev, 895 struct mlx5_mr_share_cache *share_cache, 896 struct mr_cache_entry *entry, uintptr_t addr) 897 { 898 uint32_t ret = 0; 899 900 switch (rte_eal_process_type()) { 901 case RTE_PROC_PRIMARY: 902 ret = mlx5_mr_create_primary(cdev->pd, share_cache, entry, addr, 903 cdev->config.mr_ext_memseg_en); 904 break; 905 case RTE_PROC_SECONDARY: 906 ret = mlx5_mr_create_secondary(cdev, share_cache, entry, addr); 907 break; 908 default: 909 break; 910 } 911 return ret; 912 } 913 914 /** 915 * Look up address in the global MR cache table. If not found, create a new MR. 916 * Insert the found/created entry to local bottom-half cache table. 917 * 918 * @param mr_ctrl 919 * Pointer to per-queue MR control structure. 920 * @param[out] entry 921 * Pointer to returning MR cache entry, found in the global cache or newly 922 * created. If failed to create one, this is not written. 923 * @param addr 924 * Search key. 925 * 926 * @return 927 * Searched LKey on success, UINT32_MAX on no match. 928 */ 929 static uint32_t 930 mr_lookup_caches(struct mlx5_mr_ctrl *mr_ctrl, 931 struct mr_cache_entry *entry, uintptr_t addr) 932 { 933 struct mlx5_mr_share_cache *share_cache = &mr_ctrl->cdev->mr_scache; 934 struct mlx5_mr_btree *bt = &mr_ctrl->cache_bh; 935 uint32_t lkey; 936 uint16_t idx; 937 938 /* If local cache table is full, try to double it. */ 939 if (unlikely(bt->len == bt->size)) 940 mr_btree_expand(bt, bt->size << 1); 941 /* Look up in the global cache. */ 942 rte_rwlock_read_lock(&share_cache->rwlock); 943 lkey = mr_btree_lookup(&share_cache->cache, &idx, addr); 944 if (lkey != UINT32_MAX) { 945 /* Found. */ 946 *entry = (*share_cache->cache.table)[idx]; 947 rte_rwlock_read_unlock(&share_cache->rwlock); 948 /* 949 * Update local cache. Even if it fails, return the found entry 950 * to update top-half cache. Next time, this entry will be found 951 * in the global cache. 952 */ 953 mr_btree_insert(bt, entry); 954 return lkey; 955 } 956 rte_rwlock_read_unlock(&share_cache->rwlock); 957 /* First time to see the address? Create a new MR. */ 958 lkey = mlx5_mr_create(mr_ctrl->cdev, share_cache, entry, addr); 959 /* 960 * Update the local cache if successfully created a new global MR. Even 961 * if failed to create one, there's no action to take in this datapath 962 * code. As returning LKey is invalid, this will eventually make HW 963 * fail. 964 */ 965 if (lkey != UINT32_MAX) 966 mr_btree_insert(bt, entry); 967 return lkey; 968 } 969 970 /** 971 * Bottom-half of LKey search on datapath. First search in cache_bh[] and if 972 * misses, search in the global MR cache table and update the new entry to 973 * per-queue local caches. 974 * 975 * @param mr_ctrl 976 * Pointer to per-queue MR control structure. 977 * @param addr 978 * Search key. 979 * 980 * @return 981 * Searched LKey on success, UINT32_MAX on no match. 982 */ 983 static uint32_t 984 mlx5_mr_addr2mr_bh(struct mlx5_mr_ctrl *mr_ctrl, uintptr_t addr) 985 { 986 uint32_t lkey; 987 uint16_t bh_idx = 0; 988 /* Victim in top-half cache to replace with new entry. */ 989 struct mr_cache_entry *repl = &mr_ctrl->cache[mr_ctrl->head]; 990 991 /* Binary-search MR translation table. */ 992 lkey = mr_btree_lookup(&mr_ctrl->cache_bh, &bh_idx, addr); 993 /* Update top-half cache. */ 994 if (likely(lkey != UINT32_MAX)) { 995 *repl = (*mr_ctrl->cache_bh.table)[bh_idx]; 996 } else { 997 /* 998 * If missed in local lookup table, search in the global cache 999 * and local cache_bh[] will be updated inside if possible. 1000 * Top-half cache entry will also be updated. 1001 */ 1002 lkey = mr_lookup_caches(mr_ctrl, repl, addr); 1003 if (unlikely(lkey == UINT32_MAX)) 1004 return UINT32_MAX; 1005 } 1006 /* Update the most recently used entry. */ 1007 mr_ctrl->mru = mr_ctrl->head; 1008 /* Point to the next victim, the oldest. */ 1009 mr_ctrl->head = (mr_ctrl->head + 1) % MLX5_MR_CACHE_N; 1010 return lkey; 1011 } 1012 1013 /** 1014 * Release all the created MRs and resources on global MR cache of a device 1015 * list. 1016 * 1017 * @param share_cache 1018 * Pointer to a global shared MR cache. 1019 */ 1020 void 1021 mlx5_mr_release_cache(struct mlx5_mr_share_cache *share_cache) 1022 { 1023 struct mlx5_mr *mr_next; 1024 1025 rte_rwlock_write_lock(&share_cache->rwlock); 1026 /* Detach from MR list and move to free list. */ 1027 mr_next = LIST_FIRST(&share_cache->mr_list); 1028 while (mr_next != NULL) { 1029 struct mlx5_mr *mr = mr_next; 1030 1031 mr_next = LIST_NEXT(mr, mr); 1032 LIST_REMOVE(mr, mr); 1033 LIST_INSERT_HEAD(&share_cache->mr_free_list, mr, mr); 1034 } 1035 LIST_INIT(&share_cache->mr_list); 1036 /* Free global cache. */ 1037 mlx5_mr_btree_free(&share_cache->cache); 1038 rte_rwlock_write_unlock(&share_cache->rwlock); 1039 /* Free all remaining MRs. */ 1040 mlx5_mr_garbage_collect(share_cache); 1041 } 1042 1043 /** 1044 * Initialize global MR cache of a device. 1045 * 1046 * @param share_cache 1047 * Pointer to a global shared MR cache. 1048 * @param socket 1049 * NUMA socket on which memory must be allocated. 1050 * 1051 * @return 1052 * 0 on success, a negative errno value otherwise and rte_errno is set. 1053 */ 1054 int 1055 mlx5_mr_create_cache(struct mlx5_mr_share_cache *share_cache, int socket) 1056 { 1057 /* Set the reg_mr and dereg_mr callback functions */ 1058 mlx5_os_set_reg_mr_cb(&share_cache->reg_mr_cb, 1059 &share_cache->dereg_mr_cb); 1060 rte_rwlock_init(&share_cache->rwlock); 1061 rte_rwlock_init(&share_cache->mprwlock); 1062 share_cache->mp_cb_registered = 0; 1063 /* Initialize B-tree and allocate memory for global MR cache table. */ 1064 return mlx5_mr_btree_init(&share_cache->cache, 1065 MLX5_MR_BTREE_CACHE_N * 2, socket); 1066 } 1067 1068 /** 1069 * Flush all of the local cache entries. 1070 * 1071 * @param mr_ctrl 1072 * Pointer to per-queue MR local cache. 1073 */ 1074 void 1075 mlx5_mr_flush_local_cache(struct mlx5_mr_ctrl *mr_ctrl) 1076 { 1077 /* Reset the most-recently-used index. */ 1078 mr_ctrl->mru = 0; 1079 /* Reset the linear search array. */ 1080 mr_ctrl->head = 0; 1081 memset(mr_ctrl->cache, 0, sizeof(mr_ctrl->cache)); 1082 /* Reset the B-tree table. */ 1083 mr_ctrl->cache_bh.len = 1; 1084 mr_ctrl->cache_bh.overflow = 0; 1085 /* Update the generation number. */ 1086 mr_ctrl->cur_gen = *mr_ctrl->dev_gen_ptr; 1087 DRV_LOG(DEBUG, "mr_ctrl(%p): flushed, cur_gen=%d", 1088 (void *)mr_ctrl, mr_ctrl->cur_gen); 1089 } 1090 1091 /** 1092 * Creates a memory region for external memory, that is memory which is not 1093 * part of the DPDK memory segments. 1094 * 1095 * @param pd 1096 * Pointer to pd of a device (net, regex, vdpa,...). 1097 * @param addr 1098 * Starting virtual address of memory. 1099 * @param len 1100 * Length of memory segment being mapped. 1101 * @param socked_id 1102 * Socket to allocate heap memory for the control structures. 1103 * 1104 * @return 1105 * Pointer to MR structure on success, NULL otherwise. 1106 */ 1107 struct mlx5_mr * 1108 mlx5_create_mr_ext(void *pd, uintptr_t addr, size_t len, int socket_id, 1109 mlx5_reg_mr_t reg_mr_cb) 1110 { 1111 struct mlx5_mr *mr = NULL; 1112 1113 mr = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, 1114 RTE_ALIGN_CEIL(sizeof(*mr), RTE_CACHE_LINE_SIZE), 1115 RTE_CACHE_LINE_SIZE, socket_id); 1116 if (mr == NULL) 1117 return NULL; 1118 reg_mr_cb(pd, (void *)addr, len, &mr->pmd_mr); 1119 if (mr->pmd_mr.obj == NULL) { 1120 DRV_LOG(WARNING, 1121 "Fail to create MR for address (%p)", 1122 (void *)addr); 1123 mlx5_free(mr); 1124 return NULL; 1125 } 1126 mr->msl = NULL; /* Mark it is external memory. */ 1127 mr->ms_bmp = NULL; 1128 mr->ms_n = 1; 1129 mr->ms_bmp_n = 1; 1130 DRV_LOG(DEBUG, 1131 "MR CREATED (%p) for external memory %p:\n" 1132 " [0x%" PRIxPTR ", 0x%" PRIxPTR ")," 1133 " lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u", 1134 (void *)mr, (void *)addr, 1135 addr, addr + len, rte_cpu_to_be_32(mr->pmd_mr.lkey), 1136 mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n); 1137 return mr; 1138 } 1139 1140 /** 1141 * Callback for memory free event. Iterate freed memsegs and check whether it 1142 * belongs to an existing MR. If found, clear the bit from bitmap of MR. As a 1143 * result, the MR would be fragmented. If it becomes empty, the MR will be freed 1144 * later by mlx5_mr_garbage_collect(). Even if this callback is called from a 1145 * secondary process, the garbage collector will be called in primary process 1146 * as the secondary process can't call mlx5_mr_create(). 1147 * 1148 * The global cache must be rebuilt if there's any change and this event has to 1149 * be propagated to dataplane threads to flush the local caches. 1150 * 1151 * @param share_cache 1152 * Pointer to a global shared MR cache. 1153 * @param ibdev_name 1154 * Name of ibv device. 1155 * @param addr 1156 * Address of freed memory. 1157 * @param len 1158 * Size of freed memory. 1159 */ 1160 void 1161 mlx5_free_mr_by_addr(struct mlx5_mr_share_cache *share_cache, 1162 const char *ibdev_name, const void *addr, size_t len) 1163 { 1164 const struct rte_memseg_list *msl; 1165 struct mlx5_mr *mr; 1166 int ms_n; 1167 int i; 1168 int rebuild = 0; 1169 1170 DRV_LOG(DEBUG, "device %s free callback: addr=%p, len=%zu", 1171 ibdev_name, addr, len); 1172 msl = rte_mem_virt2memseg_list(addr); 1173 /* addr and len must be page-aligned. */ 1174 MLX5_ASSERT((uintptr_t)addr == 1175 RTE_ALIGN((uintptr_t)addr, msl->page_sz)); 1176 MLX5_ASSERT(len == RTE_ALIGN(len, msl->page_sz)); 1177 ms_n = len / msl->page_sz; 1178 rte_rwlock_write_lock(&share_cache->rwlock); 1179 /* Clear bits of freed memsegs from MR. */ 1180 for (i = 0; i < ms_n; ++i) { 1181 const struct rte_memseg *ms; 1182 struct mr_cache_entry entry; 1183 uintptr_t start; 1184 int ms_idx; 1185 uint32_t pos; 1186 1187 /* Find MR having this memseg. */ 1188 start = (uintptr_t)addr + i * msl->page_sz; 1189 mr = mlx5_mr_lookup_list(share_cache, &entry, start); 1190 if (mr == NULL) 1191 continue; 1192 MLX5_ASSERT(mr->msl); /* Can't be external memory. */ 1193 ms = rte_mem_virt2memseg((void *)start, msl); 1194 MLX5_ASSERT(ms != NULL); 1195 MLX5_ASSERT(msl->page_sz == ms->hugepage_sz); 1196 ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms); 1197 pos = ms_idx - mr->ms_base_idx; 1198 MLX5_ASSERT(rte_bitmap_get(mr->ms_bmp, pos)); 1199 MLX5_ASSERT(pos < mr->ms_bmp_n); 1200 DRV_LOG(DEBUG, "device %s MR(%p): clear bitmap[%u] for addr %p", 1201 ibdev_name, (void *)mr, pos, (void *)start); 1202 rte_bitmap_clear(mr->ms_bmp, pos); 1203 if (--mr->ms_n == 0) { 1204 LIST_REMOVE(mr, mr); 1205 LIST_INSERT_HEAD(&share_cache->mr_free_list, mr, mr); 1206 DRV_LOG(DEBUG, "device %s remove MR(%p) from list", 1207 ibdev_name, (void *)mr); 1208 } 1209 /* 1210 * MR is fragmented or will be freed. the global cache must be 1211 * rebuilt. 1212 */ 1213 rebuild = 1; 1214 } 1215 if (rebuild) { 1216 mlx5_mr_rebuild_cache(share_cache); 1217 /* 1218 * No explicit wmb is needed after updating dev_gen due to 1219 * store-release ordering in unlock that provides the 1220 * implicit barrier at the software visible level. 1221 */ 1222 ++share_cache->dev_gen; 1223 DRV_LOG(DEBUG, "broadcasting local cache flush, gen=%d", 1224 share_cache->dev_gen); 1225 } 1226 rte_rwlock_write_unlock(&share_cache->rwlock); 1227 } 1228 1229 /** 1230 * Dump all the created MRs and the global cache entries. 1231 * 1232 * @param share_cache 1233 * Pointer to a global shared MR cache. 1234 */ 1235 void 1236 mlx5_mr_dump_cache(struct mlx5_mr_share_cache *share_cache __rte_unused) 1237 { 1238 #ifdef RTE_LIBRTE_MLX5_DEBUG 1239 struct mlx5_mr *mr; 1240 int mr_n = 0; 1241 int chunk_n = 0; 1242 1243 rte_rwlock_read_lock(&share_cache->rwlock); 1244 /* Iterate all the existing MRs. */ 1245 LIST_FOREACH(mr, &share_cache->mr_list, mr) { 1246 unsigned int n; 1247 1248 DRV_LOG(DEBUG, "MR[%u], LKey = 0x%x, ms_n = %u, ms_bmp_n = %u", 1249 mr_n++, rte_cpu_to_be_32(mr->pmd_mr.lkey), 1250 mr->ms_n, mr->ms_bmp_n); 1251 if (mr->ms_n == 0) 1252 continue; 1253 for (n = 0; n < mr->ms_bmp_n; ) { 1254 struct mr_cache_entry ret = { 0, }; 1255 1256 n = mr_find_next_chunk(mr, &ret, n); 1257 if (!ret.end) 1258 break; 1259 DRV_LOG(DEBUG, 1260 " chunk[%u], [0x%" PRIxPTR ", 0x%" PRIxPTR ")", 1261 chunk_n++, ret.start, ret.end); 1262 } 1263 } 1264 DRV_LOG(DEBUG, "Dumping global cache %p", (void *)share_cache); 1265 mlx5_mr_btree_dump(&share_cache->cache); 1266 rte_rwlock_read_unlock(&share_cache->rwlock); 1267 #endif 1268 } 1269 1270 static int 1271 mlx5_range_compare_start(const void *lhs, const void *rhs) 1272 { 1273 const struct mlx5_range *r1 = lhs, *r2 = rhs; 1274 1275 if (r1->start > r2->start) 1276 return 1; 1277 else if (r1->start < r2->start) 1278 return -1; 1279 return 0; 1280 } 1281 1282 static void 1283 mlx5_range_from_mempool_chunk(struct rte_mempool *mp, void *opaque, 1284 struct rte_mempool_memhdr *memhdr, 1285 unsigned int idx) 1286 { 1287 struct mlx5_range *ranges = opaque, *range = &ranges[idx]; 1288 uint64_t page_size = rte_mem_page_size(); 1289 1290 RTE_SET_USED(mp); 1291 range->start = RTE_ALIGN_FLOOR((uintptr_t)memhdr->addr, page_size); 1292 range->end = RTE_ALIGN_CEIL(range->start + memhdr->len, page_size); 1293 } 1294 1295 /** 1296 * Collect page-aligned memory ranges of the mempool. 1297 */ 1298 static int 1299 mlx5_mempool_get_chunks(struct rte_mempool *mp, struct mlx5_range **out, 1300 unsigned int *out_n) 1301 { 1302 struct mlx5_range *chunks; 1303 unsigned int n; 1304 1305 n = mp->nb_mem_chunks; 1306 chunks = calloc(sizeof(chunks[0]), n); 1307 if (chunks == NULL) 1308 return -1; 1309 rte_mempool_mem_iter(mp, mlx5_range_from_mempool_chunk, chunks); 1310 *out = chunks; 1311 *out_n = n; 1312 return 0; 1313 } 1314 1315 struct mlx5_mempool_get_extmem_data { 1316 struct mlx5_range *heap; 1317 unsigned int heap_size; 1318 int ret; 1319 }; 1320 1321 static void 1322 mlx5_mempool_get_extmem_cb(struct rte_mempool *mp, void *opaque, 1323 void *obj, unsigned int obj_idx) 1324 { 1325 struct mlx5_mempool_get_extmem_data *data = opaque; 1326 struct rte_mbuf *mbuf = obj; 1327 uintptr_t addr = (uintptr_t)mbuf->buf_addr; 1328 struct mlx5_range *seg, *heap; 1329 struct rte_memseg_list *msl; 1330 size_t page_size; 1331 uintptr_t page_start; 1332 unsigned int pos = 0, len = data->heap_size, delta; 1333 1334 RTE_SET_USED(mp); 1335 RTE_SET_USED(obj_idx); 1336 if (data->ret < 0) 1337 return; 1338 /* Binary search for an already visited page. */ 1339 while (len > 1) { 1340 delta = len / 2; 1341 if (addr < data->heap[pos + delta].start) { 1342 len = delta; 1343 } else { 1344 pos += delta; 1345 len -= delta; 1346 } 1347 } 1348 if (data->heap != NULL) { 1349 seg = &data->heap[pos]; 1350 if (seg->start <= addr && addr < seg->end) 1351 return; 1352 } 1353 /* Determine the page boundaries and remember them. */ 1354 heap = realloc(data->heap, sizeof(heap[0]) * (data->heap_size + 1)); 1355 if (heap == NULL) { 1356 free(data->heap); 1357 data->heap = NULL; 1358 data->ret = -1; 1359 return; 1360 } 1361 data->heap = heap; 1362 data->heap_size++; 1363 seg = &heap[data->heap_size - 1]; 1364 msl = rte_mem_virt2memseg_list((void *)addr); 1365 page_size = msl != NULL ? msl->page_sz : rte_mem_page_size(); 1366 page_start = RTE_PTR_ALIGN_FLOOR(addr, page_size); 1367 seg->start = page_start; 1368 seg->end = page_start + page_size; 1369 /* Maintain the heap order. */ 1370 qsort(data->heap, data->heap_size, sizeof(heap[0]), 1371 mlx5_range_compare_start); 1372 } 1373 1374 /** 1375 * Recover pages of external memory as close as possible 1376 * for a mempool with RTE_PKTMBUF_POOL_PINNED_EXT_BUF. 1377 * Pages are stored in a heap for efficient search, for mbufs are many. 1378 */ 1379 static int 1380 mlx5_mempool_get_extmem(struct rte_mempool *mp, struct mlx5_range **out, 1381 unsigned int *out_n) 1382 { 1383 struct mlx5_mempool_get_extmem_data data; 1384 1385 memset(&data, 0, sizeof(data)); 1386 rte_mempool_obj_iter(mp, mlx5_mempool_get_extmem_cb, &data); 1387 if (data.ret < 0) 1388 return -1; 1389 *out = data.heap; 1390 *out_n = data.heap_size; 1391 return 0; 1392 } 1393 1394 /** 1395 * Get VA-contiguous ranges of the mempool memory. 1396 * Each range start and end is aligned to the system page size. 1397 * 1398 * @param[in] mp 1399 * Analyzed mempool. 1400 * @param[out] out 1401 * Receives the ranges, caller must release it with free(). 1402 * @param[out] ount_n 1403 * Receives the number of @p out elements. 1404 * 1405 * @return 1406 * 0 on success, (-1) on failure. 1407 */ 1408 static int 1409 mlx5_get_mempool_ranges(struct rte_mempool *mp, struct mlx5_range **out, 1410 unsigned int *out_n) 1411 { 1412 struct mlx5_range *chunks; 1413 unsigned int chunks_n, contig_n, i; 1414 int ret; 1415 1416 /* Collect the pool underlying memory. */ 1417 ret = (rte_pktmbuf_priv_flags(mp) & RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF) ? 1418 mlx5_mempool_get_extmem(mp, &chunks, &chunks_n) : 1419 mlx5_mempool_get_chunks(mp, &chunks, &chunks_n); 1420 if (ret < 0) 1421 return ret; 1422 /* Merge adjacent chunks and place them at the beginning. */ 1423 qsort(chunks, chunks_n, sizeof(chunks[0]), mlx5_range_compare_start); 1424 contig_n = 1; 1425 for (i = 1; i < chunks_n; i++) 1426 if (chunks[i - 1].end != chunks[i].start) { 1427 chunks[contig_n - 1].end = chunks[i - 1].end; 1428 chunks[contig_n] = chunks[i]; 1429 contig_n++; 1430 } 1431 /* Extend the last contiguous chunk to the end of the mempool. */ 1432 chunks[contig_n - 1].end = chunks[i - 1].end; 1433 *out = chunks; 1434 *out_n = contig_n; 1435 return 0; 1436 } 1437 1438 /** 1439 * Analyze mempool memory to select memory ranges to register. 1440 * 1441 * @param[in] mp 1442 * Mempool to analyze. 1443 * @param[out] out 1444 * Receives memory ranges to register, aligned to the system page size. 1445 * The caller must release them with free(). 1446 * @param[out] out_n 1447 * Receives the number of @p out items. 1448 * @param[out] share_hugepage 1449 * Receives True if the entire pool resides within a single hugepage. 1450 * 1451 * @return 1452 * 0 on success, (-1) on failure. 1453 */ 1454 static int 1455 mlx5_mempool_reg_analyze(struct rte_mempool *mp, struct mlx5_range **out, 1456 unsigned int *out_n, bool *share_hugepage) 1457 { 1458 struct mlx5_range *ranges = NULL; 1459 unsigned int i, ranges_n = 0; 1460 struct rte_memseg_list *msl; 1461 1462 if (mlx5_get_mempool_ranges(mp, &ranges, &ranges_n) < 0) { 1463 DRV_LOG(ERR, "Cannot get address ranges for mempool %s", 1464 mp->name); 1465 return -1; 1466 } 1467 /* Check if the hugepage of the pool can be shared. */ 1468 *share_hugepage = false; 1469 msl = rte_mem_virt2memseg_list((void *)ranges[0].start); 1470 if (msl != NULL) { 1471 uint64_t hugepage_sz = 0; 1472 1473 /* Check that all ranges are on pages of the same size. */ 1474 for (i = 0; i < ranges_n; i++) { 1475 if (hugepage_sz != 0 && hugepage_sz != msl->page_sz) 1476 break; 1477 hugepage_sz = msl->page_sz; 1478 } 1479 if (i == ranges_n) { 1480 /* 1481 * If the entire pool is within one hugepage, 1482 * combine all ranges into one of the hugepage size. 1483 */ 1484 uintptr_t reg_start = ranges[0].start; 1485 uintptr_t reg_end = ranges[ranges_n - 1].end; 1486 uintptr_t hugepage_start = 1487 RTE_ALIGN_FLOOR(reg_start, hugepage_sz); 1488 uintptr_t hugepage_end = hugepage_start + hugepage_sz; 1489 if (reg_end < hugepage_end) { 1490 ranges[0].start = hugepage_start; 1491 ranges[0].end = hugepage_end; 1492 ranges_n = 1; 1493 *share_hugepage = true; 1494 } 1495 } 1496 } 1497 *out = ranges; 1498 *out_n = ranges_n; 1499 return 0; 1500 } 1501 1502 /** Create a registration object for the mempool. */ 1503 static struct mlx5_mempool_reg * 1504 mlx5_mempool_reg_create(struct rte_mempool *mp, unsigned int mrs_n) 1505 { 1506 struct mlx5_mempool_reg *mpr = NULL; 1507 1508 mpr = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, 1509 sizeof(*mpr) + mrs_n * sizeof(mpr->mrs[0]), 1510 RTE_CACHE_LINE_SIZE, SOCKET_ID_ANY); 1511 if (mpr == NULL) { 1512 DRV_LOG(ERR, "Cannot allocate mempool %s registration object", 1513 mp->name); 1514 return NULL; 1515 } 1516 mpr->mp = mp; 1517 mpr->mrs = (struct mlx5_mempool_mr *)(mpr + 1); 1518 mpr->mrs_n = mrs_n; 1519 return mpr; 1520 } 1521 1522 /** 1523 * Destroy a mempool registration object. 1524 * 1525 * @param standalone 1526 * Whether @p mpr owns its MRs excludively, i.e. they are not shared. 1527 */ 1528 static void 1529 mlx5_mempool_reg_destroy(struct mlx5_mr_share_cache *share_cache, 1530 struct mlx5_mempool_reg *mpr, bool standalone) 1531 { 1532 if (standalone) { 1533 unsigned int i; 1534 1535 for (i = 0; i < mpr->mrs_n; i++) 1536 share_cache->dereg_mr_cb(&mpr->mrs[i].pmd_mr); 1537 } 1538 mlx5_free(mpr); 1539 } 1540 1541 /** Find registration object of a mempool. */ 1542 static struct mlx5_mempool_reg * 1543 mlx5_mempool_reg_lookup(struct mlx5_mr_share_cache *share_cache, 1544 struct rte_mempool *mp) 1545 { 1546 struct mlx5_mempool_reg *mpr; 1547 1548 LIST_FOREACH(mpr, &share_cache->mempool_reg_list, next) 1549 if (mpr->mp == mp) 1550 break; 1551 return mpr; 1552 } 1553 1554 /** Increment reference counters of MRs used in the registration. */ 1555 static void 1556 mlx5_mempool_reg_attach(struct mlx5_mempool_reg *mpr) 1557 { 1558 unsigned int i; 1559 1560 for (i = 0; i < mpr->mrs_n; i++) 1561 __atomic_add_fetch(&mpr->mrs[i].refcnt, 1, __ATOMIC_RELAXED); 1562 } 1563 1564 /** 1565 * Decrement reference counters of MRs used in the registration. 1566 * 1567 * @return True if no more references to @p mpr MRs exist, False otherwise. 1568 */ 1569 static bool 1570 mlx5_mempool_reg_detach(struct mlx5_mempool_reg *mpr) 1571 { 1572 unsigned int i; 1573 bool ret = false; 1574 1575 for (i = 0; i < mpr->mrs_n; i++) 1576 ret |= __atomic_sub_fetch(&mpr->mrs[i].refcnt, 1, 1577 __ATOMIC_RELAXED) == 0; 1578 return ret; 1579 } 1580 1581 static int 1582 mlx5_mr_mempool_register_primary(struct mlx5_mr_share_cache *share_cache, 1583 void *pd, struct rte_mempool *mp) 1584 { 1585 struct mlx5_range *ranges = NULL; 1586 struct mlx5_mempool_reg *mpr, *new_mpr; 1587 unsigned int i, ranges_n; 1588 bool share_hugepage; 1589 int ret = -1; 1590 1591 /* Early check to avoid unnecessary creation of MRs. */ 1592 rte_rwlock_read_lock(&share_cache->rwlock); 1593 mpr = mlx5_mempool_reg_lookup(share_cache, mp); 1594 rte_rwlock_read_unlock(&share_cache->rwlock); 1595 if (mpr != NULL) { 1596 DRV_LOG(DEBUG, "Mempool %s is already registered for PD %p", 1597 mp->name, pd); 1598 rte_errno = EEXIST; 1599 goto exit; 1600 } 1601 if (mlx5_mempool_reg_analyze(mp, &ranges, &ranges_n, 1602 &share_hugepage) < 0) { 1603 DRV_LOG(ERR, "Cannot get mempool %s memory ranges", mp->name); 1604 rte_errno = ENOMEM; 1605 goto exit; 1606 } 1607 new_mpr = mlx5_mempool_reg_create(mp, ranges_n); 1608 if (new_mpr == NULL) { 1609 DRV_LOG(ERR, 1610 "Cannot create a registration object for mempool %s in PD %p", 1611 mp->name, pd); 1612 rte_errno = ENOMEM; 1613 goto exit; 1614 } 1615 /* 1616 * If the entire mempool fits in a single hugepage, the MR for this 1617 * hugepage can be shared across mempools that also fit in it. 1618 */ 1619 if (share_hugepage) { 1620 rte_rwlock_write_lock(&share_cache->rwlock); 1621 LIST_FOREACH(mpr, &share_cache->mempool_reg_list, next) { 1622 if (mpr->mrs[0].pmd_mr.addr == (void *)ranges[0].start) 1623 break; 1624 } 1625 if (mpr != NULL) { 1626 new_mpr->mrs = mpr->mrs; 1627 mlx5_mempool_reg_attach(new_mpr); 1628 LIST_INSERT_HEAD(&share_cache->mempool_reg_list, 1629 new_mpr, next); 1630 } 1631 rte_rwlock_write_unlock(&share_cache->rwlock); 1632 if (mpr != NULL) { 1633 DRV_LOG(DEBUG, "Shared MR %#x in PD %p for mempool %s with mempool %s", 1634 mpr->mrs[0].pmd_mr.lkey, pd, mp->name, 1635 mpr->mp->name); 1636 ret = 0; 1637 goto exit; 1638 } 1639 } 1640 for (i = 0; i < ranges_n; i++) { 1641 struct mlx5_mempool_mr *mr = &new_mpr->mrs[i]; 1642 const struct mlx5_range *range = &ranges[i]; 1643 size_t len = range->end - range->start; 1644 1645 if (share_cache->reg_mr_cb(pd, (void *)range->start, len, 1646 &mr->pmd_mr) < 0) { 1647 DRV_LOG(ERR, 1648 "Failed to create an MR in PD %p for address range " 1649 "[0x%" PRIxPTR ", 0x%" PRIxPTR "] (%zu bytes) for mempool %s", 1650 pd, range->start, range->end, len, mp->name); 1651 break; 1652 } 1653 DRV_LOG(DEBUG, 1654 "Created a new MR %#x in PD %p for address range " 1655 "[0x%" PRIxPTR ", 0x%" PRIxPTR "] (%zu bytes) for mempool %s", 1656 mr->pmd_mr.lkey, pd, range->start, range->end, len, 1657 mp->name); 1658 } 1659 if (i != ranges_n) { 1660 mlx5_mempool_reg_destroy(share_cache, new_mpr, true); 1661 rte_errno = EINVAL; 1662 goto exit; 1663 } 1664 /* Concurrent registration is not supposed to happen. */ 1665 rte_rwlock_write_lock(&share_cache->rwlock); 1666 mpr = mlx5_mempool_reg_lookup(share_cache, mp); 1667 if (mpr == NULL) { 1668 mlx5_mempool_reg_attach(new_mpr); 1669 LIST_INSERT_HEAD(&share_cache->mempool_reg_list, new_mpr, next); 1670 ret = 0; 1671 } 1672 rte_rwlock_write_unlock(&share_cache->rwlock); 1673 if (mpr != NULL) { 1674 DRV_LOG(DEBUG, "Mempool %s is already registered for PD %p", 1675 mp->name, pd); 1676 mlx5_mempool_reg_destroy(share_cache, new_mpr, true); 1677 rte_errno = EEXIST; 1678 goto exit; 1679 } 1680 exit: 1681 free(ranges); 1682 return ret; 1683 } 1684 1685 static int 1686 mlx5_mr_mempool_register_secondary(struct mlx5_common_device *cdev, 1687 struct rte_mempool *mp) 1688 { 1689 return mlx5_mp_req_mempool_reg(cdev, mp, true); 1690 } 1691 1692 /** 1693 * Register the memory of a mempool in the protection domain. 1694 * 1695 * @param cdev 1696 * Pointer to the mlx5 common device. 1697 * @param mp 1698 * Mempool to register. 1699 * 1700 * @return 1701 * 0 on success, (-1) on failure and rte_errno is set. 1702 */ 1703 int 1704 mlx5_mr_mempool_register(struct mlx5_common_device *cdev, 1705 struct rte_mempool *mp) 1706 { 1707 if (mp->flags & RTE_MEMPOOL_F_NON_IO) 1708 return 0; 1709 switch (rte_eal_process_type()) { 1710 case RTE_PROC_PRIMARY: 1711 return mlx5_mr_mempool_register_primary(&cdev->mr_scache, 1712 cdev->pd, mp); 1713 case RTE_PROC_SECONDARY: 1714 return mlx5_mr_mempool_register_secondary(cdev, mp); 1715 default: 1716 return -1; 1717 } 1718 } 1719 1720 static int 1721 mlx5_mr_mempool_unregister_primary(struct mlx5_mr_share_cache *share_cache, 1722 struct rte_mempool *mp) 1723 { 1724 struct mlx5_mempool_reg *mpr; 1725 bool standalone = false; 1726 1727 rte_rwlock_write_lock(&share_cache->rwlock); 1728 LIST_FOREACH(mpr, &share_cache->mempool_reg_list, next) 1729 if (mpr->mp == mp) { 1730 LIST_REMOVE(mpr, next); 1731 standalone = mlx5_mempool_reg_detach(mpr); 1732 if (standalone) 1733 /* 1734 * The unlock operation below provides a memory 1735 * barrier due to its store-release semantics. 1736 */ 1737 ++share_cache->dev_gen; 1738 break; 1739 } 1740 rte_rwlock_write_unlock(&share_cache->rwlock); 1741 if (mpr == NULL) { 1742 rte_errno = ENOENT; 1743 return -1; 1744 } 1745 mlx5_mempool_reg_destroy(share_cache, mpr, standalone); 1746 return 0; 1747 } 1748 1749 static int 1750 mlx5_mr_mempool_unregister_secondary(struct mlx5_common_device *cdev, 1751 struct rte_mempool *mp) 1752 { 1753 return mlx5_mp_req_mempool_reg(cdev, mp, false); 1754 } 1755 1756 /** 1757 * Unregister the memory of a mempool from the protection domain. 1758 * 1759 * @param cdev 1760 * Pointer to the mlx5 common device. 1761 * @param mp 1762 * Mempool to unregister. 1763 * 1764 * @return 1765 * 0 on success, (-1) on failure and rte_errno is set. 1766 */ 1767 int 1768 mlx5_mr_mempool_unregister(struct mlx5_common_device *cdev, 1769 struct rte_mempool *mp) 1770 { 1771 if (mp->flags & RTE_MEMPOOL_F_NON_IO) 1772 return 0; 1773 switch (rte_eal_process_type()) { 1774 case RTE_PROC_PRIMARY: 1775 return mlx5_mr_mempool_unregister_primary(&cdev->mr_scache, mp); 1776 case RTE_PROC_SECONDARY: 1777 return mlx5_mr_mempool_unregister_secondary(cdev, mp); 1778 default: 1779 return -1; 1780 } 1781 } 1782 1783 /** 1784 * Lookup a MR key by and address in a registered mempool. 1785 * 1786 * @param mpr 1787 * Mempool registration object. 1788 * @param addr 1789 * Address within the mempool. 1790 * @param entry 1791 * Bottom-half cache entry to fill. 1792 * 1793 * @return 1794 * MR key or UINT32_MAX on failure, which can only happen 1795 * if the address is not from within the mempool. 1796 */ 1797 static uint32_t 1798 mlx5_mempool_reg_addr2mr(struct mlx5_mempool_reg *mpr, uintptr_t addr, 1799 struct mr_cache_entry *entry) 1800 { 1801 uint32_t lkey = UINT32_MAX; 1802 unsigned int i; 1803 1804 for (i = 0; i < mpr->mrs_n; i++) { 1805 const struct mlx5_pmd_mr *mr = &mpr->mrs[i].pmd_mr; 1806 uintptr_t mr_addr = (uintptr_t)mr->addr; 1807 1808 if (mr_addr <= addr) { 1809 lkey = rte_cpu_to_be_32(mr->lkey); 1810 entry->start = mr_addr; 1811 entry->end = mr_addr + mr->len; 1812 entry->lkey = lkey; 1813 break; 1814 } 1815 } 1816 return lkey; 1817 } 1818 1819 /** 1820 * Update bottom-half cache from the list of mempool registrations. 1821 * 1822 * @param share_cache 1823 * Pointer to a global shared MR cache. 1824 * @param mr_ctrl 1825 * Per-queue MR control handle. 1826 * @param entry 1827 * Pointer to an entry in the bottom-half cache to update 1828 * with the MR lkey looked up. 1829 * @param mp 1830 * Mempool containing the address. 1831 * @param addr 1832 * Address to lookup. 1833 * @return 1834 * MR lkey on success, UINT32_MAX on failure. 1835 */ 1836 static uint32_t 1837 mlx5_lookup_mempool_regs(struct mlx5_mr_share_cache *share_cache, 1838 struct mlx5_mr_ctrl *mr_ctrl, 1839 struct mr_cache_entry *entry, 1840 struct rte_mempool *mp, uintptr_t addr) 1841 { 1842 struct mlx5_mr_btree *bt = &mr_ctrl->cache_bh; 1843 struct mlx5_mempool_reg *mpr; 1844 uint32_t lkey = UINT32_MAX; 1845 1846 /* If local cache table is full, try to double it. */ 1847 if (unlikely(bt->len == bt->size)) 1848 mr_btree_expand(bt, bt->size << 1); 1849 /* Look up in mempool registrations. */ 1850 rte_rwlock_read_lock(&share_cache->rwlock); 1851 mpr = mlx5_mempool_reg_lookup(share_cache, mp); 1852 if (mpr != NULL) 1853 lkey = mlx5_mempool_reg_addr2mr(mpr, addr, entry); 1854 rte_rwlock_read_unlock(&share_cache->rwlock); 1855 /* 1856 * Update local cache. Even if it fails, return the found entry 1857 * to update top-half cache. Next time, this entry will be found 1858 * in the global cache. 1859 */ 1860 if (lkey != UINT32_MAX) 1861 mr_btree_insert(bt, entry); 1862 return lkey; 1863 } 1864 1865 /** 1866 * Bottom-half lookup for the address from the mempool. 1867 * 1868 * @param share_cache 1869 * Pointer to a global shared MR cache. 1870 * @param mr_ctrl 1871 * Per-queue MR control handle. 1872 * @param mp 1873 * Mempool containing the address. 1874 * @param addr 1875 * Address to lookup. 1876 * @return 1877 * MR lkey on success, UINT32_MAX on failure. 1878 */ 1879 uint32_t 1880 mlx5_mr_mempool2mr_bh(struct mlx5_mr_share_cache *share_cache, 1881 struct mlx5_mr_ctrl *mr_ctrl, 1882 struct rte_mempool *mp, uintptr_t addr) 1883 { 1884 struct mr_cache_entry *repl = &mr_ctrl->cache[mr_ctrl->head]; 1885 uint32_t lkey; 1886 uint16_t bh_idx = 0; 1887 1888 /* Binary-search MR translation table. */ 1889 lkey = mr_btree_lookup(&mr_ctrl->cache_bh, &bh_idx, addr); 1890 /* Update top-half cache. */ 1891 if (likely(lkey != UINT32_MAX)) { 1892 *repl = (*mr_ctrl->cache_bh.table)[bh_idx]; 1893 } else { 1894 lkey = mlx5_lookup_mempool_regs(share_cache, mr_ctrl, repl, 1895 mp, addr); 1896 /* Can only fail if the address is not from the mempool. */ 1897 if (unlikely(lkey == UINT32_MAX)) 1898 return UINT32_MAX; 1899 } 1900 /* Update the most recently used entry. */ 1901 mr_ctrl->mru = mr_ctrl->head; 1902 /* Point to the next victim, the oldest. */ 1903 mr_ctrl->head = (mr_ctrl->head + 1) % MLX5_MR_CACHE_N; 1904 return lkey; 1905 } 1906 1907 uint32_t 1908 mlx5_mr_mb2mr_bh(struct mlx5_mr_ctrl *mr_ctrl, struct rte_mbuf *mb) 1909 { 1910 uint32_t lkey; 1911 uintptr_t addr = (uintptr_t)mb->buf_addr; 1912 struct mlx5_common_device *cdev = mr_ctrl->cdev; 1913 1914 if (cdev->config.mr_mempool_reg_en) { 1915 struct rte_mempool *mp = NULL; 1916 struct mlx5_mprq_buf *buf; 1917 1918 if (!RTE_MBUF_HAS_EXTBUF(mb)) { 1919 mp = mlx5_mb2mp(mb); 1920 } else if (mb->shinfo->free_cb == mlx5_mprq_buf_free_cb) { 1921 /* Recover MPRQ mempool. */ 1922 buf = mb->shinfo->fcb_opaque; 1923 mp = buf->mp; 1924 } 1925 if (mp != NULL) { 1926 lkey = mlx5_mr_mempool2mr_bh(&cdev->mr_scache, 1927 mr_ctrl, mp, addr); 1928 /* 1929 * Lookup can only fail on invalid input, e.g. "addr" 1930 * is not from "mp" or "mp" has MEMPOOL_F_NON_IO set. 1931 */ 1932 if (lkey != UINT32_MAX) 1933 return lkey; 1934 } 1935 /* Fallback for generic mechanism in corner cases. */ 1936 } 1937 return mlx5_mr_addr2mr_bh(mr_ctrl, addr); 1938 } 1939