xref: /dpdk/drivers/common/mlx5/mlx5_common_mr.c (revision 56d2067735d9ed4a3ee35ff5481c170413b9e763)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2020 Mellanox Technologies, Ltd
4  */
5 #include <rte_eal_memconfig.h>
6 #include <rte_errno.h>
7 #include <rte_mempool.h>
8 #include <rte_malloc.h>
9 #include <rte_rwlock.h>
10 
11 #include "mlx5_glue.h"
12 #include "mlx5_common_mp.h"
13 #include "mlx5_common_mr.h"
14 #include "mlx5_common_utils.h"
15 
16 struct mr_find_contig_memsegs_data {
17 	uintptr_t addr;
18 	uintptr_t start;
19 	uintptr_t end;
20 	const struct rte_memseg_list *msl;
21 };
22 
23 /**
24  * Expand B-tree table to a given size. Can't be called with holding
25  * memory_hotplug_lock or share_cache.rwlock due to rte_realloc().
26  *
27  * @param bt
28  *   Pointer to B-tree structure.
29  * @param n
30  *   Number of entries for expansion.
31  *
32  * @return
33  *   0 on success, -1 on failure.
34  */
35 static int
36 mr_btree_expand(struct mlx5_mr_btree *bt, int n)
37 {
38 	void *mem;
39 	int ret = 0;
40 
41 	if (n <= bt->size)
42 		return ret;
43 	/*
44 	 * Downside of directly using rte_realloc() is that SOCKET_ID_ANY is
45 	 * used inside if there's no room to expand. Because this is a quite
46 	 * rare case and a part of very slow path, it is very acceptable.
47 	 * Initially cache_bh[] will be given practically enough space and once
48 	 * it is expanded, expansion wouldn't be needed again ever.
49 	 */
50 	mem = rte_realloc(bt->table, n * sizeof(struct mr_cache_entry), 0);
51 	if (mem == NULL) {
52 		/* Not an error, B-tree search will be skipped. */
53 		DRV_LOG(WARNING, "failed to expand MR B-tree (%p) table",
54 			(void *)bt);
55 		ret = -1;
56 	} else {
57 		DRV_LOG(DEBUG, "expanded MR B-tree table (size=%u)", n);
58 		bt->table = mem;
59 		bt->size = n;
60 	}
61 	return ret;
62 }
63 
64 /**
65  * Look up LKey from given B-tree lookup table, store the last index and return
66  * searched LKey.
67  *
68  * @param bt
69  *   Pointer to B-tree structure.
70  * @param[out] idx
71  *   Pointer to index. Even on search failure, returns index where it stops
72  *   searching so that index can be used when inserting a new entry.
73  * @param addr
74  *   Search key.
75  *
76  * @return
77  *   Searched LKey on success, UINT32_MAX on no match.
78  */
79 static uint32_t
80 mr_btree_lookup(struct mlx5_mr_btree *bt, uint16_t *idx, uintptr_t addr)
81 {
82 	struct mr_cache_entry *lkp_tbl;
83 	uint16_t n;
84 	uint16_t base = 0;
85 
86 	MLX5_ASSERT(bt != NULL);
87 	lkp_tbl = *bt->table;
88 	n = bt->len;
89 	/* First entry must be NULL for comparison. */
90 	MLX5_ASSERT(bt->len > 0 || (lkp_tbl[0].start == 0 &&
91 				    lkp_tbl[0].lkey == UINT32_MAX));
92 	/* Binary search. */
93 	do {
94 		register uint16_t delta = n >> 1;
95 
96 		if (addr < lkp_tbl[base + delta].start) {
97 			n = delta;
98 		} else {
99 			base += delta;
100 			n -= delta;
101 		}
102 	} while (n > 1);
103 	MLX5_ASSERT(addr >= lkp_tbl[base].start);
104 	*idx = base;
105 	if (addr < lkp_tbl[base].end)
106 		return lkp_tbl[base].lkey;
107 	/* Not found. */
108 	return UINT32_MAX;
109 }
110 
111 /**
112  * Insert an entry to B-tree lookup table.
113  *
114  * @param bt
115  *   Pointer to B-tree structure.
116  * @param entry
117  *   Pointer to new entry to insert.
118  *
119  * @return
120  *   0 on success, -1 on failure.
121  */
122 static int
123 mr_btree_insert(struct mlx5_mr_btree *bt, struct mr_cache_entry *entry)
124 {
125 	struct mr_cache_entry *lkp_tbl;
126 	uint16_t idx = 0;
127 	size_t shift;
128 
129 	MLX5_ASSERT(bt != NULL);
130 	MLX5_ASSERT(bt->len <= bt->size);
131 	MLX5_ASSERT(bt->len > 0);
132 	lkp_tbl = *bt->table;
133 	/* Find out the slot for insertion. */
134 	if (mr_btree_lookup(bt, &idx, entry->start) != UINT32_MAX) {
135 		DRV_LOG(DEBUG,
136 			"abort insertion to B-tree(%p): already exist at"
137 			" idx=%u [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
138 			(void *)bt, idx, entry->start, entry->end, entry->lkey);
139 		/* Already exist, return. */
140 		return 0;
141 	}
142 	/* If table is full, return error. */
143 	if (unlikely(bt->len == bt->size)) {
144 		bt->overflow = 1;
145 		return -1;
146 	}
147 	/* Insert entry. */
148 	++idx;
149 	shift = (bt->len - idx) * sizeof(struct mr_cache_entry);
150 	if (shift)
151 		memmove(&lkp_tbl[idx + 1], &lkp_tbl[idx], shift);
152 	lkp_tbl[idx] = *entry;
153 	bt->len++;
154 	DRV_LOG(DEBUG,
155 		"inserted B-tree(%p)[%u],"
156 		" [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
157 		(void *)bt, idx, entry->start, entry->end, entry->lkey);
158 	return 0;
159 }
160 
161 /**
162  * Initialize B-tree and allocate memory for lookup table.
163  *
164  * @param bt
165  *   Pointer to B-tree structure.
166  * @param n
167  *   Number of entries to allocate.
168  * @param socket
169  *   NUMA socket on which memory must be allocated.
170  *
171  * @return
172  *   0 on success, a negative errno value otherwise and rte_errno is set.
173  */
174 int
175 mlx5_mr_btree_init(struct mlx5_mr_btree *bt, int n, int socket)
176 {
177 	if (bt == NULL) {
178 		rte_errno = EINVAL;
179 		return -rte_errno;
180 	}
181 	MLX5_ASSERT(!bt->table && !bt->size);
182 	memset(bt, 0, sizeof(*bt));
183 	bt->table = rte_calloc_socket("B-tree table",
184 				      n, sizeof(struct mr_cache_entry),
185 				      0, socket);
186 	if (bt->table == NULL) {
187 		rte_errno = ENOMEM;
188 		DEBUG("failed to allocate memory for btree cache on socket %d",
189 		      socket);
190 		return -rte_errno;
191 	}
192 	bt->size = n;
193 	/* First entry must be NULL for binary search. */
194 	(*bt->table)[bt->len++] = (struct mr_cache_entry) {
195 		.lkey = UINT32_MAX,
196 	};
197 	DEBUG("initialized B-tree %p with table %p",
198 	      (void *)bt, (void *)bt->table);
199 	return 0;
200 }
201 
202 /**
203  * Free B-tree resources.
204  *
205  * @param bt
206  *   Pointer to B-tree structure.
207  */
208 void
209 mlx5_mr_btree_free(struct mlx5_mr_btree *bt)
210 {
211 	if (bt == NULL)
212 		return;
213 	DEBUG("freeing B-tree %p with table %p",
214 	      (void *)bt, (void *)bt->table);
215 	rte_free(bt->table);
216 	memset(bt, 0, sizeof(*bt));
217 }
218 
219 /**
220  * Dump all the entries in a B-tree
221  *
222  * @param bt
223  *   Pointer to B-tree structure.
224  */
225 void
226 mlx5_mr_btree_dump(struct mlx5_mr_btree *bt __rte_unused)
227 {
228 #ifdef RTE_LIBRTE_MLX5_DEBUG
229 	int idx;
230 	struct mr_cache_entry *lkp_tbl;
231 
232 	if (bt == NULL)
233 		return;
234 	lkp_tbl = *bt->table;
235 	for (idx = 0; idx < bt->len; ++idx) {
236 		struct mr_cache_entry *entry = &lkp_tbl[idx];
237 
238 		DEBUG("B-tree(%p)[%u],"
239 		      " [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
240 		      (void *)bt, idx, entry->start, entry->end, entry->lkey);
241 	}
242 #endif
243 }
244 
245 /**
246  * Find virtually contiguous memory chunk in a given MR.
247  *
248  * @param dev
249  *   Pointer to MR structure.
250  * @param[out] entry
251  *   Pointer to returning MR cache entry. If not found, this will not be
252  *   updated.
253  * @param start_idx
254  *   Start index of the memseg bitmap.
255  *
256  * @return
257  *   Next index to go on lookup.
258  */
259 static int
260 mr_find_next_chunk(struct mlx5_mr *mr, struct mr_cache_entry *entry,
261 		   int base_idx)
262 {
263 	uintptr_t start = 0;
264 	uintptr_t end = 0;
265 	uint32_t idx = 0;
266 
267 	/* MR for external memory doesn't have memseg list. */
268 	if (mr->msl == NULL) {
269 		MLX5_ASSERT(mr->ms_bmp_n == 1);
270 		MLX5_ASSERT(mr->ms_n == 1);
271 		MLX5_ASSERT(base_idx == 0);
272 		/*
273 		 * Can't search it from memseg list but get it directly from
274 		 * pmd_mr as there's only one chunk.
275 		 */
276 		entry->start = (uintptr_t)mr->pmd_mr.addr;
277 		entry->end = (uintptr_t)mr->pmd_mr.addr + mr->pmd_mr.len;
278 		entry->lkey = rte_cpu_to_be_32(mr->pmd_mr.lkey);
279 		/* Returning 1 ends iteration. */
280 		return 1;
281 	}
282 	for (idx = base_idx; idx < mr->ms_bmp_n; ++idx) {
283 		if (rte_bitmap_get(mr->ms_bmp, idx)) {
284 			const struct rte_memseg_list *msl;
285 			const struct rte_memseg *ms;
286 
287 			msl = mr->msl;
288 			ms = rte_fbarray_get(&msl->memseg_arr,
289 					     mr->ms_base_idx + idx);
290 			MLX5_ASSERT(msl->page_sz == ms->hugepage_sz);
291 			if (!start)
292 				start = ms->addr_64;
293 			end = ms->addr_64 + ms->hugepage_sz;
294 		} else if (start) {
295 			/* Passed the end of a fragment. */
296 			break;
297 		}
298 	}
299 	if (start) {
300 		/* Found one chunk. */
301 		entry->start = start;
302 		entry->end = end;
303 		entry->lkey = rte_cpu_to_be_32(mr->pmd_mr.lkey);
304 	}
305 	return idx;
306 }
307 
308 /**
309  * Insert a MR to the global B-tree cache. It may fail due to low-on-memory.
310  * Then, this entry will have to be searched by mr_lookup_list() in
311  * mlx5_mr_create() on miss.
312  *
313  * @param share_cache
314  *   Pointer to a global shared MR cache.
315  * @param mr
316  *   Pointer to MR to insert.
317  *
318  * @return
319  *   0 on success, -1 on failure.
320  */
321 int
322 mlx5_mr_insert_cache(struct mlx5_mr_share_cache *share_cache,
323 		     struct mlx5_mr *mr)
324 {
325 	unsigned int n;
326 
327 	DRV_LOG(DEBUG, "Inserting MR(%p) to global cache(%p)",
328 		(void *)mr, (void *)share_cache);
329 	for (n = 0; n < mr->ms_bmp_n; ) {
330 		struct mr_cache_entry entry;
331 
332 		memset(&entry, 0, sizeof(entry));
333 		/* Find a contiguous chunk and advance the index. */
334 		n = mr_find_next_chunk(mr, &entry, n);
335 		if (!entry.end)
336 			break;
337 		if (mr_btree_insert(&share_cache->cache, &entry) < 0) {
338 			/*
339 			 * Overflowed, but the global table cannot be expanded
340 			 * because of deadlock.
341 			 */
342 			return -1;
343 		}
344 	}
345 	return 0;
346 }
347 
348 /**
349  * Look up address in the original global MR list.
350  *
351  * @param share_cache
352  *   Pointer to a global shared MR cache.
353  * @param[out] entry
354  *   Pointer to returning MR cache entry. If no match, this will not be updated.
355  * @param addr
356  *   Search key.
357  *
358  * @return
359  *   Found MR on match, NULL otherwise.
360  */
361 struct mlx5_mr *
362 mlx5_mr_lookup_list(struct mlx5_mr_share_cache *share_cache,
363 		    struct mr_cache_entry *entry, uintptr_t addr)
364 {
365 	struct mlx5_mr *mr;
366 
367 	/* Iterate all the existing MRs. */
368 	LIST_FOREACH(mr, &share_cache->mr_list, mr) {
369 		unsigned int n;
370 
371 		if (mr->ms_n == 0)
372 			continue;
373 		for (n = 0; n < mr->ms_bmp_n; ) {
374 			struct mr_cache_entry ret;
375 
376 			memset(&ret, 0, sizeof(ret));
377 			n = mr_find_next_chunk(mr, &ret, n);
378 			if (addr >= ret.start && addr < ret.end) {
379 				/* Found. */
380 				*entry = ret;
381 				return mr;
382 			}
383 		}
384 	}
385 	return NULL;
386 }
387 
388 /**
389  * Look up address on global MR cache.
390  *
391  * @param share_cache
392  *   Pointer to a global shared MR cache.
393  * @param[out] entry
394  *   Pointer to returning MR cache entry. If no match, this will not be updated.
395  * @param addr
396  *   Search key.
397  *
398  * @return
399  *   Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
400  */
401 uint32_t
402 mlx5_mr_lookup_cache(struct mlx5_mr_share_cache *share_cache,
403 		     struct mr_cache_entry *entry, uintptr_t addr)
404 {
405 	uint16_t idx;
406 	uint32_t lkey = UINT32_MAX;
407 	struct mlx5_mr *mr;
408 
409 	/*
410 	 * If the global cache has overflowed since it failed to expand the
411 	 * B-tree table, it can't have all the existing MRs. Then, the address
412 	 * has to be searched by traversing the original MR list instead, which
413 	 * is very slow path. Otherwise, the global cache is all inclusive.
414 	 */
415 	if (!unlikely(share_cache->cache.overflow)) {
416 		lkey = mr_btree_lookup(&share_cache->cache, &idx, addr);
417 		if (lkey != UINT32_MAX)
418 			*entry = (*share_cache->cache.table)[idx];
419 	} else {
420 		/* Falling back to the slowest path. */
421 		mr = mlx5_mr_lookup_list(share_cache, entry, addr);
422 		if (mr != NULL)
423 			lkey = entry->lkey;
424 	}
425 	MLX5_ASSERT(lkey == UINT32_MAX || (addr >= entry->start &&
426 					   addr < entry->end));
427 	return lkey;
428 }
429 
430 /**
431  * Free MR resources. MR lock must not be held to avoid a deadlock. rte_free()
432  * can raise memory free event and the callback function will spin on the lock.
433  *
434  * @param mr
435  *   Pointer to MR to free.
436  */
437 static void
438 mr_free(struct mlx5_mr *mr)
439 {
440 	if (mr == NULL)
441 		return;
442 	DRV_LOG(DEBUG, "freeing MR(%p):", (void *)mr);
443 	if (mr->pmd_mr.obj != NULL)
444 		claim_zero(mlx5_glue->dereg_mr(mr->pmd_mr.obj));
445 	if (mr->ms_bmp != NULL)
446 		rte_bitmap_free(mr->ms_bmp);
447 	rte_free(mr);
448 }
449 
450 void
451 mlx5_mr_rebuild_cache(struct mlx5_mr_share_cache *share_cache)
452 {
453 	struct mlx5_mr *mr;
454 
455 	DRV_LOG(DEBUG, "Rebuild dev cache[] %p", (void *)share_cache);
456 	/* Flush cache to rebuild. */
457 	share_cache->cache.len = 1;
458 	share_cache->cache.overflow = 0;
459 	/* Iterate all the existing MRs. */
460 	LIST_FOREACH(mr, &share_cache->mr_list, mr)
461 		if (mlx5_mr_insert_cache(share_cache, mr) < 0)
462 			return;
463 }
464 
465 /**
466  * Release resources of detached MR having no online entry.
467  *
468  * @param share_cache
469  *   Pointer to a global shared MR cache.
470  */
471 static void
472 mlx5_mr_garbage_collect(struct mlx5_mr_share_cache *share_cache)
473 {
474 	struct mlx5_mr *mr_next;
475 	struct mlx5_mr_list free_list = LIST_HEAD_INITIALIZER(free_list);
476 
477 	/* Must be called from the primary process. */
478 	MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY);
479 	/*
480 	 * MR can't be freed with holding the lock because rte_free() could call
481 	 * memory free callback function. This will be a deadlock situation.
482 	 */
483 	rte_rwlock_write_lock(&share_cache->rwlock);
484 	/* Detach the whole free list and release it after unlocking. */
485 	free_list = share_cache->mr_free_list;
486 	LIST_INIT(&share_cache->mr_free_list);
487 	rte_rwlock_write_unlock(&share_cache->rwlock);
488 	/* Release resources. */
489 	mr_next = LIST_FIRST(&free_list);
490 	while (mr_next != NULL) {
491 		struct mlx5_mr *mr = mr_next;
492 
493 		mr_next = LIST_NEXT(mr, mr);
494 		mr_free(mr);
495 	}
496 }
497 
498 /* Called during rte_memseg_contig_walk() by mlx5_mr_create(). */
499 static int
500 mr_find_contig_memsegs_cb(const struct rte_memseg_list *msl,
501 			  const struct rte_memseg *ms, size_t len, void *arg)
502 {
503 	struct mr_find_contig_memsegs_data *data = arg;
504 
505 	if (data->addr < ms->addr_64 || data->addr >= ms->addr_64 + len)
506 		return 0;
507 	/* Found, save it and stop walking. */
508 	data->start = ms->addr_64;
509 	data->end = ms->addr_64 + len;
510 	data->msl = msl;
511 	return 1;
512 }
513 
514 /**
515  * Create a new global Memory Region (MR) for a missing virtual address.
516  * This API should be called on a secondary process, then a request is sent to
517  * the primary process in order to create a MR for the address. As the global MR
518  * list is on the shared memory, following LKey lookup should succeed unless the
519  * request fails.
520  *
521  * @param pd
522  *   Pointer to pd of a device (net, regex, vdpa,...).
523  * @param share_cache
524  *   Pointer to a global shared MR cache.
525  * @param[out] entry
526  *   Pointer to returning MR cache entry, found in the global cache or newly
527  *   created. If failed to create one, this will not be updated.
528  * @param addr
529  *   Target virtual address to register.
530  * @param mr_ext_memseg_en
531  *   Configurable flag about external memory segment enable or not.
532  *
533  * @return
534  *   Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
535  */
536 static uint32_t
537 mlx5_mr_create_secondary(void *pd __rte_unused,
538 			 struct mlx5_mp_id *mp_id,
539 			 struct mlx5_mr_share_cache *share_cache,
540 			 struct mr_cache_entry *entry, uintptr_t addr,
541 			 unsigned int mr_ext_memseg_en __rte_unused)
542 {
543 	int ret;
544 
545 	DEBUG("port %u requesting MR creation for address (%p)",
546 	      mp_id->port_id, (void *)addr);
547 	ret = mlx5_mp_req_mr_create(mp_id, addr);
548 	if (ret) {
549 		DEBUG("Fail to request MR creation for address (%p)",
550 		      (void *)addr);
551 		return UINT32_MAX;
552 	}
553 	rte_rwlock_read_lock(&share_cache->rwlock);
554 	/* Fill in output data. */
555 	mlx5_mr_lookup_cache(share_cache, entry, addr);
556 	/* Lookup can't fail. */
557 	MLX5_ASSERT(entry->lkey != UINT32_MAX);
558 	rte_rwlock_read_unlock(&share_cache->rwlock);
559 	DEBUG("MR CREATED by primary process for %p:\n"
560 	      "  [0x%" PRIxPTR ", 0x%" PRIxPTR "), lkey=0x%x",
561 	      (void *)addr, entry->start, entry->end, entry->lkey);
562 	return entry->lkey;
563 }
564 
565 /**
566  * Create a new global Memory Region (MR) for a missing virtual address.
567  * Register entire virtually contiguous memory chunk around the address.
568  *
569  * @param pd
570  *   Pointer to pd of a device (net, regex, vdpa,...).
571  * @param share_cache
572  *   Pointer to a global shared MR cache.
573  * @param[out] entry
574  *   Pointer to returning MR cache entry, found in the global cache or newly
575  *   created. If failed to create one, this will not be updated.
576  * @param addr
577  *   Target virtual address to register.
578  * @param mr_ext_memseg_en
579  *   Configurable flag about external memory segment enable or not.
580  *
581  * @return
582  *   Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
583  */
584 uint32_t
585 mlx5_mr_create_primary(void *pd,
586 		       struct mlx5_mr_share_cache *share_cache,
587 		       struct mr_cache_entry *entry, uintptr_t addr,
588 		       unsigned int mr_ext_memseg_en)
589 {
590 	struct mr_find_contig_memsegs_data data = {.addr = addr, };
591 	struct mr_find_contig_memsegs_data data_re;
592 	const struct rte_memseg_list *msl;
593 	const struct rte_memseg *ms;
594 	struct mlx5_mr *mr = NULL;
595 	int ms_idx_shift = -1;
596 	uint32_t bmp_size;
597 	void *bmp_mem;
598 	uint32_t ms_n;
599 	uint32_t n;
600 	size_t len;
601 	struct ibv_mr *ibv_mr;
602 
603 	DRV_LOG(DEBUG, "Creating a MR using address (%p)", (void *)addr);
604 	/*
605 	 * Release detached MRs if any. This can't be called with holding either
606 	 * memory_hotplug_lock or share_cache->rwlock. MRs on the free list have
607 	 * been detached by the memory free event but it couldn't be released
608 	 * inside the callback due to deadlock. As a result, releasing resources
609 	 * is quite opportunistic.
610 	 */
611 	mlx5_mr_garbage_collect(share_cache);
612 	/*
613 	 * If enabled, find out a contiguous virtual address chunk in use, to
614 	 * which the given address belongs, in order to register maximum range.
615 	 * In the best case where mempools are not dynamically recreated and
616 	 * '--socket-mem' is specified as an EAL option, it is very likely to
617 	 * have only one MR(LKey) per a socket and per a hugepage-size even
618 	 * though the system memory is highly fragmented. As the whole memory
619 	 * chunk will be pinned by kernel, it can't be reused unless entire
620 	 * chunk is freed from EAL.
621 	 *
622 	 * If disabled, just register one memseg (page). Then, memory
623 	 * consumption will be minimized but it may drop performance if there
624 	 * are many MRs to lookup on the datapath.
625 	 */
626 	if (!mr_ext_memseg_en) {
627 		data.msl = rte_mem_virt2memseg_list((void *)addr);
628 		data.start = RTE_ALIGN_FLOOR(addr, data.msl->page_sz);
629 		data.end = data.start + data.msl->page_sz;
630 	} else if (!rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data)) {
631 		DRV_LOG(WARNING,
632 			"Unable to find virtually contiguous"
633 			" chunk for address (%p)."
634 			" rte_memseg_contig_walk() failed.", (void *)addr);
635 		rte_errno = ENXIO;
636 		goto err_nolock;
637 	}
638 alloc_resources:
639 	/* Addresses must be page-aligned. */
640 	MLX5_ASSERT(data.msl);
641 	MLX5_ASSERT(rte_is_aligned((void *)data.start, data.msl->page_sz));
642 	MLX5_ASSERT(rte_is_aligned((void *)data.end, data.msl->page_sz));
643 	msl = data.msl;
644 	ms = rte_mem_virt2memseg((void *)data.start, msl);
645 	len = data.end - data.start;
646 	MLX5_ASSERT(ms);
647 	MLX5_ASSERT(msl->page_sz == ms->hugepage_sz);
648 	/* Number of memsegs in the range. */
649 	ms_n = len / msl->page_sz;
650 	DEBUG("Extending %p to [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
651 	      " page_sz=0x%" PRIx64 ", ms_n=%u",
652 	      (void *)addr, data.start, data.end, msl->page_sz, ms_n);
653 	/* Size of memory for bitmap. */
654 	bmp_size = rte_bitmap_get_memory_footprint(ms_n);
655 	mr = rte_zmalloc_socket(NULL,
656 				RTE_ALIGN_CEIL(sizeof(*mr),
657 					       RTE_CACHE_LINE_SIZE) +
658 				bmp_size,
659 				RTE_CACHE_LINE_SIZE, msl->socket_id);
660 	if (mr == NULL) {
661 		DEBUG("Unable to allocate memory for a new MR of"
662 		      " address (%p).", (void *)addr);
663 		rte_errno = ENOMEM;
664 		goto err_nolock;
665 	}
666 	mr->msl = msl;
667 	/*
668 	 * Save the index of the first memseg and initialize memseg bitmap. To
669 	 * see if a memseg of ms_idx in the memseg-list is still valid, check:
670 	 *	rte_bitmap_get(mr->bmp, ms_idx - mr->ms_base_idx)
671 	 */
672 	mr->ms_base_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
673 	bmp_mem = RTE_PTR_ALIGN_CEIL(mr + 1, RTE_CACHE_LINE_SIZE);
674 	mr->ms_bmp = rte_bitmap_init(ms_n, bmp_mem, bmp_size);
675 	if (mr->ms_bmp == NULL) {
676 		DEBUG("Unable to initialize bitmap for a new MR of"
677 		      " address (%p).", (void *)addr);
678 		rte_errno = EINVAL;
679 		goto err_nolock;
680 	}
681 	/*
682 	 * Should recheck whether the extended contiguous chunk is still valid.
683 	 * Because memory_hotplug_lock can't be held if there's any memory
684 	 * related calls in a critical path, resource allocation above can't be
685 	 * locked. If the memory has been changed at this point, try again with
686 	 * just single page. If not, go on with the big chunk atomically from
687 	 * here.
688 	 */
689 	rte_mcfg_mem_read_lock();
690 	data_re = data;
691 	if (len > msl->page_sz &&
692 	    !rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data_re)) {
693 		DEBUG("Unable to find virtually contiguous"
694 		      " chunk for address (%p)."
695 		      " rte_memseg_contig_walk() failed.", (void *)addr);
696 		rte_errno = ENXIO;
697 		goto err_memlock;
698 	}
699 	if (data.start != data_re.start || data.end != data_re.end) {
700 		/*
701 		 * The extended contiguous chunk has been changed. Try again
702 		 * with single memseg instead.
703 		 */
704 		data.start = RTE_ALIGN_FLOOR(addr, msl->page_sz);
705 		data.end = data.start + msl->page_sz;
706 		rte_mcfg_mem_read_unlock();
707 		mr_free(mr);
708 		goto alloc_resources;
709 	}
710 	MLX5_ASSERT(data.msl == data_re.msl);
711 	rte_rwlock_write_lock(&share_cache->rwlock);
712 	/*
713 	 * Check the address is really missing. If other thread already created
714 	 * one or it is not found due to overflow, abort and return.
715 	 */
716 	if (mlx5_mr_lookup_cache(share_cache, entry, addr) != UINT32_MAX) {
717 		/*
718 		 * Insert to the global cache table. It may fail due to
719 		 * low-on-memory. Then, this entry will have to be searched
720 		 * here again.
721 		 */
722 		mr_btree_insert(&share_cache->cache, entry);
723 		DEBUG("Found MR for %p on final lookup, abort", (void *)addr);
724 		rte_rwlock_write_unlock(&share_cache->rwlock);
725 		rte_mcfg_mem_read_unlock();
726 		/*
727 		 * Must be unlocked before calling rte_free() because
728 		 * mlx5_mr_mem_event_free_cb() can be called inside.
729 		 */
730 		mr_free(mr);
731 		return entry->lkey;
732 	}
733 	/*
734 	 * Trim start and end addresses for verbs MR. Set bits for registering
735 	 * memsegs but exclude already registered ones. Bitmap can be
736 	 * fragmented.
737 	 */
738 	for (n = 0; n < ms_n; ++n) {
739 		uintptr_t start;
740 		struct mr_cache_entry ret;
741 
742 		memset(&ret, 0, sizeof(ret));
743 		start = data_re.start + n * msl->page_sz;
744 		/* Exclude memsegs already registered by other MRs. */
745 		if (mlx5_mr_lookup_cache(share_cache, &ret, start) ==
746 		    UINT32_MAX) {
747 			/*
748 			 * Start from the first unregistered memseg in the
749 			 * extended range.
750 			 */
751 			if (ms_idx_shift == -1) {
752 				mr->ms_base_idx += n;
753 				data.start = start;
754 				ms_idx_shift = n;
755 			}
756 			data.end = start + msl->page_sz;
757 			rte_bitmap_set(mr->ms_bmp, n - ms_idx_shift);
758 			++mr->ms_n;
759 		}
760 	}
761 	len = data.end - data.start;
762 	mr->ms_bmp_n = len / msl->page_sz;
763 	MLX5_ASSERT(ms_idx_shift + mr->ms_bmp_n <= ms_n);
764 	/*
765 	 * Finally create a verbs MR for the memory chunk. ibv_reg_mr() can be
766 	 * called with holding the memory lock because it doesn't use
767 	 * mlx5_alloc_buf_extern() which eventually calls rte_malloc_socket()
768 	 * through mlx5_alloc_verbs_buf().
769 	 */
770 	ibv_mr = mlx5_glue->reg_mr(pd, (void *)data.start, len,
771 				   IBV_ACCESS_LOCAL_WRITE |
772 				   (haswell_broadwell_cpu ? 0 :
773 				   IBV_ACCESS_RELAXED_ORDERING));
774 	if (ibv_mr == NULL) {
775 		DEBUG("Fail to create an MR for address (%p)",
776 		      (void *)addr);
777 		rte_errno = EINVAL;
778 		goto err_mrlock;
779 	}
780 	mr->pmd_mr.lkey = ibv_mr->lkey;
781 	mr->pmd_mr.addr = ibv_mr->addr;
782 	mr->pmd_mr.len = ibv_mr->length;
783 	mr->pmd_mr.obj = ibv_mr;
784 	MLX5_ASSERT((uintptr_t)mr->pmd_mr.addr == data.start);
785 	MLX5_ASSERT(mr->pmd_mr.len);
786 	LIST_INSERT_HEAD(&share_cache->mr_list, mr, mr);
787 	DEBUG("MR CREATED (%p) for %p:\n"
788 	      "  [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
789 	      " lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u",
790 	      (void *)mr, (void *)addr, data.start, data.end,
791 	      rte_cpu_to_be_32(mr->pmd_mr.lkey),
792 	      mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n);
793 	/* Insert to the global cache table. */
794 	mlx5_mr_insert_cache(share_cache, mr);
795 	/* Fill in output data. */
796 	mlx5_mr_lookup_cache(share_cache, entry, addr);
797 	/* Lookup can't fail. */
798 	MLX5_ASSERT(entry->lkey != UINT32_MAX);
799 	rte_rwlock_write_unlock(&share_cache->rwlock);
800 	rte_mcfg_mem_read_unlock();
801 	return entry->lkey;
802 err_mrlock:
803 	rte_rwlock_write_unlock(&share_cache->rwlock);
804 err_memlock:
805 	rte_mcfg_mem_read_unlock();
806 err_nolock:
807 	/*
808 	 * In case of error, as this can be called in a datapath, a warning
809 	 * message per an error is preferable instead. Must be unlocked before
810 	 * calling rte_free() because mlx5_mr_mem_event_free_cb() can be called
811 	 * inside.
812 	 */
813 	mr_free(mr);
814 	return UINT32_MAX;
815 }
816 
817 /**
818  * Create a new global Memory Region (MR) for a missing virtual address.
819  * This can be called from primary and secondary process.
820  *
821  * @param pd
822  *   Pointer to pd handle of a device (net, regex, vdpa,...).
823  * @param share_cache
824  *   Pointer to a global shared MR cache.
825  * @param[out] entry
826  *   Pointer to returning MR cache entry, found in the global cache or newly
827  *   created. If failed to create one, this will not be updated.
828  * @param addr
829  *   Target virtual address to register.
830  *
831  * @return
832  *   Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
833  */
834 static uint32_t
835 mlx5_mr_create(void *pd, struct mlx5_mp_id *mp_id,
836 	       struct mlx5_mr_share_cache *share_cache,
837 	       struct mr_cache_entry *entry, uintptr_t addr,
838 	       unsigned int mr_ext_memseg_en)
839 {
840 	uint32_t ret = 0;
841 
842 	switch (rte_eal_process_type()) {
843 	case RTE_PROC_PRIMARY:
844 		ret = mlx5_mr_create_primary(pd, share_cache, entry,
845 					     addr, mr_ext_memseg_en);
846 		break;
847 	case RTE_PROC_SECONDARY:
848 		ret = mlx5_mr_create_secondary(pd, mp_id, share_cache, entry,
849 					       addr, mr_ext_memseg_en);
850 		break;
851 	default:
852 		break;
853 	}
854 	return ret;
855 }
856 
857 /**
858  * Look up address in the global MR cache table. If not found, create a new MR.
859  * Insert the found/created entry to local bottom-half cache table.
860  *
861  * @param pd
862  *   Pointer to pd of a device (net, regex, vdpa,...).
863  * @param share_cache
864  *   Pointer to a global shared MR cache.
865  * @param mr_ctrl
866  *   Pointer to per-queue MR control structure.
867  * @param[out] entry
868  *   Pointer to returning MR cache entry, found in the global cache or newly
869  *   created. If failed to create one, this is not written.
870  * @param addr
871  *   Search key.
872  *
873  * @return
874  *   Searched LKey on success, UINT32_MAX on no match.
875  */
876 static uint32_t
877 mr_lookup_caches(void *pd, struct mlx5_mp_id *mp_id,
878 		 struct mlx5_mr_share_cache *share_cache,
879 		 struct mlx5_mr_ctrl *mr_ctrl,
880 		 struct mr_cache_entry *entry, uintptr_t addr,
881 		 unsigned int mr_ext_memseg_en)
882 {
883 	struct mlx5_mr_btree *bt = &mr_ctrl->cache_bh;
884 	uint32_t lkey;
885 	uint16_t idx;
886 
887 	/* If local cache table is full, try to double it. */
888 	if (unlikely(bt->len == bt->size))
889 		mr_btree_expand(bt, bt->size << 1);
890 	/* Look up in the global cache. */
891 	rte_rwlock_read_lock(&share_cache->rwlock);
892 	lkey = mr_btree_lookup(&share_cache->cache, &idx, addr);
893 	if (lkey != UINT32_MAX) {
894 		/* Found. */
895 		*entry = (*share_cache->cache.table)[idx];
896 		rte_rwlock_read_unlock(&share_cache->rwlock);
897 		/*
898 		 * Update local cache. Even if it fails, return the found entry
899 		 * to update top-half cache. Next time, this entry will be found
900 		 * in the global cache.
901 		 */
902 		mr_btree_insert(bt, entry);
903 		return lkey;
904 	}
905 	rte_rwlock_read_unlock(&share_cache->rwlock);
906 	/* First time to see the address? Create a new MR. */
907 	lkey = mlx5_mr_create(pd, mp_id, share_cache, entry, addr,
908 			      mr_ext_memseg_en);
909 	/*
910 	 * Update the local cache if successfully created a new global MR. Even
911 	 * if failed to create one, there's no action to take in this datapath
912 	 * code. As returning LKey is invalid, this will eventually make HW
913 	 * fail.
914 	 */
915 	if (lkey != UINT32_MAX)
916 		mr_btree_insert(bt, entry);
917 	return lkey;
918 }
919 
920 /**
921  * Bottom-half of LKey search on datapath. First search in cache_bh[] and if
922  * misses, search in the global MR cache table and update the new entry to
923  * per-queue local caches.
924  *
925  * @param pd
926  *   Pointer to pd of a device (net, regex, vdpa,...).
927  * @param share_cache
928  *   Pointer to a global shared MR cache.
929  * @param mr_ctrl
930  *   Pointer to per-queue MR control structure.
931  * @param addr
932  *   Search key.
933  *
934  * @return
935  *   Searched LKey on success, UINT32_MAX on no match.
936  */
937 uint32_t mlx5_mr_addr2mr_bh(void *pd, struct mlx5_mp_id *mp_id,
938 			    struct mlx5_mr_share_cache *share_cache,
939 			    struct mlx5_mr_ctrl *mr_ctrl,
940 			    uintptr_t addr, unsigned int mr_ext_memseg_en)
941 {
942 	uint32_t lkey;
943 	uint16_t bh_idx = 0;
944 	/* Victim in top-half cache to replace with new entry. */
945 	struct mr_cache_entry *repl = &mr_ctrl->cache[mr_ctrl->head];
946 
947 	/* Binary-search MR translation table. */
948 	lkey = mr_btree_lookup(&mr_ctrl->cache_bh, &bh_idx, addr);
949 	/* Update top-half cache. */
950 	if (likely(lkey != UINT32_MAX)) {
951 		*repl = (*mr_ctrl->cache_bh.table)[bh_idx];
952 	} else {
953 		/*
954 		 * If missed in local lookup table, search in the global cache
955 		 * and local cache_bh[] will be updated inside if possible.
956 		 * Top-half cache entry will also be updated.
957 		 */
958 		lkey = mr_lookup_caches(pd, mp_id, share_cache, mr_ctrl,
959 					repl, addr, mr_ext_memseg_en);
960 		if (unlikely(lkey == UINT32_MAX))
961 			return UINT32_MAX;
962 	}
963 	/* Update the most recently used entry. */
964 	mr_ctrl->mru = mr_ctrl->head;
965 	/* Point to the next victim, the oldest. */
966 	mr_ctrl->head = (mr_ctrl->head + 1) % MLX5_MR_CACHE_N;
967 	return lkey;
968 }
969 
970 /**
971  * Release all the created MRs and resources on global MR cache of a device.
972  * list.
973  *
974  * @param share_cache
975  *   Pointer to a global shared MR cache.
976  */
977 void
978 mlx5_mr_release_cache(struct mlx5_mr_share_cache *share_cache)
979 {
980 	struct mlx5_mr *mr_next;
981 
982 	rte_rwlock_write_lock(&share_cache->rwlock);
983 	/* Detach from MR list and move to free list. */
984 	mr_next = LIST_FIRST(&share_cache->mr_list);
985 	while (mr_next != NULL) {
986 		struct mlx5_mr *mr = mr_next;
987 
988 		mr_next = LIST_NEXT(mr, mr);
989 		LIST_REMOVE(mr, mr);
990 		LIST_INSERT_HEAD(&share_cache->mr_free_list, mr, mr);
991 	}
992 	LIST_INIT(&share_cache->mr_list);
993 	/* Free global cache. */
994 	mlx5_mr_btree_free(&share_cache->cache);
995 	rte_rwlock_write_unlock(&share_cache->rwlock);
996 	/* Free all remaining MRs. */
997 	mlx5_mr_garbage_collect(share_cache);
998 }
999 
1000 /**
1001  * Flush all of the local cache entries.
1002  *
1003  * @param mr_ctrl
1004  *   Pointer to per-queue MR local cache.
1005  */
1006 void
1007 mlx5_mr_flush_local_cache(struct mlx5_mr_ctrl *mr_ctrl)
1008 {
1009 	/* Reset the most-recently-used index. */
1010 	mr_ctrl->mru = 0;
1011 	/* Reset the linear search array. */
1012 	mr_ctrl->head = 0;
1013 	memset(mr_ctrl->cache, 0, sizeof(mr_ctrl->cache));
1014 	/* Reset the B-tree table. */
1015 	mr_ctrl->cache_bh.len = 1;
1016 	mr_ctrl->cache_bh.overflow = 0;
1017 	/* Update the generation number. */
1018 	mr_ctrl->cur_gen = *mr_ctrl->dev_gen_ptr;
1019 	DRV_LOG(DEBUG, "mr_ctrl(%p): flushed, cur_gen=%d",
1020 		(void *)mr_ctrl, mr_ctrl->cur_gen);
1021 }
1022 
1023 /**
1024  * Creates a memory region for external memory, that is memory which is not
1025  * part of the DPDK memory segments.
1026  *
1027  * @param pd
1028  *   Pointer to pd of a device (net, regex, vdpa,...).
1029  * @param addr
1030  *   Starting virtual address of memory.
1031  * @param len
1032  *   Length of memory segment being mapped.
1033  * @param socked_id
1034  *   Socket to allocate heap memory for the control structures.
1035  *
1036  * @return
1037  *   Pointer to MR structure on success, NULL otherwise.
1038  */
1039 struct mlx5_mr *
1040 mlx5_create_mr_ext(void *pd, uintptr_t addr, size_t len, int socket_id)
1041 {
1042 	struct ibv_mr *ibv_mr;
1043 	struct mlx5_mr *mr = NULL;
1044 
1045 	mr = rte_zmalloc_socket(NULL,
1046 				RTE_ALIGN_CEIL(sizeof(*mr),
1047 					       RTE_CACHE_LINE_SIZE),
1048 				RTE_CACHE_LINE_SIZE, socket_id);
1049 	if (mr == NULL)
1050 		return NULL;
1051 	ibv_mr = mlx5_glue->reg_mr(pd, (void *)addr, len,
1052 				   IBV_ACCESS_LOCAL_WRITE |
1053 				   (haswell_broadwell_cpu ? 0 :
1054 				   IBV_ACCESS_RELAXED_ORDERING));
1055 	if (ibv_mr == NULL) {
1056 		DRV_LOG(WARNING,
1057 			"Fail to create MR for address (%p)",
1058 			(void *)addr);
1059 		rte_free(mr);
1060 		return NULL;
1061 	}
1062 	mr->pmd_mr.lkey = ibv_mr->lkey;
1063 	mr->pmd_mr.addr = ibv_mr->addr;
1064 	mr->pmd_mr.len = ibv_mr->length;
1065 	mr->pmd_mr.obj = ibv_mr;
1066 	mr->msl = NULL; /* Mark it is external memory. */
1067 	mr->ms_bmp = NULL;
1068 	mr->ms_n = 1;
1069 	mr->ms_bmp_n = 1;
1070 	DRV_LOG(DEBUG,
1071 		"MR CREATED (%p) for external memory %p:\n"
1072 		"  [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
1073 		" lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u",
1074 		(void *)mr, (void *)addr,
1075 		addr, addr + len, rte_cpu_to_be_32(mr->pmd_mr.lkey),
1076 		mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n);
1077 	return mr;
1078 }
1079 
1080 /**
1081  * Dump all the created MRs and the global cache entries.
1082  *
1083  * @param sh
1084  *   Pointer to Ethernet device shared context.
1085  */
1086 void
1087 mlx5_mr_dump_cache(struct mlx5_mr_share_cache *share_cache __rte_unused)
1088 {
1089 #ifdef RTE_LIBRTE_MLX5_DEBUG
1090 	struct mlx5_mr *mr;
1091 	int mr_n = 0;
1092 	int chunk_n = 0;
1093 
1094 	rte_rwlock_read_lock(&share_cache->rwlock);
1095 	/* Iterate all the existing MRs. */
1096 	LIST_FOREACH(mr, &share_cache->mr_list, mr) {
1097 		unsigned int n;
1098 
1099 		DEBUG("MR[%u], LKey = 0x%x, ms_n = %u, ms_bmp_n = %u",
1100 		      mr_n++, rte_cpu_to_be_32(mr->pmd_mr.lkey),
1101 		      mr->ms_n, mr->ms_bmp_n);
1102 		if (mr->ms_n == 0)
1103 			continue;
1104 		for (n = 0; n < mr->ms_bmp_n; ) {
1105 			struct mr_cache_entry ret = { 0, };
1106 
1107 			n = mr_find_next_chunk(mr, &ret, n);
1108 			if (!ret.end)
1109 				break;
1110 			DEBUG("  chunk[%u], [0x%" PRIxPTR ", 0x%" PRIxPTR ")",
1111 			      chunk_n++, ret.start, ret.end);
1112 		}
1113 	}
1114 	DEBUG("Dumping global cache %p", (void *)share_cache);
1115 	mlx5_mr_btree_dump(&share_cache->cache);
1116 	rte_rwlock_read_unlock(&share_cache->rwlock);
1117 #endif
1118 }
1119