1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright 2016 6WIND S.A. 3 * Copyright 2020 Mellanox Technologies, Ltd 4 */ 5 #include <stddef.h> 6 7 #include <rte_eal_memconfig.h> 8 #include <rte_eal_paging.h> 9 #include <rte_errno.h> 10 #include <rte_mempool.h> 11 #include <rte_malloc.h> 12 #include <rte_rwlock.h> 13 14 #include "mlx5_glue.h" 15 #include "mlx5_common.h" 16 #include "mlx5_common_mp.h" 17 #include "mlx5_common_mr.h" 18 #include "mlx5_common_os.h" 19 #include "mlx5_common_log.h" 20 #include "mlx5_malloc.h" 21 22 struct mr_find_contig_memsegs_data { 23 uintptr_t addr; 24 uintptr_t start; 25 uintptr_t end; 26 const struct rte_memseg_list *msl; 27 }; 28 29 /* Virtual memory range. */ 30 struct mlx5_range { 31 uintptr_t start; 32 uintptr_t end; 33 }; 34 35 /** Memory region for a mempool. */ 36 struct mlx5_mempool_mr { 37 struct mlx5_pmd_mr pmd_mr; 38 uint32_t refcnt; /**< Number of mempools sharing this MR. */ 39 }; 40 41 /* Mempool registration. */ 42 struct mlx5_mempool_reg { 43 LIST_ENTRY(mlx5_mempool_reg) next; 44 /** Registered mempool, used to designate registrations. */ 45 struct rte_mempool *mp; 46 /** Memory regions for the address ranges of the mempool. */ 47 struct mlx5_mempool_mr *mrs; 48 /** Number of memory regions. */ 49 unsigned int mrs_n; 50 }; 51 52 void 53 mlx5_mprq_buf_free_cb(void *addr __rte_unused, void *opaque) 54 { 55 struct mlx5_mprq_buf *buf = opaque; 56 57 if (__atomic_load_n(&buf->refcnt, __ATOMIC_RELAXED) == 1) { 58 rte_mempool_put(buf->mp, buf); 59 } else if (unlikely(__atomic_sub_fetch(&buf->refcnt, 1, 60 __ATOMIC_RELAXED) == 0)) { 61 __atomic_store_n(&buf->refcnt, 1, __ATOMIC_RELAXED); 62 rte_mempool_put(buf->mp, buf); 63 } 64 } 65 66 /** 67 * Expand B-tree table to a given size. Can't be called with holding 68 * memory_hotplug_lock or share_cache.rwlock due to rte_realloc(). 69 * 70 * @param bt 71 * Pointer to B-tree structure. 72 * @param n 73 * Number of entries for expansion. 74 * 75 * @return 76 * 0 on success, -1 on failure. 77 */ 78 static int 79 mr_btree_expand(struct mlx5_mr_btree *bt, int n) 80 { 81 void *mem; 82 int ret = 0; 83 84 if (n <= bt->size) 85 return ret; 86 /* 87 * Downside of directly using rte_realloc() is that SOCKET_ID_ANY is 88 * used inside if there's no room to expand. Because this is a quite 89 * rare case and a part of very slow path, it is very acceptable. 90 * Initially cache_bh[] will be given practically enough space and once 91 * it is expanded, expansion wouldn't be needed again ever. 92 */ 93 mem = mlx5_realloc(bt->table, MLX5_MEM_RTE | MLX5_MEM_ZERO, 94 n * sizeof(struct mr_cache_entry), 0, SOCKET_ID_ANY); 95 if (mem == NULL) { 96 /* Not an error, B-tree search will be skipped. */ 97 DRV_LOG(WARNING, "failed to expand MR B-tree (%p) table", 98 (void *)bt); 99 ret = -1; 100 } else { 101 DRV_LOG(DEBUG, "expanded MR B-tree table (size=%u)", n); 102 bt->table = mem; 103 bt->size = n; 104 } 105 return ret; 106 } 107 108 /** 109 * Look up LKey from given B-tree lookup table, store the last index and return 110 * searched LKey. 111 * 112 * @param bt 113 * Pointer to B-tree structure. 114 * @param[out] idx 115 * Pointer to index. Even on search failure, returns index where it stops 116 * searching so that index can be used when inserting a new entry. 117 * @param addr 118 * Search key. 119 * 120 * @return 121 * Searched LKey on success, UINT32_MAX on no match. 122 */ 123 static uint32_t 124 mr_btree_lookup(struct mlx5_mr_btree *bt, uint16_t *idx, uintptr_t addr) 125 { 126 struct mr_cache_entry *lkp_tbl; 127 uint16_t n; 128 uint16_t base = 0; 129 130 MLX5_ASSERT(bt != NULL); 131 lkp_tbl = *bt->table; 132 n = bt->len; 133 /* First entry must be NULL for comparison. */ 134 MLX5_ASSERT(bt->len > 0 || (lkp_tbl[0].start == 0 && 135 lkp_tbl[0].lkey == UINT32_MAX)); 136 /* Binary search. */ 137 do { 138 register uint16_t delta = n >> 1; 139 140 if (addr < lkp_tbl[base + delta].start) { 141 n = delta; 142 } else { 143 base += delta; 144 n -= delta; 145 } 146 } while (n > 1); 147 MLX5_ASSERT(addr >= lkp_tbl[base].start); 148 *idx = base; 149 if (addr < lkp_tbl[base].end) 150 return lkp_tbl[base].lkey; 151 /* Not found. */ 152 return UINT32_MAX; 153 } 154 155 /** 156 * Insert an entry to B-tree lookup table. 157 * 158 * @param bt 159 * Pointer to B-tree structure. 160 * @param entry 161 * Pointer to new entry to insert. 162 * 163 * @return 164 * 0 on success, -1 on failure. 165 */ 166 static int 167 mr_btree_insert(struct mlx5_mr_btree *bt, struct mr_cache_entry *entry) 168 { 169 struct mr_cache_entry *lkp_tbl; 170 uint16_t idx = 0; 171 size_t shift; 172 173 MLX5_ASSERT(bt != NULL); 174 MLX5_ASSERT(bt->len <= bt->size); 175 MLX5_ASSERT(bt->len > 0); 176 lkp_tbl = *bt->table; 177 /* Find out the slot for insertion. */ 178 if (mr_btree_lookup(bt, &idx, entry->start) != UINT32_MAX) { 179 DRV_LOG(DEBUG, 180 "abort insertion to B-tree(%p): already exist at" 181 " idx=%u [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x", 182 (void *)bt, idx, entry->start, entry->end, entry->lkey); 183 /* Already exist, return. */ 184 return 0; 185 } 186 /* If table is full, return error. */ 187 if (unlikely(bt->len == bt->size)) { 188 bt->overflow = 1; 189 return -1; 190 } 191 /* Insert entry. */ 192 ++idx; 193 shift = (bt->len - idx) * sizeof(struct mr_cache_entry); 194 if (shift) 195 memmove(&lkp_tbl[idx + 1], &lkp_tbl[idx], shift); 196 lkp_tbl[idx] = *entry; 197 bt->len++; 198 DRV_LOG(DEBUG, 199 "inserted B-tree(%p)[%u]," 200 " [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x", 201 (void *)bt, idx, entry->start, entry->end, entry->lkey); 202 return 0; 203 } 204 205 /** 206 * Initialize B-tree and allocate memory for lookup table. 207 * 208 * @param bt 209 * Pointer to B-tree structure. 210 * @param n 211 * Number of entries to allocate. 212 * @param socket 213 * NUMA socket on which memory must be allocated. 214 * 215 * @return 216 * 0 on success, a negative errno value otherwise and rte_errno is set. 217 */ 218 static int 219 mlx5_mr_btree_init(struct mlx5_mr_btree *bt, int n, int socket) 220 { 221 if (bt == NULL) { 222 rte_errno = EINVAL; 223 return -rte_errno; 224 } 225 MLX5_ASSERT(!bt->table && !bt->size); 226 memset(bt, 0, sizeof(*bt)); 227 bt->table = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, 228 sizeof(struct mr_cache_entry) * n, 229 0, socket); 230 if (bt->table == NULL) { 231 rte_errno = ENOMEM; 232 DRV_LOG(DEBUG, 233 "failed to allocate memory for btree cache on socket " 234 "%d", socket); 235 return -rte_errno; 236 } 237 bt->size = n; 238 /* First entry must be NULL for binary search. */ 239 (*bt->table)[bt->len++] = (struct mr_cache_entry) { 240 .lkey = UINT32_MAX, 241 }; 242 DRV_LOG(DEBUG, "initialized B-tree %p with table %p", 243 (void *)bt, (void *)bt->table); 244 return 0; 245 } 246 247 /** 248 * Free B-tree resources. 249 * 250 * @param bt 251 * Pointer to B-tree structure. 252 */ 253 void 254 mlx5_mr_btree_free(struct mlx5_mr_btree *bt) 255 { 256 if (bt == NULL) 257 return; 258 DRV_LOG(DEBUG, "freeing B-tree %p with table %p", 259 (void *)bt, (void *)bt->table); 260 mlx5_free(bt->table); 261 memset(bt, 0, sizeof(*bt)); 262 } 263 264 /** 265 * Dump all the entries in a B-tree 266 * 267 * @param bt 268 * Pointer to B-tree structure. 269 */ 270 void 271 mlx5_mr_btree_dump(struct mlx5_mr_btree *bt __rte_unused) 272 { 273 #ifdef RTE_LIBRTE_MLX5_DEBUG 274 int idx; 275 struct mr_cache_entry *lkp_tbl; 276 277 if (bt == NULL) 278 return; 279 lkp_tbl = *bt->table; 280 for (idx = 0; idx < bt->len; ++idx) { 281 struct mr_cache_entry *entry = &lkp_tbl[idx]; 282 283 DRV_LOG(DEBUG, "B-tree(%p)[%u]," 284 " [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x", 285 (void *)bt, idx, entry->start, entry->end, entry->lkey); 286 } 287 #endif 288 } 289 290 /** 291 * Initialize per-queue MR control descriptor. 292 * 293 * @param mr_ctrl 294 * Pointer to MR control structure. 295 * @param cdev 296 * Pointer to the mlx5 device structure. 297 * @param socket 298 * NUMA socket on which memory must be allocated. 299 * 300 * @return 301 * 0 on success, a negative errno value otherwise and rte_errno is set. 302 */ 303 int 304 mlx5_mr_ctrl_init(struct mlx5_mr_ctrl *mr_ctrl, struct mlx5_common_device *cdev, 305 int socket) 306 { 307 if (mr_ctrl == NULL) { 308 rte_errno = EINVAL; 309 return -rte_errno; 310 } 311 mr_ctrl->cdev = cdev; 312 /* Save pointer of global generation number to check memory event. */ 313 mr_ctrl->dev_gen_ptr = &cdev->mr_scache.dev_gen; 314 /* Initialize B-tree and allocate memory for bottom-half cache table. */ 315 return mlx5_mr_btree_init(&mr_ctrl->cache_bh, MLX5_MR_BTREE_CACHE_N, 316 socket); 317 } 318 319 /** 320 * Find virtually contiguous memory chunk in a given MR. 321 * 322 * @param dev 323 * Pointer to MR structure. 324 * @param[out] entry 325 * Pointer to returning MR cache entry. If not found, this will not be 326 * updated. 327 * @param start_idx 328 * Start index of the memseg bitmap. 329 * 330 * @return 331 * Next index to go on lookup. 332 */ 333 static int 334 mr_find_next_chunk(struct mlx5_mr *mr, struct mr_cache_entry *entry, 335 int base_idx) 336 { 337 uintptr_t start = 0; 338 uintptr_t end = 0; 339 uint32_t idx = 0; 340 341 /* MR for external memory doesn't have memseg list. */ 342 if (mr->msl == NULL) { 343 MLX5_ASSERT(mr->ms_bmp_n == 1); 344 MLX5_ASSERT(mr->ms_n == 1); 345 MLX5_ASSERT(base_idx == 0); 346 /* 347 * Can't search it from memseg list but get it directly from 348 * pmd_mr as there's only one chunk. 349 */ 350 entry->start = (uintptr_t)mr->pmd_mr.addr; 351 entry->end = (uintptr_t)mr->pmd_mr.addr + mr->pmd_mr.len; 352 entry->lkey = rte_cpu_to_be_32(mr->pmd_mr.lkey); 353 /* Returning 1 ends iteration. */ 354 return 1; 355 } 356 for (idx = base_idx; idx < mr->ms_bmp_n; ++idx) { 357 if (rte_bitmap_get(mr->ms_bmp, idx)) { 358 const struct rte_memseg_list *msl; 359 const struct rte_memseg *ms; 360 361 msl = mr->msl; 362 ms = rte_fbarray_get(&msl->memseg_arr, 363 mr->ms_base_idx + idx); 364 MLX5_ASSERT(msl->page_sz == ms->hugepage_sz); 365 if (!start) 366 start = ms->addr_64; 367 end = ms->addr_64 + ms->hugepage_sz; 368 } else if (start) { 369 /* Passed the end of a fragment. */ 370 break; 371 } 372 } 373 if (start) { 374 /* Found one chunk. */ 375 entry->start = start; 376 entry->end = end; 377 entry->lkey = rte_cpu_to_be_32(mr->pmd_mr.lkey); 378 } 379 return idx; 380 } 381 382 /** 383 * Insert a MR to the global B-tree cache. It may fail due to low-on-memory. 384 * Then, this entry will have to be searched by mr_lookup_list() in 385 * mlx5_mr_create() on miss. 386 * 387 * @param share_cache 388 * Pointer to a global shared MR cache. 389 * @param mr 390 * Pointer to MR to insert. 391 * 392 * @return 393 * 0 on success, -1 on failure. 394 */ 395 int 396 mlx5_mr_insert_cache(struct mlx5_mr_share_cache *share_cache, 397 struct mlx5_mr *mr) 398 { 399 unsigned int n; 400 401 DRV_LOG(DEBUG, "Inserting MR(%p) to global cache(%p)", 402 (void *)mr, (void *)share_cache); 403 for (n = 0; n < mr->ms_bmp_n; ) { 404 struct mr_cache_entry entry; 405 406 memset(&entry, 0, sizeof(entry)); 407 /* Find a contiguous chunk and advance the index. */ 408 n = mr_find_next_chunk(mr, &entry, n); 409 if (!entry.end) 410 break; 411 if (mr_btree_insert(&share_cache->cache, &entry) < 0) { 412 /* 413 * Overflowed, but the global table cannot be expanded 414 * because of deadlock. 415 */ 416 return -1; 417 } 418 } 419 return 0; 420 } 421 422 /** 423 * Look up address in the original global MR list. 424 * 425 * @param share_cache 426 * Pointer to a global shared MR cache. 427 * @param[out] entry 428 * Pointer to returning MR cache entry. If no match, this will not be updated. 429 * @param addr 430 * Search key. 431 * 432 * @return 433 * Found MR on match, NULL otherwise. 434 */ 435 struct mlx5_mr * 436 mlx5_mr_lookup_list(struct mlx5_mr_share_cache *share_cache, 437 struct mr_cache_entry *entry, uintptr_t addr) 438 { 439 struct mlx5_mr *mr; 440 441 /* Iterate all the existing MRs. */ 442 LIST_FOREACH(mr, &share_cache->mr_list, mr) { 443 unsigned int n; 444 445 if (mr->ms_n == 0) 446 continue; 447 for (n = 0; n < mr->ms_bmp_n; ) { 448 struct mr_cache_entry ret; 449 450 memset(&ret, 0, sizeof(ret)); 451 n = mr_find_next_chunk(mr, &ret, n); 452 if (addr >= ret.start && addr < ret.end) { 453 /* Found. */ 454 *entry = ret; 455 return mr; 456 } 457 } 458 } 459 return NULL; 460 } 461 462 /** 463 * Look up address on global MR cache. 464 * 465 * @param share_cache 466 * Pointer to a global shared MR cache. 467 * @param[out] entry 468 * Pointer to returning MR cache entry. If no match, this will not be updated. 469 * @param addr 470 * Search key. 471 * 472 * @return 473 * Searched LKey on success, UINT32_MAX on failure and rte_errno is set. 474 */ 475 static uint32_t 476 mlx5_mr_lookup_cache(struct mlx5_mr_share_cache *share_cache, 477 struct mr_cache_entry *entry, uintptr_t addr) 478 { 479 uint16_t idx; 480 uint32_t lkey = UINT32_MAX; 481 struct mlx5_mr *mr; 482 483 /* 484 * If the global cache has overflowed since it failed to expand the 485 * B-tree table, it can't have all the existing MRs. Then, the address 486 * has to be searched by traversing the original MR list instead, which 487 * is very slow path. Otherwise, the global cache is all inclusive. 488 */ 489 if (!unlikely(share_cache->cache.overflow)) { 490 lkey = mr_btree_lookup(&share_cache->cache, &idx, addr); 491 if (lkey != UINT32_MAX) 492 *entry = (*share_cache->cache.table)[idx]; 493 } else { 494 /* Falling back to the slowest path. */ 495 mr = mlx5_mr_lookup_list(share_cache, entry, addr); 496 if (mr != NULL) 497 lkey = entry->lkey; 498 } 499 MLX5_ASSERT(lkey == UINT32_MAX || (addr >= entry->start && 500 addr < entry->end)); 501 return lkey; 502 } 503 504 /** 505 * Free MR resources. MR lock must not be held to avoid a deadlock. rte_free() 506 * can raise memory free event and the callback function will spin on the lock. 507 * 508 * @param mr 509 * Pointer to MR to free. 510 */ 511 void 512 mlx5_mr_free(struct mlx5_mr *mr, mlx5_dereg_mr_t dereg_mr_cb) 513 { 514 if (mr == NULL) 515 return; 516 DRV_LOG(DEBUG, "freeing MR(%p):", (void *)mr); 517 dereg_mr_cb(&mr->pmd_mr); 518 if (mr->ms_bmp != NULL) 519 rte_bitmap_free(mr->ms_bmp); 520 mlx5_free(mr); 521 } 522 523 void 524 mlx5_mr_rebuild_cache(struct mlx5_mr_share_cache *share_cache) 525 { 526 struct mlx5_mr *mr; 527 528 DRV_LOG(DEBUG, "Rebuild dev cache[] %p", (void *)share_cache); 529 /* Flush cache to rebuild. */ 530 share_cache->cache.len = 1; 531 share_cache->cache.overflow = 0; 532 /* Iterate all the existing MRs. */ 533 LIST_FOREACH(mr, &share_cache->mr_list, mr) 534 if (mlx5_mr_insert_cache(share_cache, mr) < 0) 535 return; 536 } 537 538 /** 539 * Release resources of detached MR having no online entry. 540 * 541 * @param share_cache 542 * Pointer to a global shared MR cache. 543 */ 544 static void 545 mlx5_mr_garbage_collect(struct mlx5_mr_share_cache *share_cache) 546 { 547 struct mlx5_mr *mr_next; 548 struct mlx5_mr_list free_list = LIST_HEAD_INITIALIZER(free_list); 549 550 /* Must be called from the primary process. */ 551 MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY); 552 /* 553 * MR can't be freed with holding the lock because rte_free() could call 554 * memory free callback function. This will be a deadlock situation. 555 */ 556 rte_rwlock_write_lock(&share_cache->rwlock); 557 /* Detach the whole free list and release it after unlocking. */ 558 free_list = share_cache->mr_free_list; 559 LIST_INIT(&share_cache->mr_free_list); 560 rte_rwlock_write_unlock(&share_cache->rwlock); 561 /* Release resources. */ 562 mr_next = LIST_FIRST(&free_list); 563 while (mr_next != NULL) { 564 struct mlx5_mr *mr = mr_next; 565 566 mr_next = LIST_NEXT(mr, mr); 567 mlx5_mr_free(mr, share_cache->dereg_mr_cb); 568 } 569 } 570 571 /* Called during rte_memseg_contig_walk() by mlx5_mr_create(). */ 572 static int 573 mr_find_contig_memsegs_cb(const struct rte_memseg_list *msl, 574 const struct rte_memseg *ms, size_t len, void *arg) 575 { 576 struct mr_find_contig_memsegs_data *data = arg; 577 578 if (data->addr < ms->addr_64 || data->addr >= ms->addr_64 + len) 579 return 0; 580 /* Found, save it and stop walking. */ 581 data->start = ms->addr_64; 582 data->end = ms->addr_64 + len; 583 data->msl = msl; 584 return 1; 585 } 586 587 /** 588 * Create a new global Memory Region (MR) for a missing virtual address. 589 * This API should be called on a secondary process, then a request is sent to 590 * the primary process in order to create a MR for the address. As the global MR 591 * list is on the shared memory, following LKey lookup should succeed unless the 592 * request fails. 593 * 594 * @param pd 595 * Pointer to pd of a device (net, regex, vdpa,...). 596 * @param mp_id 597 * Multi-process identifier, may be NULL for the primary process. 598 * @param share_cache 599 * Pointer to a global shared MR cache. 600 * @param[out] entry 601 * Pointer to returning MR cache entry, found in the global cache or newly 602 * created. If failed to create one, this will not be updated. 603 * @param addr 604 * Target virtual address to register. 605 * @param mr_ext_memseg_en 606 * Configurable flag about external memory segment enable or not. 607 * 608 * @return 609 * Searched LKey on success, UINT32_MAX on failure and rte_errno is set. 610 */ 611 static uint32_t 612 mlx5_mr_create_secondary(void *pd __rte_unused, 613 struct mlx5_mp_id *mp_id, 614 struct mlx5_mr_share_cache *share_cache, 615 struct mr_cache_entry *entry, uintptr_t addr, 616 unsigned int mr_ext_memseg_en __rte_unused) 617 { 618 int ret; 619 620 if (mp_id == NULL) { 621 rte_errno = EINVAL; 622 return UINT32_MAX; 623 } 624 DRV_LOG(DEBUG, "port %u requesting MR creation for address (%p)", 625 mp_id->port_id, (void *)addr); 626 ret = mlx5_mp_req_mr_create(mp_id, addr); 627 if (ret) { 628 DRV_LOG(DEBUG, "Fail to request MR creation for address (%p)", 629 (void *)addr); 630 return UINT32_MAX; 631 } 632 rte_rwlock_read_lock(&share_cache->rwlock); 633 /* Fill in output data. */ 634 mlx5_mr_lookup_cache(share_cache, entry, addr); 635 /* Lookup can't fail. */ 636 MLX5_ASSERT(entry->lkey != UINT32_MAX); 637 rte_rwlock_read_unlock(&share_cache->rwlock); 638 DRV_LOG(DEBUG, "MR CREATED by primary process for %p:\n" 639 " [0x%" PRIxPTR ", 0x%" PRIxPTR "), lkey=0x%x", 640 (void *)addr, entry->start, entry->end, entry->lkey); 641 return entry->lkey; 642 } 643 644 /** 645 * Create a new global Memory Region (MR) for a missing virtual address. 646 * Register entire virtually contiguous memory chunk around the address. 647 * 648 * @param pd 649 * Pointer to pd of a device (net, regex, vdpa,...). 650 * @param share_cache 651 * Pointer to a global shared MR cache. 652 * @param[out] entry 653 * Pointer to returning MR cache entry, found in the global cache or newly 654 * created. If failed to create one, this will not be updated. 655 * @param addr 656 * Target virtual address to register. 657 * @param mr_ext_memseg_en 658 * Configurable flag about external memory segment enable or not. 659 * 660 * @return 661 * Searched LKey on success, UINT32_MAX on failure and rte_errno is set. 662 */ 663 uint32_t 664 mlx5_mr_create_primary(void *pd, 665 struct mlx5_mr_share_cache *share_cache, 666 struct mr_cache_entry *entry, uintptr_t addr, 667 unsigned int mr_ext_memseg_en) 668 { 669 struct mr_find_contig_memsegs_data data = {.addr = addr, }; 670 struct mr_find_contig_memsegs_data data_re; 671 const struct rte_memseg_list *msl; 672 const struct rte_memseg *ms; 673 struct mlx5_mr *mr = NULL; 674 int ms_idx_shift = -1; 675 uint32_t bmp_size; 676 void *bmp_mem; 677 uint32_t ms_n; 678 uint32_t n; 679 size_t len; 680 681 DRV_LOG(DEBUG, "Creating a MR using address (%p)", (void *)addr); 682 /* 683 * Release detached MRs if any. This can't be called with holding either 684 * memory_hotplug_lock or share_cache->rwlock. MRs on the free list have 685 * been detached by the memory free event but it couldn't be released 686 * inside the callback due to deadlock. As a result, releasing resources 687 * is quite opportunistic. 688 */ 689 mlx5_mr_garbage_collect(share_cache); 690 /* 691 * If enabled, find out a contiguous virtual address chunk in use, to 692 * which the given address belongs, in order to register maximum range. 693 * In the best case where mempools are not dynamically recreated and 694 * '--socket-mem' is specified as an EAL option, it is very likely to 695 * have only one MR(LKey) per a socket and per a hugepage-size even 696 * though the system memory is highly fragmented. As the whole memory 697 * chunk will be pinned by kernel, it can't be reused unless entire 698 * chunk is freed from EAL. 699 * 700 * If disabled, just register one memseg (page). Then, memory 701 * consumption will be minimized but it may drop performance if there 702 * are many MRs to lookup on the datapath. 703 */ 704 if (!mr_ext_memseg_en) { 705 data.msl = rte_mem_virt2memseg_list((void *)addr); 706 data.start = RTE_ALIGN_FLOOR(addr, data.msl->page_sz); 707 data.end = data.start + data.msl->page_sz; 708 } else if (!rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data)) { 709 DRV_LOG(WARNING, 710 "Unable to find virtually contiguous" 711 " chunk for address (%p)." 712 " rte_memseg_contig_walk() failed.", (void *)addr); 713 rte_errno = ENXIO; 714 goto err_nolock; 715 } 716 alloc_resources: 717 /* Addresses must be page-aligned. */ 718 MLX5_ASSERT(data.msl); 719 MLX5_ASSERT(rte_is_aligned((void *)data.start, data.msl->page_sz)); 720 MLX5_ASSERT(rte_is_aligned((void *)data.end, data.msl->page_sz)); 721 msl = data.msl; 722 ms = rte_mem_virt2memseg((void *)data.start, msl); 723 len = data.end - data.start; 724 MLX5_ASSERT(ms); 725 MLX5_ASSERT(msl->page_sz == ms->hugepage_sz); 726 /* Number of memsegs in the range. */ 727 ms_n = len / msl->page_sz; 728 DRV_LOG(DEBUG, "Extending %p to [0x%" PRIxPTR ", 0x%" PRIxPTR ")," 729 " page_sz=0x%" PRIx64 ", ms_n=%u", 730 (void *)addr, data.start, data.end, msl->page_sz, ms_n); 731 /* Size of memory for bitmap. */ 732 bmp_size = rte_bitmap_get_memory_footprint(ms_n); 733 mr = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, 734 RTE_ALIGN_CEIL(sizeof(*mr), RTE_CACHE_LINE_SIZE) + 735 bmp_size, RTE_CACHE_LINE_SIZE, msl->socket_id); 736 if (mr == NULL) { 737 DRV_LOG(DEBUG, "Unable to allocate memory for a new MR of" 738 " address (%p).", (void *)addr); 739 rte_errno = ENOMEM; 740 goto err_nolock; 741 } 742 mr->msl = msl; 743 /* 744 * Save the index of the first memseg and initialize memseg bitmap. To 745 * see if a memseg of ms_idx in the memseg-list is still valid, check: 746 * rte_bitmap_get(mr->bmp, ms_idx - mr->ms_base_idx) 747 */ 748 mr->ms_base_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms); 749 bmp_mem = RTE_PTR_ALIGN_CEIL(mr + 1, RTE_CACHE_LINE_SIZE); 750 mr->ms_bmp = rte_bitmap_init(ms_n, bmp_mem, bmp_size); 751 if (mr->ms_bmp == NULL) { 752 DRV_LOG(DEBUG, "Unable to initialize bitmap for a new MR of" 753 " address (%p).", (void *)addr); 754 rte_errno = EINVAL; 755 goto err_nolock; 756 } 757 /* 758 * Should recheck whether the extended contiguous chunk is still valid. 759 * Because memory_hotplug_lock can't be held if there's any memory 760 * related calls in a critical path, resource allocation above can't be 761 * locked. If the memory has been changed at this point, try again with 762 * just single page. If not, go on with the big chunk atomically from 763 * here. 764 */ 765 rte_mcfg_mem_read_lock(); 766 data_re = data; 767 if (len > msl->page_sz && 768 !rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data_re)) { 769 DRV_LOG(DEBUG, 770 "Unable to find virtually contiguous chunk for address " 771 "(%p). rte_memseg_contig_walk() failed.", (void *)addr); 772 rte_errno = ENXIO; 773 goto err_memlock; 774 } 775 if (data.start != data_re.start || data.end != data_re.end) { 776 /* 777 * The extended contiguous chunk has been changed. Try again 778 * with single memseg instead. 779 */ 780 data.start = RTE_ALIGN_FLOOR(addr, msl->page_sz); 781 data.end = data.start + msl->page_sz; 782 rte_mcfg_mem_read_unlock(); 783 mlx5_mr_free(mr, share_cache->dereg_mr_cb); 784 goto alloc_resources; 785 } 786 MLX5_ASSERT(data.msl == data_re.msl); 787 rte_rwlock_write_lock(&share_cache->rwlock); 788 /* 789 * Check the address is really missing. If other thread already created 790 * one or it is not found due to overflow, abort and return. 791 */ 792 if (mlx5_mr_lookup_cache(share_cache, entry, addr) != UINT32_MAX) { 793 /* 794 * Insert to the global cache table. It may fail due to 795 * low-on-memory. Then, this entry will have to be searched 796 * here again. 797 */ 798 mr_btree_insert(&share_cache->cache, entry); 799 DRV_LOG(DEBUG, "Found MR for %p on final lookup, abort", 800 (void *)addr); 801 rte_rwlock_write_unlock(&share_cache->rwlock); 802 rte_mcfg_mem_read_unlock(); 803 /* 804 * Must be unlocked before calling rte_free() because 805 * mlx5_mr_mem_event_free_cb() can be called inside. 806 */ 807 mlx5_mr_free(mr, share_cache->dereg_mr_cb); 808 return entry->lkey; 809 } 810 /* 811 * Trim start and end addresses for verbs MR. Set bits for registering 812 * memsegs but exclude already registered ones. Bitmap can be 813 * fragmented. 814 */ 815 for (n = 0; n < ms_n; ++n) { 816 uintptr_t start; 817 struct mr_cache_entry ret; 818 819 memset(&ret, 0, sizeof(ret)); 820 start = data_re.start + n * msl->page_sz; 821 /* Exclude memsegs already registered by other MRs. */ 822 if (mlx5_mr_lookup_cache(share_cache, &ret, start) == 823 UINT32_MAX) { 824 /* 825 * Start from the first unregistered memseg in the 826 * extended range. 827 */ 828 if (ms_idx_shift == -1) { 829 mr->ms_base_idx += n; 830 data.start = start; 831 ms_idx_shift = n; 832 } 833 data.end = start + msl->page_sz; 834 rte_bitmap_set(mr->ms_bmp, n - ms_idx_shift); 835 ++mr->ms_n; 836 } 837 } 838 len = data.end - data.start; 839 mr->ms_bmp_n = len / msl->page_sz; 840 MLX5_ASSERT(ms_idx_shift + mr->ms_bmp_n <= ms_n); 841 /* 842 * Finally create an MR for the memory chunk. Verbs: ibv_reg_mr() can 843 * be called with holding the memory lock because it doesn't use 844 * mlx5_alloc_buf_extern() which eventually calls rte_malloc_socket() 845 * through mlx5_alloc_verbs_buf(). 846 */ 847 share_cache->reg_mr_cb(pd, (void *)data.start, len, &mr->pmd_mr); 848 if (mr->pmd_mr.obj == NULL) { 849 DRV_LOG(DEBUG, "Fail to create an MR for address (%p)", 850 (void *)addr); 851 rte_errno = EINVAL; 852 goto err_mrlock; 853 } 854 MLX5_ASSERT((uintptr_t)mr->pmd_mr.addr == data.start); 855 MLX5_ASSERT(mr->pmd_mr.len); 856 LIST_INSERT_HEAD(&share_cache->mr_list, mr, mr); 857 DRV_LOG(DEBUG, "MR CREATED (%p) for %p:\n" 858 " [0x%" PRIxPTR ", 0x%" PRIxPTR ")," 859 " lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u", 860 (void *)mr, (void *)addr, data.start, data.end, 861 rte_cpu_to_be_32(mr->pmd_mr.lkey), 862 mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n); 863 /* Insert to the global cache table. */ 864 mlx5_mr_insert_cache(share_cache, mr); 865 /* Fill in output data. */ 866 mlx5_mr_lookup_cache(share_cache, entry, addr); 867 /* Lookup can't fail. */ 868 MLX5_ASSERT(entry->lkey != UINT32_MAX); 869 rte_rwlock_write_unlock(&share_cache->rwlock); 870 rte_mcfg_mem_read_unlock(); 871 return entry->lkey; 872 err_mrlock: 873 rte_rwlock_write_unlock(&share_cache->rwlock); 874 err_memlock: 875 rte_mcfg_mem_read_unlock(); 876 err_nolock: 877 /* 878 * In case of error, as this can be called in a datapath, a warning 879 * message per an error is preferable instead. Must be unlocked before 880 * calling rte_free() because mlx5_mr_mem_event_free_cb() can be called 881 * inside. 882 */ 883 mlx5_mr_free(mr, share_cache->dereg_mr_cb); 884 return UINT32_MAX; 885 } 886 887 /** 888 * Create a new global Memory Region (MR) for a missing virtual address. 889 * This can be called from primary and secondary process. 890 * 891 * @param pd 892 * Pointer to pd handle of a device (net, regex, vdpa,...). 893 * @param mp_id 894 * Multi-process identifier, may be NULL for the primary process. 895 * @param share_cache 896 * Pointer to a global shared MR cache. 897 * @param[out] entry 898 * Pointer to returning MR cache entry, found in the global cache or newly 899 * created. If failed to create one, this will not be updated. 900 * @param addr 901 * Target virtual address to register. 902 * @param mr_ext_memseg_en 903 * Configurable flag about external memory segment enable or not. 904 * 905 * @return 906 * Searched LKey on success, UINT32_MAX on failure and rte_errno is set. 907 */ 908 static uint32_t 909 mlx5_mr_create(void *pd, struct mlx5_mp_id *mp_id, 910 struct mlx5_mr_share_cache *share_cache, 911 struct mr_cache_entry *entry, uintptr_t addr, 912 unsigned int mr_ext_memseg_en) 913 { 914 uint32_t ret = 0; 915 916 switch (rte_eal_process_type()) { 917 case RTE_PROC_PRIMARY: 918 ret = mlx5_mr_create_primary(pd, share_cache, entry, 919 addr, mr_ext_memseg_en); 920 break; 921 case RTE_PROC_SECONDARY: 922 ret = mlx5_mr_create_secondary(pd, mp_id, share_cache, entry, 923 addr, mr_ext_memseg_en); 924 break; 925 default: 926 break; 927 } 928 return ret; 929 } 930 931 /** 932 * Look up address in the global MR cache table. If not found, create a new MR. 933 * Insert the found/created entry to local bottom-half cache table. 934 * 935 * @param pd 936 * Pointer to pd of a device (net, regex, vdpa,...). 937 * @param mp_id 938 * Multi-process identifier, may be NULL for the primary process. 939 * @param share_cache 940 * Pointer to a global shared MR cache. 941 * @param mr_ctrl 942 * Pointer to per-queue MR control structure. 943 * @param[out] entry 944 * Pointer to returning MR cache entry, found in the global cache or newly 945 * created. If failed to create one, this is not written. 946 * @param addr 947 * Search key. 948 * @param mr_ext_memseg_en 949 * Configurable flag about external memory segment enable or not. 950 * 951 * @return 952 * Searched LKey on success, UINT32_MAX on no match. 953 */ 954 static uint32_t 955 mr_lookup_caches(void *pd, struct mlx5_mp_id *mp_id, 956 struct mlx5_mr_share_cache *share_cache, 957 struct mlx5_mr_ctrl *mr_ctrl, 958 struct mr_cache_entry *entry, uintptr_t addr, 959 unsigned int mr_ext_memseg_en) 960 { 961 struct mlx5_mr_btree *bt = &mr_ctrl->cache_bh; 962 uint32_t lkey; 963 uint16_t idx; 964 965 /* If local cache table is full, try to double it. */ 966 if (unlikely(bt->len == bt->size)) 967 mr_btree_expand(bt, bt->size << 1); 968 /* Look up in the global cache. */ 969 rte_rwlock_read_lock(&share_cache->rwlock); 970 lkey = mr_btree_lookup(&share_cache->cache, &idx, addr); 971 if (lkey != UINT32_MAX) { 972 /* Found. */ 973 *entry = (*share_cache->cache.table)[idx]; 974 rte_rwlock_read_unlock(&share_cache->rwlock); 975 /* 976 * Update local cache. Even if it fails, return the found entry 977 * to update top-half cache. Next time, this entry will be found 978 * in the global cache. 979 */ 980 mr_btree_insert(bt, entry); 981 return lkey; 982 } 983 rte_rwlock_read_unlock(&share_cache->rwlock); 984 /* First time to see the address? Create a new MR. */ 985 lkey = mlx5_mr_create(pd, mp_id, share_cache, entry, addr, 986 mr_ext_memseg_en); 987 /* 988 * Update the local cache if successfully created a new global MR. Even 989 * if failed to create one, there's no action to take in this datapath 990 * code. As returning LKey is invalid, this will eventually make HW 991 * fail. 992 */ 993 if (lkey != UINT32_MAX) 994 mr_btree_insert(bt, entry); 995 return lkey; 996 } 997 998 /** 999 * Bottom-half of LKey search on datapath. First search in cache_bh[] and if 1000 * misses, search in the global MR cache table and update the new entry to 1001 * per-queue local caches. 1002 * 1003 * @param pd 1004 * Pointer to pd of a device (net, regex, vdpa,...). 1005 * @param mp_id 1006 * Multi-process identifier, may be NULL for the primary process. 1007 * @param share_cache 1008 * Pointer to a global shared MR cache. 1009 * @param mr_ctrl 1010 * Pointer to per-queue MR control structure. 1011 * @param addr 1012 * Search key. 1013 * @param mr_ext_memseg_en 1014 * Configurable flag about external memory segment enable or not. 1015 * 1016 * @return 1017 * Searched LKey on success, UINT32_MAX on no match. 1018 */ 1019 static uint32_t 1020 mlx5_mr_addr2mr_bh(void *pd, struct mlx5_mp_id *mp_id, 1021 struct mlx5_mr_share_cache *share_cache, 1022 struct mlx5_mr_ctrl *mr_ctrl, uintptr_t addr, 1023 unsigned int mr_ext_memseg_en) 1024 { 1025 uint32_t lkey; 1026 uint16_t bh_idx = 0; 1027 /* Victim in top-half cache to replace with new entry. */ 1028 struct mr_cache_entry *repl = &mr_ctrl->cache[mr_ctrl->head]; 1029 1030 /* Binary-search MR translation table. */ 1031 lkey = mr_btree_lookup(&mr_ctrl->cache_bh, &bh_idx, addr); 1032 /* Update top-half cache. */ 1033 if (likely(lkey != UINT32_MAX)) { 1034 *repl = (*mr_ctrl->cache_bh.table)[bh_idx]; 1035 } else { 1036 /* 1037 * If missed in local lookup table, search in the global cache 1038 * and local cache_bh[] will be updated inside if possible. 1039 * Top-half cache entry will also be updated. 1040 */ 1041 lkey = mr_lookup_caches(pd, mp_id, share_cache, mr_ctrl, 1042 repl, addr, mr_ext_memseg_en); 1043 if (unlikely(lkey == UINT32_MAX)) 1044 return UINT32_MAX; 1045 } 1046 /* Update the most recently used entry. */ 1047 mr_ctrl->mru = mr_ctrl->head; 1048 /* Point to the next victim, the oldest. */ 1049 mr_ctrl->head = (mr_ctrl->head + 1) % MLX5_MR_CACHE_N; 1050 return lkey; 1051 } 1052 1053 /** 1054 * Release all the created MRs and resources on global MR cache of a device 1055 * list. 1056 * 1057 * @param share_cache 1058 * Pointer to a global shared MR cache. 1059 */ 1060 void 1061 mlx5_mr_release_cache(struct mlx5_mr_share_cache *share_cache) 1062 { 1063 struct mlx5_mr *mr_next; 1064 1065 rte_rwlock_write_lock(&share_cache->rwlock); 1066 /* Detach from MR list and move to free list. */ 1067 mr_next = LIST_FIRST(&share_cache->mr_list); 1068 while (mr_next != NULL) { 1069 struct mlx5_mr *mr = mr_next; 1070 1071 mr_next = LIST_NEXT(mr, mr); 1072 LIST_REMOVE(mr, mr); 1073 LIST_INSERT_HEAD(&share_cache->mr_free_list, mr, mr); 1074 } 1075 LIST_INIT(&share_cache->mr_list); 1076 /* Free global cache. */ 1077 mlx5_mr_btree_free(&share_cache->cache); 1078 rte_rwlock_write_unlock(&share_cache->rwlock); 1079 /* Free all remaining MRs. */ 1080 mlx5_mr_garbage_collect(share_cache); 1081 } 1082 1083 /** 1084 * Initialize global MR cache of a device. 1085 * 1086 * @param share_cache 1087 * Pointer to a global shared MR cache. 1088 * @param socket 1089 * NUMA socket on which memory must be allocated. 1090 * 1091 * @return 1092 * 0 on success, a negative errno value otherwise and rte_errno is set. 1093 */ 1094 int 1095 mlx5_mr_create_cache(struct mlx5_mr_share_cache *share_cache, int socket) 1096 { 1097 /* Set the reg_mr and dereg_mr callback functions */ 1098 mlx5_os_set_reg_mr_cb(&share_cache->reg_mr_cb, 1099 &share_cache->dereg_mr_cb); 1100 rte_rwlock_init(&share_cache->rwlock); 1101 rte_rwlock_init(&share_cache->mprwlock); 1102 share_cache->mp_cb_registered = 0; 1103 /* Initialize B-tree and allocate memory for global MR cache table. */ 1104 return mlx5_mr_btree_init(&share_cache->cache, 1105 MLX5_MR_BTREE_CACHE_N * 2, socket); 1106 } 1107 1108 /** 1109 * Flush all of the local cache entries. 1110 * 1111 * @param mr_ctrl 1112 * Pointer to per-queue MR local cache. 1113 */ 1114 void 1115 mlx5_mr_flush_local_cache(struct mlx5_mr_ctrl *mr_ctrl) 1116 { 1117 /* Reset the most-recently-used index. */ 1118 mr_ctrl->mru = 0; 1119 /* Reset the linear search array. */ 1120 mr_ctrl->head = 0; 1121 memset(mr_ctrl->cache, 0, sizeof(mr_ctrl->cache)); 1122 /* Reset the B-tree table. */ 1123 mr_ctrl->cache_bh.len = 1; 1124 mr_ctrl->cache_bh.overflow = 0; 1125 /* Update the generation number. */ 1126 mr_ctrl->cur_gen = *mr_ctrl->dev_gen_ptr; 1127 DRV_LOG(DEBUG, "mr_ctrl(%p): flushed, cur_gen=%d", 1128 (void *)mr_ctrl, mr_ctrl->cur_gen); 1129 } 1130 1131 /** 1132 * Creates a memory region for external memory, that is memory which is not 1133 * part of the DPDK memory segments. 1134 * 1135 * @param pd 1136 * Pointer to pd of a device (net, regex, vdpa,...). 1137 * @param addr 1138 * Starting virtual address of memory. 1139 * @param len 1140 * Length of memory segment being mapped. 1141 * @param socked_id 1142 * Socket to allocate heap memory for the control structures. 1143 * 1144 * @return 1145 * Pointer to MR structure on success, NULL otherwise. 1146 */ 1147 struct mlx5_mr * 1148 mlx5_create_mr_ext(void *pd, uintptr_t addr, size_t len, int socket_id, 1149 mlx5_reg_mr_t reg_mr_cb) 1150 { 1151 struct mlx5_mr *mr = NULL; 1152 1153 mr = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, 1154 RTE_ALIGN_CEIL(sizeof(*mr), RTE_CACHE_LINE_SIZE), 1155 RTE_CACHE_LINE_SIZE, socket_id); 1156 if (mr == NULL) 1157 return NULL; 1158 reg_mr_cb(pd, (void *)addr, len, &mr->pmd_mr); 1159 if (mr->pmd_mr.obj == NULL) { 1160 DRV_LOG(WARNING, 1161 "Fail to create MR for address (%p)", 1162 (void *)addr); 1163 mlx5_free(mr); 1164 return NULL; 1165 } 1166 mr->msl = NULL; /* Mark it is external memory. */ 1167 mr->ms_bmp = NULL; 1168 mr->ms_n = 1; 1169 mr->ms_bmp_n = 1; 1170 DRV_LOG(DEBUG, 1171 "MR CREATED (%p) for external memory %p:\n" 1172 " [0x%" PRIxPTR ", 0x%" PRIxPTR ")," 1173 " lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u", 1174 (void *)mr, (void *)addr, 1175 addr, addr + len, rte_cpu_to_be_32(mr->pmd_mr.lkey), 1176 mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n); 1177 return mr; 1178 } 1179 1180 /** 1181 * Callback for memory free event. Iterate freed memsegs and check whether it 1182 * belongs to an existing MR. If found, clear the bit from bitmap of MR. As a 1183 * result, the MR would be fragmented. If it becomes empty, the MR will be freed 1184 * later by mlx5_mr_garbage_collect(). Even if this callback is called from a 1185 * secondary process, the garbage collector will be called in primary process 1186 * as the secondary process can't call mlx5_mr_create(). 1187 * 1188 * The global cache must be rebuilt if there's any change and this event has to 1189 * be propagated to dataplane threads to flush the local caches. 1190 * 1191 * @param share_cache 1192 * Pointer to a global shared MR cache. 1193 * @param ibdev_name 1194 * Name of ibv device. 1195 * @param addr 1196 * Address of freed memory. 1197 * @param len 1198 * Size of freed memory. 1199 */ 1200 void 1201 mlx5_free_mr_by_addr(struct mlx5_mr_share_cache *share_cache, 1202 const char *ibdev_name, const void *addr, size_t len) 1203 { 1204 const struct rte_memseg_list *msl; 1205 struct mlx5_mr *mr; 1206 int ms_n; 1207 int i; 1208 int rebuild = 0; 1209 1210 DRV_LOG(DEBUG, "device %s free callback: addr=%p, len=%zu", 1211 ibdev_name, addr, len); 1212 msl = rte_mem_virt2memseg_list(addr); 1213 /* addr and len must be page-aligned. */ 1214 MLX5_ASSERT((uintptr_t)addr == 1215 RTE_ALIGN((uintptr_t)addr, msl->page_sz)); 1216 MLX5_ASSERT(len == RTE_ALIGN(len, msl->page_sz)); 1217 ms_n = len / msl->page_sz; 1218 rte_rwlock_write_lock(&share_cache->rwlock); 1219 /* Clear bits of freed memsegs from MR. */ 1220 for (i = 0; i < ms_n; ++i) { 1221 const struct rte_memseg *ms; 1222 struct mr_cache_entry entry; 1223 uintptr_t start; 1224 int ms_idx; 1225 uint32_t pos; 1226 1227 /* Find MR having this memseg. */ 1228 start = (uintptr_t)addr + i * msl->page_sz; 1229 mr = mlx5_mr_lookup_list(share_cache, &entry, start); 1230 if (mr == NULL) 1231 continue; 1232 MLX5_ASSERT(mr->msl); /* Can't be external memory. */ 1233 ms = rte_mem_virt2memseg((void *)start, msl); 1234 MLX5_ASSERT(ms != NULL); 1235 MLX5_ASSERT(msl->page_sz == ms->hugepage_sz); 1236 ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms); 1237 pos = ms_idx - mr->ms_base_idx; 1238 MLX5_ASSERT(rte_bitmap_get(mr->ms_bmp, pos)); 1239 MLX5_ASSERT(pos < mr->ms_bmp_n); 1240 DRV_LOG(DEBUG, "device %s MR(%p): clear bitmap[%u] for addr %p", 1241 ibdev_name, (void *)mr, pos, (void *)start); 1242 rte_bitmap_clear(mr->ms_bmp, pos); 1243 if (--mr->ms_n == 0) { 1244 LIST_REMOVE(mr, mr); 1245 LIST_INSERT_HEAD(&share_cache->mr_free_list, mr, mr); 1246 DRV_LOG(DEBUG, "device %s remove MR(%p) from list", 1247 ibdev_name, (void *)mr); 1248 } 1249 /* 1250 * MR is fragmented or will be freed. the global cache must be 1251 * rebuilt. 1252 */ 1253 rebuild = 1; 1254 } 1255 if (rebuild) { 1256 mlx5_mr_rebuild_cache(share_cache); 1257 /* 1258 * No explicit wmb is needed after updating dev_gen due to 1259 * store-release ordering in unlock that provides the 1260 * implicit barrier at the software visible level. 1261 */ 1262 ++share_cache->dev_gen; 1263 DRV_LOG(DEBUG, "broadcasting local cache flush, gen=%d", 1264 share_cache->dev_gen); 1265 } 1266 rte_rwlock_write_unlock(&share_cache->rwlock); 1267 } 1268 1269 /** 1270 * Dump all the created MRs and the global cache entries. 1271 * 1272 * @param share_cache 1273 * Pointer to a global shared MR cache. 1274 */ 1275 void 1276 mlx5_mr_dump_cache(struct mlx5_mr_share_cache *share_cache __rte_unused) 1277 { 1278 #ifdef RTE_LIBRTE_MLX5_DEBUG 1279 struct mlx5_mr *mr; 1280 int mr_n = 0; 1281 int chunk_n = 0; 1282 1283 rte_rwlock_read_lock(&share_cache->rwlock); 1284 /* Iterate all the existing MRs. */ 1285 LIST_FOREACH(mr, &share_cache->mr_list, mr) { 1286 unsigned int n; 1287 1288 DRV_LOG(DEBUG, "MR[%u], LKey = 0x%x, ms_n = %u, ms_bmp_n = %u", 1289 mr_n++, rte_cpu_to_be_32(mr->pmd_mr.lkey), 1290 mr->ms_n, mr->ms_bmp_n); 1291 if (mr->ms_n == 0) 1292 continue; 1293 for (n = 0; n < mr->ms_bmp_n; ) { 1294 struct mr_cache_entry ret = { 0, }; 1295 1296 n = mr_find_next_chunk(mr, &ret, n); 1297 if (!ret.end) 1298 break; 1299 DRV_LOG(DEBUG, 1300 " chunk[%u], [0x%" PRIxPTR ", 0x%" PRIxPTR ")", 1301 chunk_n++, ret.start, ret.end); 1302 } 1303 } 1304 DRV_LOG(DEBUG, "Dumping global cache %p", (void *)share_cache); 1305 mlx5_mr_btree_dump(&share_cache->cache); 1306 rte_rwlock_read_unlock(&share_cache->rwlock); 1307 #endif 1308 } 1309 1310 static int 1311 mlx5_range_compare_start(const void *lhs, const void *rhs) 1312 { 1313 const struct mlx5_range *r1 = lhs, *r2 = rhs; 1314 1315 if (r1->start > r2->start) 1316 return 1; 1317 else if (r1->start < r2->start) 1318 return -1; 1319 return 0; 1320 } 1321 1322 static void 1323 mlx5_range_from_mempool_chunk(struct rte_mempool *mp, void *opaque, 1324 struct rte_mempool_memhdr *memhdr, 1325 unsigned int idx) 1326 { 1327 struct mlx5_range *ranges = opaque, *range = &ranges[idx]; 1328 uint64_t page_size = rte_mem_page_size(); 1329 1330 RTE_SET_USED(mp); 1331 range->start = RTE_ALIGN_FLOOR((uintptr_t)memhdr->addr, page_size); 1332 range->end = RTE_ALIGN_CEIL(range->start + memhdr->len, page_size); 1333 } 1334 1335 /** 1336 * Get VA-contiguous ranges of the mempool memory. 1337 * Each range start and end is aligned to the system page size. 1338 * 1339 * @param[in] mp 1340 * Analyzed mempool. 1341 * @param[out] out 1342 * Receives the ranges, caller must release it with free(). 1343 * @param[out] ount_n 1344 * Receives the number of @p out elements. 1345 * 1346 * @return 1347 * 0 on success, (-1) on failure. 1348 */ 1349 static int 1350 mlx5_get_mempool_ranges(struct rte_mempool *mp, struct mlx5_range **out, 1351 unsigned int *out_n) 1352 { 1353 struct mlx5_range *chunks; 1354 unsigned int chunks_n = mp->nb_mem_chunks, contig_n, i; 1355 1356 /* Collect page-aligned memory ranges of the mempool. */ 1357 chunks = calloc(sizeof(chunks[0]), chunks_n); 1358 if (chunks == NULL) 1359 return -1; 1360 rte_mempool_mem_iter(mp, mlx5_range_from_mempool_chunk, chunks); 1361 /* Merge adjacent chunks and place them at the beginning. */ 1362 qsort(chunks, chunks_n, sizeof(chunks[0]), mlx5_range_compare_start); 1363 contig_n = 1; 1364 for (i = 1; i < chunks_n; i++) 1365 if (chunks[i - 1].end != chunks[i].start) { 1366 chunks[contig_n - 1].end = chunks[i - 1].end; 1367 chunks[contig_n] = chunks[i]; 1368 contig_n++; 1369 } 1370 /* Extend the last contiguous chunk to the end of the mempool. */ 1371 chunks[contig_n - 1].end = chunks[i - 1].end; 1372 *out = chunks; 1373 *out_n = contig_n; 1374 return 0; 1375 } 1376 1377 /** 1378 * Analyze mempool memory to select memory ranges to register. 1379 * 1380 * @param[in] mp 1381 * Mempool to analyze. 1382 * @param[out] out 1383 * Receives memory ranges to register, aligned to the system page size. 1384 * The caller must release them with free(). 1385 * @param[out] out_n 1386 * Receives the number of @p out items. 1387 * @param[out] share_hugepage 1388 * Receives True if the entire pool resides within a single hugepage. 1389 * 1390 * @return 1391 * 0 on success, (-1) on failure. 1392 */ 1393 static int 1394 mlx5_mempool_reg_analyze(struct rte_mempool *mp, struct mlx5_range **out, 1395 unsigned int *out_n, bool *share_hugepage) 1396 { 1397 struct mlx5_range *ranges = NULL; 1398 unsigned int i, ranges_n = 0; 1399 struct rte_memseg_list *msl; 1400 1401 if (mlx5_get_mempool_ranges(mp, &ranges, &ranges_n) < 0) { 1402 DRV_LOG(ERR, "Cannot get address ranges for mempool %s", 1403 mp->name); 1404 return -1; 1405 } 1406 /* Check if the hugepage of the pool can be shared. */ 1407 *share_hugepage = false; 1408 msl = rte_mem_virt2memseg_list((void *)ranges[0].start); 1409 if (msl != NULL) { 1410 uint64_t hugepage_sz = 0; 1411 1412 /* Check that all ranges are on pages of the same size. */ 1413 for (i = 0; i < ranges_n; i++) { 1414 if (hugepage_sz != 0 && hugepage_sz != msl->page_sz) 1415 break; 1416 hugepage_sz = msl->page_sz; 1417 } 1418 if (i == ranges_n) { 1419 /* 1420 * If the entire pool is within one hugepage, 1421 * combine all ranges into one of the hugepage size. 1422 */ 1423 uintptr_t reg_start = ranges[0].start; 1424 uintptr_t reg_end = ranges[ranges_n - 1].end; 1425 uintptr_t hugepage_start = 1426 RTE_ALIGN_FLOOR(reg_start, hugepage_sz); 1427 uintptr_t hugepage_end = hugepage_start + hugepage_sz; 1428 if (reg_end < hugepage_end) { 1429 ranges[0].start = hugepage_start; 1430 ranges[0].end = hugepage_end; 1431 ranges_n = 1; 1432 *share_hugepage = true; 1433 } 1434 } 1435 } 1436 *out = ranges; 1437 *out_n = ranges_n; 1438 return 0; 1439 } 1440 1441 /** Create a registration object for the mempool. */ 1442 static struct mlx5_mempool_reg * 1443 mlx5_mempool_reg_create(struct rte_mempool *mp, unsigned int mrs_n) 1444 { 1445 struct mlx5_mempool_reg *mpr = NULL; 1446 1447 mpr = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, 1448 sizeof(*mpr) + mrs_n * sizeof(mpr->mrs[0]), 1449 RTE_CACHE_LINE_SIZE, SOCKET_ID_ANY); 1450 if (mpr == NULL) { 1451 DRV_LOG(ERR, "Cannot allocate mempool %s registration object", 1452 mp->name); 1453 return NULL; 1454 } 1455 mpr->mp = mp; 1456 mpr->mrs = (struct mlx5_mempool_mr *)(mpr + 1); 1457 mpr->mrs_n = mrs_n; 1458 return mpr; 1459 } 1460 1461 /** 1462 * Destroy a mempool registration object. 1463 * 1464 * @param standalone 1465 * Whether @p mpr owns its MRs excludively, i.e. they are not shared. 1466 */ 1467 static void 1468 mlx5_mempool_reg_destroy(struct mlx5_mr_share_cache *share_cache, 1469 struct mlx5_mempool_reg *mpr, bool standalone) 1470 { 1471 if (standalone) { 1472 unsigned int i; 1473 1474 for (i = 0; i < mpr->mrs_n; i++) 1475 share_cache->dereg_mr_cb(&mpr->mrs[i].pmd_mr); 1476 } 1477 mlx5_free(mpr); 1478 } 1479 1480 /** Find registration object of a mempool. */ 1481 static struct mlx5_mempool_reg * 1482 mlx5_mempool_reg_lookup(struct mlx5_mr_share_cache *share_cache, 1483 struct rte_mempool *mp) 1484 { 1485 struct mlx5_mempool_reg *mpr; 1486 1487 LIST_FOREACH(mpr, &share_cache->mempool_reg_list, next) 1488 if (mpr->mp == mp) 1489 break; 1490 return mpr; 1491 } 1492 1493 /** Increment reference counters of MRs used in the registration. */ 1494 static void 1495 mlx5_mempool_reg_attach(struct mlx5_mempool_reg *mpr) 1496 { 1497 unsigned int i; 1498 1499 for (i = 0; i < mpr->mrs_n; i++) 1500 __atomic_add_fetch(&mpr->mrs[i].refcnt, 1, __ATOMIC_RELAXED); 1501 } 1502 1503 /** 1504 * Decrement reference counters of MRs used in the registration. 1505 * 1506 * @return True if no more references to @p mpr MRs exist, False otherwise. 1507 */ 1508 static bool 1509 mlx5_mempool_reg_detach(struct mlx5_mempool_reg *mpr) 1510 { 1511 unsigned int i; 1512 bool ret = false; 1513 1514 for (i = 0; i < mpr->mrs_n; i++) 1515 ret |= __atomic_sub_fetch(&mpr->mrs[i].refcnt, 1, 1516 __ATOMIC_RELAXED) == 0; 1517 return ret; 1518 } 1519 1520 static int 1521 mlx5_mr_mempool_register_primary(struct mlx5_mr_share_cache *share_cache, 1522 void *pd, struct rte_mempool *mp) 1523 { 1524 struct mlx5_range *ranges = NULL; 1525 struct mlx5_mempool_reg *mpr, *new_mpr; 1526 unsigned int i, ranges_n; 1527 bool share_hugepage; 1528 int ret = -1; 1529 1530 /* Early check to avoid unnecessary creation of MRs. */ 1531 rte_rwlock_read_lock(&share_cache->rwlock); 1532 mpr = mlx5_mempool_reg_lookup(share_cache, mp); 1533 rte_rwlock_read_unlock(&share_cache->rwlock); 1534 if (mpr != NULL) { 1535 DRV_LOG(DEBUG, "Mempool %s is already registered for PD %p", 1536 mp->name, pd); 1537 rte_errno = EEXIST; 1538 goto exit; 1539 } 1540 if (mlx5_mempool_reg_analyze(mp, &ranges, &ranges_n, 1541 &share_hugepage) < 0) { 1542 DRV_LOG(ERR, "Cannot get mempool %s memory ranges", mp->name); 1543 rte_errno = ENOMEM; 1544 goto exit; 1545 } 1546 new_mpr = mlx5_mempool_reg_create(mp, ranges_n); 1547 if (new_mpr == NULL) { 1548 DRV_LOG(ERR, 1549 "Cannot create a registration object for mempool %s in PD %p", 1550 mp->name, pd); 1551 rte_errno = ENOMEM; 1552 goto exit; 1553 } 1554 /* 1555 * If the entire mempool fits in a single hugepage, the MR for this 1556 * hugepage can be shared across mempools that also fit in it. 1557 */ 1558 if (share_hugepage) { 1559 rte_rwlock_write_lock(&share_cache->rwlock); 1560 LIST_FOREACH(mpr, &share_cache->mempool_reg_list, next) { 1561 if (mpr->mrs[0].pmd_mr.addr == (void *)ranges[0].start) 1562 break; 1563 } 1564 if (mpr != NULL) { 1565 new_mpr->mrs = mpr->mrs; 1566 mlx5_mempool_reg_attach(new_mpr); 1567 LIST_INSERT_HEAD(&share_cache->mempool_reg_list, 1568 new_mpr, next); 1569 } 1570 rte_rwlock_write_unlock(&share_cache->rwlock); 1571 if (mpr != NULL) { 1572 DRV_LOG(DEBUG, "Shared MR %#x in PD %p for mempool %s with mempool %s", 1573 mpr->mrs[0].pmd_mr.lkey, pd, mp->name, 1574 mpr->mp->name); 1575 ret = 0; 1576 goto exit; 1577 } 1578 } 1579 for (i = 0; i < ranges_n; i++) { 1580 struct mlx5_mempool_mr *mr = &new_mpr->mrs[i]; 1581 const struct mlx5_range *range = &ranges[i]; 1582 size_t len = range->end - range->start; 1583 1584 if (share_cache->reg_mr_cb(pd, (void *)range->start, len, 1585 &mr->pmd_mr) < 0) { 1586 DRV_LOG(ERR, 1587 "Failed to create an MR in PD %p for address range " 1588 "[0x%" PRIxPTR ", 0x%" PRIxPTR "] (%zu bytes) for mempool %s", 1589 pd, range->start, range->end, len, mp->name); 1590 break; 1591 } 1592 DRV_LOG(DEBUG, 1593 "Created a new MR %#x in PD %p for address range " 1594 "[0x%" PRIxPTR ", 0x%" PRIxPTR "] (%zu bytes) for mempool %s", 1595 mr->pmd_mr.lkey, pd, range->start, range->end, len, 1596 mp->name); 1597 } 1598 if (i != ranges_n) { 1599 mlx5_mempool_reg_destroy(share_cache, new_mpr, true); 1600 rte_errno = EINVAL; 1601 goto exit; 1602 } 1603 /* Concurrent registration is not supposed to happen. */ 1604 rte_rwlock_write_lock(&share_cache->rwlock); 1605 mpr = mlx5_mempool_reg_lookup(share_cache, mp); 1606 if (mpr == NULL) { 1607 mlx5_mempool_reg_attach(new_mpr); 1608 LIST_INSERT_HEAD(&share_cache->mempool_reg_list, new_mpr, next); 1609 ret = 0; 1610 } 1611 rte_rwlock_write_unlock(&share_cache->rwlock); 1612 if (mpr != NULL) { 1613 DRV_LOG(DEBUG, "Mempool %s is already registered for PD %p", 1614 mp->name, pd); 1615 mlx5_mempool_reg_destroy(share_cache, new_mpr, true); 1616 rte_errno = EEXIST; 1617 goto exit; 1618 } 1619 exit: 1620 free(ranges); 1621 return ret; 1622 } 1623 1624 static int 1625 mlx5_mr_mempool_register_secondary(struct mlx5_mr_share_cache *share_cache, 1626 void *pd, struct rte_mempool *mp, 1627 struct mlx5_mp_id *mp_id) 1628 { 1629 if (mp_id == NULL) { 1630 rte_errno = EINVAL; 1631 return -1; 1632 } 1633 return mlx5_mp_req_mempool_reg(mp_id, share_cache, pd, mp, true); 1634 } 1635 1636 /** 1637 * Register the memory of a mempool in the protection domain. 1638 * 1639 * @param share_cache 1640 * Shared MR cache of the protection domain. 1641 * @param pd 1642 * Protection domain object. 1643 * @param mp 1644 * Mempool to register. 1645 * @param mp_id 1646 * Multi-process identifier, may be NULL for the primary process. 1647 * 1648 * @return 1649 * 0 on success, (-1) on failure and rte_errno is set. 1650 */ 1651 int 1652 mlx5_mr_mempool_register(struct mlx5_mr_share_cache *share_cache, void *pd, 1653 struct rte_mempool *mp, struct mlx5_mp_id *mp_id) 1654 { 1655 if (mp->flags & RTE_MEMPOOL_F_NON_IO) 1656 return 0; 1657 switch (rte_eal_process_type()) { 1658 case RTE_PROC_PRIMARY: 1659 return mlx5_mr_mempool_register_primary(share_cache, pd, mp); 1660 case RTE_PROC_SECONDARY: 1661 return mlx5_mr_mempool_register_secondary(share_cache, pd, mp, 1662 mp_id); 1663 default: 1664 return -1; 1665 } 1666 } 1667 1668 static int 1669 mlx5_mr_mempool_unregister_primary(struct mlx5_mr_share_cache *share_cache, 1670 struct rte_mempool *mp) 1671 { 1672 struct mlx5_mempool_reg *mpr; 1673 bool standalone = false; 1674 1675 rte_rwlock_write_lock(&share_cache->rwlock); 1676 LIST_FOREACH(mpr, &share_cache->mempool_reg_list, next) 1677 if (mpr->mp == mp) { 1678 LIST_REMOVE(mpr, next); 1679 standalone = mlx5_mempool_reg_detach(mpr); 1680 if (standalone) 1681 /* 1682 * The unlock operation below provides a memory 1683 * barrier due to its store-release semantics. 1684 */ 1685 ++share_cache->dev_gen; 1686 break; 1687 } 1688 rte_rwlock_write_unlock(&share_cache->rwlock); 1689 if (mpr == NULL) { 1690 rte_errno = ENOENT; 1691 return -1; 1692 } 1693 mlx5_mempool_reg_destroy(share_cache, mpr, standalone); 1694 return 0; 1695 } 1696 1697 static int 1698 mlx5_mr_mempool_unregister_secondary(struct mlx5_mr_share_cache *share_cache, 1699 struct rte_mempool *mp, 1700 struct mlx5_mp_id *mp_id) 1701 { 1702 if (mp_id == NULL) { 1703 rte_errno = EINVAL; 1704 return -1; 1705 } 1706 return mlx5_mp_req_mempool_reg(mp_id, share_cache, NULL, mp, false); 1707 } 1708 1709 /** 1710 * Unregister the memory of a mempool from the protection domain. 1711 * 1712 * @param share_cache 1713 * Shared MR cache of the protection domain. 1714 * @param mp 1715 * Mempool to unregister. 1716 * @param mp_id 1717 * Multi-process identifier, may be NULL for the primary process. 1718 * 1719 * @return 1720 * 0 on success, (-1) on failure and rte_errno is set. 1721 */ 1722 int 1723 mlx5_mr_mempool_unregister(struct mlx5_mr_share_cache *share_cache, 1724 struct rte_mempool *mp, struct mlx5_mp_id *mp_id) 1725 { 1726 if (mp->flags & RTE_MEMPOOL_F_NON_IO) 1727 return 0; 1728 switch (rte_eal_process_type()) { 1729 case RTE_PROC_PRIMARY: 1730 return mlx5_mr_mempool_unregister_primary(share_cache, mp); 1731 case RTE_PROC_SECONDARY: 1732 return mlx5_mr_mempool_unregister_secondary(share_cache, mp, 1733 mp_id); 1734 default: 1735 return -1; 1736 } 1737 } 1738 1739 /** 1740 * Lookup a MR key by and address in a registered mempool. 1741 * 1742 * @param mpr 1743 * Mempool registration object. 1744 * @param addr 1745 * Address within the mempool. 1746 * @param entry 1747 * Bottom-half cache entry to fill. 1748 * 1749 * @return 1750 * MR key or UINT32_MAX on failure, which can only happen 1751 * if the address is not from within the mempool. 1752 */ 1753 static uint32_t 1754 mlx5_mempool_reg_addr2mr(struct mlx5_mempool_reg *mpr, uintptr_t addr, 1755 struct mr_cache_entry *entry) 1756 { 1757 uint32_t lkey = UINT32_MAX; 1758 unsigned int i; 1759 1760 for (i = 0; i < mpr->mrs_n; i++) { 1761 const struct mlx5_pmd_mr *mr = &mpr->mrs[i].pmd_mr; 1762 uintptr_t mr_addr = (uintptr_t)mr->addr; 1763 1764 if (mr_addr <= addr) { 1765 lkey = rte_cpu_to_be_32(mr->lkey); 1766 entry->start = mr_addr; 1767 entry->end = mr_addr + mr->len; 1768 entry->lkey = lkey; 1769 break; 1770 } 1771 } 1772 return lkey; 1773 } 1774 1775 /** 1776 * Update bottom-half cache from the list of mempool registrations. 1777 * 1778 * @param share_cache 1779 * Pointer to a global shared MR cache. 1780 * @param mr_ctrl 1781 * Per-queue MR control handle. 1782 * @param entry 1783 * Pointer to an entry in the bottom-half cache to update 1784 * with the MR lkey looked up. 1785 * @param mp 1786 * Mempool containing the address. 1787 * @param addr 1788 * Address to lookup. 1789 * @return 1790 * MR lkey on success, UINT32_MAX on failure. 1791 */ 1792 static uint32_t 1793 mlx5_lookup_mempool_regs(struct mlx5_mr_share_cache *share_cache, 1794 struct mlx5_mr_ctrl *mr_ctrl, 1795 struct mr_cache_entry *entry, 1796 struct rte_mempool *mp, uintptr_t addr) 1797 { 1798 struct mlx5_mr_btree *bt = &mr_ctrl->cache_bh; 1799 struct mlx5_mempool_reg *mpr; 1800 uint32_t lkey = UINT32_MAX; 1801 1802 /* If local cache table is full, try to double it. */ 1803 if (unlikely(bt->len == bt->size)) 1804 mr_btree_expand(bt, bt->size << 1); 1805 /* Look up in mempool registrations. */ 1806 rte_rwlock_read_lock(&share_cache->rwlock); 1807 mpr = mlx5_mempool_reg_lookup(share_cache, mp); 1808 if (mpr != NULL) 1809 lkey = mlx5_mempool_reg_addr2mr(mpr, addr, entry); 1810 rte_rwlock_read_unlock(&share_cache->rwlock); 1811 /* 1812 * Update local cache. Even if it fails, return the found entry 1813 * to update top-half cache. Next time, this entry will be found 1814 * in the global cache. 1815 */ 1816 if (lkey != UINT32_MAX) 1817 mr_btree_insert(bt, entry); 1818 return lkey; 1819 } 1820 1821 /** 1822 * Bottom-half lookup for the address from the mempool. 1823 * 1824 * @param share_cache 1825 * Pointer to a global shared MR cache. 1826 * @param mr_ctrl 1827 * Per-queue MR control handle. 1828 * @param mp 1829 * Mempool containing the address. 1830 * @param addr 1831 * Address to lookup. 1832 * @return 1833 * MR lkey on success, UINT32_MAX on failure. 1834 */ 1835 uint32_t 1836 mlx5_mr_mempool2mr_bh(struct mlx5_mr_share_cache *share_cache, 1837 struct mlx5_mr_ctrl *mr_ctrl, 1838 struct rte_mempool *mp, uintptr_t addr) 1839 { 1840 struct mr_cache_entry *repl = &mr_ctrl->cache[mr_ctrl->head]; 1841 uint32_t lkey; 1842 uint16_t bh_idx = 0; 1843 1844 /* Binary-search MR translation table. */ 1845 lkey = mr_btree_lookup(&mr_ctrl->cache_bh, &bh_idx, addr); 1846 /* Update top-half cache. */ 1847 if (likely(lkey != UINT32_MAX)) { 1848 *repl = (*mr_ctrl->cache_bh.table)[bh_idx]; 1849 } else { 1850 lkey = mlx5_lookup_mempool_regs(share_cache, mr_ctrl, repl, 1851 mp, addr); 1852 /* Can only fail if the address is not from the mempool. */ 1853 if (unlikely(lkey == UINT32_MAX)) 1854 return UINT32_MAX; 1855 } 1856 /* Update the most recently used entry. */ 1857 mr_ctrl->mru = mr_ctrl->head; 1858 /* Point to the next victim, the oldest. */ 1859 mr_ctrl->head = (mr_ctrl->head + 1) % MLX5_MR_CACHE_N; 1860 return lkey; 1861 } 1862 1863 uint32_t 1864 mlx5_mr_mb2mr_bh(struct mlx5_mr_ctrl *mr_ctrl, struct rte_mbuf *mb, 1865 struct mlx5_mp_id *mp_id) 1866 { 1867 uint32_t lkey; 1868 uintptr_t addr = (uintptr_t)mb->buf_addr; 1869 struct mlx5_common_device *cdev = mr_ctrl->cdev; 1870 1871 if (cdev->config.mr_mempool_reg_en) { 1872 struct rte_mempool *mp = NULL; 1873 struct mlx5_mprq_buf *buf; 1874 1875 if (!RTE_MBUF_HAS_EXTBUF(mb)) { 1876 mp = mlx5_mb2mp(mb); 1877 } else if (mb->shinfo->free_cb == mlx5_mprq_buf_free_cb) { 1878 /* Recover MPRQ mempool. */ 1879 buf = mb->shinfo->fcb_opaque; 1880 mp = buf->mp; 1881 } 1882 if (mp != NULL) { 1883 lkey = mlx5_mr_mempool2mr_bh(&cdev->mr_scache, 1884 mr_ctrl, mp, addr); 1885 /* 1886 * Lookup can only fail on invalid input, e.g. "addr" 1887 * is not from "mp" or "mp" has MEMPOOL_F_NON_IO set. 1888 */ 1889 if (lkey != UINT32_MAX) 1890 return lkey; 1891 } 1892 /* Fallback for generic mechanism in corner cases. */ 1893 } 1894 return mlx5_mr_addr2mr_bh(cdev->pd, mp_id, &cdev->mr_scache, mr_ctrl, 1895 addr, cdev->config.mr_ext_memseg_en); 1896 } 1897