xref: /dpdk/drivers/common/mlx5/mlx5_common_mr.c (revision 30a1de105a5f40d77b344a891c4a68f79e815c43)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2020 Mellanox Technologies, Ltd
4  */
5 #include <stddef.h>
6 
7 #include <rte_eal_memconfig.h>
8 #include <rte_eal_paging.h>
9 #include <rte_errno.h>
10 #include <rte_mempool.h>
11 #include <rte_malloc.h>
12 #include <rte_rwlock.h>
13 
14 #include "mlx5_glue.h"
15 #include "mlx5_common.h"
16 #include "mlx5_common_mp.h"
17 #include "mlx5_common_mr.h"
18 #include "mlx5_common_os.h"
19 #include "mlx5_common_log.h"
20 #include "mlx5_malloc.h"
21 
22 struct mr_find_contig_memsegs_data {
23 	uintptr_t addr;
24 	uintptr_t start;
25 	uintptr_t end;
26 	const struct rte_memseg_list *msl;
27 };
28 
29 /* Virtual memory range. */
30 struct mlx5_range {
31 	uintptr_t start;
32 	uintptr_t end;
33 };
34 
35 /** Memory region for a mempool. */
36 struct mlx5_mempool_mr {
37 	struct mlx5_pmd_mr pmd_mr;
38 	uint32_t refcnt; /**< Number of mempools sharing this MR. */
39 };
40 
41 /* Mempool registration. */
42 struct mlx5_mempool_reg {
43 	LIST_ENTRY(mlx5_mempool_reg) next;
44 	/** Registered mempool, used to designate registrations. */
45 	struct rte_mempool *mp;
46 	/** Memory regions for the address ranges of the mempool. */
47 	struct mlx5_mempool_mr *mrs;
48 	/** Number of memory regions. */
49 	unsigned int mrs_n;
50 	/** Whether the MR were created for external pinned memory. */
51 	bool is_extmem;
52 };
53 
54 void
55 mlx5_mprq_buf_free_cb(void *addr __rte_unused, void *opaque)
56 {
57 	struct mlx5_mprq_buf *buf = opaque;
58 
59 	if (__atomic_load_n(&buf->refcnt, __ATOMIC_RELAXED) == 1) {
60 		rte_mempool_put(buf->mp, buf);
61 	} else if (unlikely(__atomic_sub_fetch(&buf->refcnt, 1,
62 					       __ATOMIC_RELAXED) == 0)) {
63 		__atomic_store_n(&buf->refcnt, 1, __ATOMIC_RELAXED);
64 		rte_mempool_put(buf->mp, buf);
65 	}
66 }
67 
68 /**
69  * Expand B-tree table to a given size. Can't be called with holding
70  * memory_hotplug_lock or share_cache.rwlock due to rte_realloc().
71  *
72  * @param bt
73  *   Pointer to B-tree structure.
74  * @param n
75  *   Number of entries for expansion.
76  *
77  * @return
78  *   0 on success, -1 on failure.
79  */
80 static int
81 mr_btree_expand(struct mlx5_mr_btree *bt, int n)
82 {
83 	void *mem;
84 	int ret = 0;
85 
86 	if (n <= bt->size)
87 		return ret;
88 	/*
89 	 * Downside of directly using rte_realloc() is that SOCKET_ID_ANY is
90 	 * used inside if there's no room to expand. Because this is a quite
91 	 * rare case and a part of very slow path, it is very acceptable.
92 	 * Initially cache_bh[] will be given practically enough space and once
93 	 * it is expanded, expansion wouldn't be needed again ever.
94 	 */
95 	mem = mlx5_realloc(bt->table, MLX5_MEM_RTE | MLX5_MEM_ZERO,
96 			   n * sizeof(struct mr_cache_entry), 0, SOCKET_ID_ANY);
97 	if (mem == NULL) {
98 		/* Not an error, B-tree search will be skipped. */
99 		DRV_LOG(WARNING, "failed to expand MR B-tree (%p) table",
100 			(void *)bt);
101 		ret = -1;
102 	} else {
103 		DRV_LOG(DEBUG, "expanded MR B-tree table (size=%u)", n);
104 		bt->table = mem;
105 		bt->size = n;
106 	}
107 	return ret;
108 }
109 
110 /**
111  * Look up LKey from given B-tree lookup table, store the last index and return
112  * searched LKey.
113  *
114  * @param bt
115  *   Pointer to B-tree structure.
116  * @param[out] idx
117  *   Pointer to index. Even on search failure, returns index where it stops
118  *   searching so that index can be used when inserting a new entry.
119  * @param addr
120  *   Search key.
121  *
122  * @return
123  *   Searched LKey on success, UINT32_MAX on no match.
124  */
125 static uint32_t
126 mr_btree_lookup(struct mlx5_mr_btree *bt, uint16_t *idx, uintptr_t addr)
127 {
128 	struct mr_cache_entry *lkp_tbl;
129 	uint16_t n;
130 	uint16_t base = 0;
131 
132 	MLX5_ASSERT(bt != NULL);
133 	lkp_tbl = *bt->table;
134 	n = bt->len;
135 	/* First entry must be NULL for comparison. */
136 	MLX5_ASSERT(bt->len > 0 || (lkp_tbl[0].start == 0 &&
137 				    lkp_tbl[0].lkey == UINT32_MAX));
138 	/* Binary search. */
139 	do {
140 		register uint16_t delta = n >> 1;
141 
142 		if (addr < lkp_tbl[base + delta].start) {
143 			n = delta;
144 		} else {
145 			base += delta;
146 			n -= delta;
147 		}
148 	} while (n > 1);
149 	MLX5_ASSERT(addr >= lkp_tbl[base].start);
150 	*idx = base;
151 	if (addr < lkp_tbl[base].end)
152 		return lkp_tbl[base].lkey;
153 	/* Not found. */
154 	return UINT32_MAX;
155 }
156 
157 /**
158  * Insert an entry to B-tree lookup table.
159  *
160  * @param bt
161  *   Pointer to B-tree structure.
162  * @param entry
163  *   Pointer to new entry to insert.
164  *
165  * @return
166  *   0 on success, -1 on failure.
167  */
168 static int
169 mr_btree_insert(struct mlx5_mr_btree *bt, struct mr_cache_entry *entry)
170 {
171 	struct mr_cache_entry *lkp_tbl;
172 	uint16_t idx = 0;
173 	size_t shift;
174 
175 	MLX5_ASSERT(bt != NULL);
176 	MLX5_ASSERT(bt->len <= bt->size);
177 	MLX5_ASSERT(bt->len > 0);
178 	lkp_tbl = *bt->table;
179 	/* Find out the slot for insertion. */
180 	if (mr_btree_lookup(bt, &idx, entry->start) != UINT32_MAX) {
181 		DRV_LOG(DEBUG,
182 			"abort insertion to B-tree(%p): already exist at"
183 			" idx=%u [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
184 			(void *)bt, idx, entry->start, entry->end, entry->lkey);
185 		/* Already exist, return. */
186 		return 0;
187 	}
188 	/* If table is full, return error. */
189 	if (unlikely(bt->len == bt->size)) {
190 		bt->overflow = 1;
191 		return -1;
192 	}
193 	/* Insert entry. */
194 	++idx;
195 	shift = (bt->len - idx) * sizeof(struct mr_cache_entry);
196 	if (shift)
197 		memmove(&lkp_tbl[idx + 1], &lkp_tbl[idx], shift);
198 	lkp_tbl[idx] = *entry;
199 	bt->len++;
200 	DRV_LOG(DEBUG,
201 		"inserted B-tree(%p)[%u],"
202 		" [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
203 		(void *)bt, idx, entry->start, entry->end, entry->lkey);
204 	return 0;
205 }
206 
207 /**
208  * Initialize B-tree and allocate memory for lookup table.
209  *
210  * @param bt
211  *   Pointer to B-tree structure.
212  * @param n
213  *   Number of entries to allocate.
214  * @param socket
215  *   NUMA socket on which memory must be allocated.
216  *
217  * @return
218  *   0 on success, a negative errno value otherwise and rte_errno is set.
219  */
220 static int
221 mlx5_mr_btree_init(struct mlx5_mr_btree *bt, int n, int socket)
222 {
223 	if (bt == NULL) {
224 		rte_errno = EINVAL;
225 		return -rte_errno;
226 	}
227 	MLX5_ASSERT(!bt->table && !bt->size);
228 	memset(bt, 0, sizeof(*bt));
229 	bt->table = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO,
230 				sizeof(struct mr_cache_entry) * n,
231 				0, socket);
232 	if (bt->table == NULL) {
233 		rte_errno = ENOMEM;
234 		DRV_LOG(DEBUG,
235 			"failed to allocate memory for btree cache on socket "
236 			"%d", socket);
237 		return -rte_errno;
238 	}
239 	bt->size = n;
240 	/* First entry must be NULL for binary search. */
241 	(*bt->table)[bt->len++] = (struct mr_cache_entry) {
242 		.lkey = UINT32_MAX,
243 	};
244 	DRV_LOG(DEBUG, "initialized B-tree %p with table %p",
245 	      (void *)bt, (void *)bt->table);
246 	return 0;
247 }
248 
249 /**
250  * Free B-tree resources.
251  *
252  * @param bt
253  *   Pointer to B-tree structure.
254  */
255 void
256 mlx5_mr_btree_free(struct mlx5_mr_btree *bt)
257 {
258 	if (bt == NULL)
259 		return;
260 	DRV_LOG(DEBUG, "freeing B-tree %p with table %p",
261 	      (void *)bt, (void *)bt->table);
262 	mlx5_free(bt->table);
263 	memset(bt, 0, sizeof(*bt));
264 }
265 
266 /**
267  * Dump all the entries in a B-tree
268  *
269  * @param bt
270  *   Pointer to B-tree structure.
271  */
272 void
273 mlx5_mr_btree_dump(struct mlx5_mr_btree *bt __rte_unused)
274 {
275 #ifdef RTE_LIBRTE_MLX5_DEBUG
276 	int idx;
277 	struct mr_cache_entry *lkp_tbl;
278 
279 	if (bt == NULL)
280 		return;
281 	lkp_tbl = *bt->table;
282 	for (idx = 0; idx < bt->len; ++idx) {
283 		struct mr_cache_entry *entry = &lkp_tbl[idx];
284 
285 		DRV_LOG(DEBUG, "B-tree(%p)[%u],"
286 		      " [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
287 		      (void *)bt, idx, entry->start, entry->end, entry->lkey);
288 	}
289 #endif
290 }
291 
292 /**
293  * Initialize per-queue MR control descriptor.
294  *
295  * @param mr_ctrl
296  *   Pointer to MR control structure.
297  * @param dev_gen_ptr
298  *   Pointer to generation number of global cache.
299  * @param socket
300  *   NUMA socket on which memory must be allocated.
301  *
302  * @return
303  *   0 on success, a negative errno value otherwise and rte_errno is set.
304  */
305 int
306 mlx5_mr_ctrl_init(struct mlx5_mr_ctrl *mr_ctrl, uint32_t *dev_gen_ptr,
307 		  int socket)
308 {
309 	if (mr_ctrl == NULL) {
310 		rte_errno = EINVAL;
311 		return -rte_errno;
312 	}
313 	/* Save pointer of global generation number to check memory event. */
314 	mr_ctrl->dev_gen_ptr = dev_gen_ptr;
315 	/* Initialize B-tree and allocate memory for bottom-half cache table. */
316 	return mlx5_mr_btree_init(&mr_ctrl->cache_bh, MLX5_MR_BTREE_CACHE_N,
317 				  socket);
318 }
319 
320 /**
321  * Find virtually contiguous memory chunk in a given MR.
322  *
323  * @param dev
324  *   Pointer to MR structure.
325  * @param[out] entry
326  *   Pointer to returning MR cache entry. If not found, this will not be
327  *   updated.
328  * @param start_idx
329  *   Start index of the memseg bitmap.
330  *
331  * @return
332  *   Next index to go on lookup.
333  */
334 static int
335 mr_find_next_chunk(struct mlx5_mr *mr, struct mr_cache_entry *entry,
336 		   int base_idx)
337 {
338 	uintptr_t start = 0;
339 	uintptr_t end = 0;
340 	uint32_t idx = 0;
341 
342 	/* MR for external memory doesn't have memseg list. */
343 	if (mr->msl == NULL) {
344 		MLX5_ASSERT(mr->ms_bmp_n == 1);
345 		MLX5_ASSERT(mr->ms_n == 1);
346 		MLX5_ASSERT(base_idx == 0);
347 		/*
348 		 * Can't search it from memseg list but get it directly from
349 		 * pmd_mr as there's only one chunk.
350 		 */
351 		entry->start = (uintptr_t)mr->pmd_mr.addr;
352 		entry->end = (uintptr_t)mr->pmd_mr.addr + mr->pmd_mr.len;
353 		entry->lkey = rte_cpu_to_be_32(mr->pmd_mr.lkey);
354 		/* Returning 1 ends iteration. */
355 		return 1;
356 	}
357 	for (idx = base_idx; idx < mr->ms_bmp_n; ++idx) {
358 		if (rte_bitmap_get(mr->ms_bmp, idx)) {
359 			const struct rte_memseg_list *msl;
360 			const struct rte_memseg *ms;
361 
362 			msl = mr->msl;
363 			ms = rte_fbarray_get(&msl->memseg_arr,
364 					     mr->ms_base_idx + idx);
365 			MLX5_ASSERT(msl->page_sz == ms->hugepage_sz);
366 			if (!start)
367 				start = ms->addr_64;
368 			end = ms->addr_64 + ms->hugepage_sz;
369 		} else if (start) {
370 			/* Passed the end of a fragment. */
371 			break;
372 		}
373 	}
374 	if (start) {
375 		/* Found one chunk. */
376 		entry->start = start;
377 		entry->end = end;
378 		entry->lkey = rte_cpu_to_be_32(mr->pmd_mr.lkey);
379 	}
380 	return idx;
381 }
382 
383 /**
384  * Insert a MR to the global B-tree cache. It may fail due to low-on-memory.
385  * Then, this entry will have to be searched by mr_lookup_list() in
386  * mlx5_mr_create() on miss.
387  *
388  * @param share_cache
389  *   Pointer to a global shared MR cache.
390  * @param mr
391  *   Pointer to MR to insert.
392  *
393  * @return
394  *   0 on success, -1 on failure.
395  */
396 int
397 mlx5_mr_insert_cache(struct mlx5_mr_share_cache *share_cache,
398 		     struct mlx5_mr *mr)
399 {
400 	unsigned int n;
401 
402 	DRV_LOG(DEBUG, "Inserting MR(%p) to global cache(%p)",
403 		(void *)mr, (void *)share_cache);
404 	for (n = 0; n < mr->ms_bmp_n; ) {
405 		struct mr_cache_entry entry;
406 
407 		memset(&entry, 0, sizeof(entry));
408 		/* Find a contiguous chunk and advance the index. */
409 		n = mr_find_next_chunk(mr, &entry, n);
410 		if (!entry.end)
411 			break;
412 		if (mr_btree_insert(&share_cache->cache, &entry) < 0) {
413 			/*
414 			 * Overflowed, but the global table cannot be expanded
415 			 * because of deadlock.
416 			 */
417 			return -1;
418 		}
419 	}
420 	return 0;
421 }
422 
423 /**
424  * Look up address in the original global MR list.
425  *
426  * @param share_cache
427  *   Pointer to a global shared MR cache.
428  * @param[out] entry
429  *   Pointer to returning MR cache entry. If no match, this will not be updated.
430  * @param addr
431  *   Search key.
432  *
433  * @return
434  *   Found MR on match, NULL otherwise.
435  */
436 struct mlx5_mr *
437 mlx5_mr_lookup_list(struct mlx5_mr_share_cache *share_cache,
438 		    struct mr_cache_entry *entry, uintptr_t addr)
439 {
440 	struct mlx5_mr *mr;
441 
442 	/* Iterate all the existing MRs. */
443 	LIST_FOREACH(mr, &share_cache->mr_list, mr) {
444 		unsigned int n;
445 
446 		if (mr->ms_n == 0)
447 			continue;
448 		for (n = 0; n < mr->ms_bmp_n; ) {
449 			struct mr_cache_entry ret;
450 
451 			memset(&ret, 0, sizeof(ret));
452 			n = mr_find_next_chunk(mr, &ret, n);
453 			if (addr >= ret.start && addr < ret.end) {
454 				/* Found. */
455 				*entry = ret;
456 				return mr;
457 			}
458 		}
459 	}
460 	return NULL;
461 }
462 
463 /**
464  * Look up address on global MR cache.
465  *
466  * @param share_cache
467  *   Pointer to a global shared MR cache.
468  * @param[out] entry
469  *   Pointer to returning MR cache entry. If no match, this will not be updated.
470  * @param addr
471  *   Search key.
472  *
473  * @return
474  *   Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
475  */
476 static uint32_t
477 mlx5_mr_lookup_cache(struct mlx5_mr_share_cache *share_cache,
478 		     struct mr_cache_entry *entry, uintptr_t addr)
479 {
480 	uint16_t idx;
481 	uint32_t lkey = UINT32_MAX;
482 	struct mlx5_mr *mr;
483 
484 	/*
485 	 * If the global cache has overflowed since it failed to expand the
486 	 * B-tree table, it can't have all the existing MRs. Then, the address
487 	 * has to be searched by traversing the original MR list instead, which
488 	 * is very slow path. Otherwise, the global cache is all inclusive.
489 	 */
490 	if (!unlikely(share_cache->cache.overflow)) {
491 		lkey = mr_btree_lookup(&share_cache->cache, &idx, addr);
492 		if (lkey != UINT32_MAX)
493 			*entry = (*share_cache->cache.table)[idx];
494 	} else {
495 		/* Falling back to the slowest path. */
496 		mr = mlx5_mr_lookup_list(share_cache, entry, addr);
497 		if (mr != NULL)
498 			lkey = entry->lkey;
499 	}
500 	MLX5_ASSERT(lkey == UINT32_MAX || (addr >= entry->start &&
501 					   addr < entry->end));
502 	return lkey;
503 }
504 
505 /**
506  * Free MR resources. MR lock must not be held to avoid a deadlock. rte_free()
507  * can raise memory free event and the callback function will spin on the lock.
508  *
509  * @param mr
510  *   Pointer to MR to free.
511  */
512 void
513 mlx5_mr_free(struct mlx5_mr *mr, mlx5_dereg_mr_t dereg_mr_cb)
514 {
515 	if (mr == NULL)
516 		return;
517 	DRV_LOG(DEBUG, "freeing MR(%p):", (void *)mr);
518 	dereg_mr_cb(&mr->pmd_mr);
519 	rte_bitmap_free(mr->ms_bmp);
520 	mlx5_free(mr);
521 }
522 
523 void
524 mlx5_mr_rebuild_cache(struct mlx5_mr_share_cache *share_cache)
525 {
526 	struct mlx5_mr *mr;
527 
528 	DRV_LOG(DEBUG, "Rebuild dev cache[] %p", (void *)share_cache);
529 	/* Flush cache to rebuild. */
530 	share_cache->cache.len = 1;
531 	share_cache->cache.overflow = 0;
532 	/* Iterate all the existing MRs. */
533 	LIST_FOREACH(mr, &share_cache->mr_list, mr)
534 		if (mlx5_mr_insert_cache(share_cache, mr) < 0)
535 			return;
536 }
537 
538 /**
539  * Release resources of detached MR having no online entry.
540  *
541  * @param share_cache
542  *   Pointer to a global shared MR cache.
543  */
544 static void
545 mlx5_mr_garbage_collect(struct mlx5_mr_share_cache *share_cache)
546 {
547 	struct mlx5_mr *mr_next;
548 	struct mlx5_mr_list free_list = LIST_HEAD_INITIALIZER(free_list);
549 
550 	/* Must be called from the primary process. */
551 	MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY);
552 	/*
553 	 * MR can't be freed with holding the lock because rte_free() could call
554 	 * memory free callback function. This will be a deadlock situation.
555 	 */
556 	rte_rwlock_write_lock(&share_cache->rwlock);
557 	/* Detach the whole free list and release it after unlocking. */
558 	free_list = share_cache->mr_free_list;
559 	LIST_INIT(&share_cache->mr_free_list);
560 	rte_rwlock_write_unlock(&share_cache->rwlock);
561 	/* Release resources. */
562 	mr_next = LIST_FIRST(&free_list);
563 	while (mr_next != NULL) {
564 		struct mlx5_mr *mr = mr_next;
565 
566 		mr_next = LIST_NEXT(mr, mr);
567 		mlx5_mr_free(mr, share_cache->dereg_mr_cb);
568 	}
569 }
570 
571 /* Called during rte_memseg_contig_walk() by mlx5_mr_create(). */
572 static int
573 mr_find_contig_memsegs_cb(const struct rte_memseg_list *msl,
574 			  const struct rte_memseg *ms, size_t len, void *arg)
575 {
576 	struct mr_find_contig_memsegs_data *data = arg;
577 
578 	if (data->addr < ms->addr_64 || data->addr >= ms->addr_64 + len)
579 		return 0;
580 	/* Found, save it and stop walking. */
581 	data->start = ms->addr_64;
582 	data->end = ms->addr_64 + len;
583 	data->msl = msl;
584 	return 1;
585 }
586 
587 /**
588  * Create a new global Memory Region (MR) for a missing virtual address.
589  * This API should be called on a secondary process, then a request is sent to
590  * the primary process in order to create a MR for the address. As the global MR
591  * list is on the shared memory, following LKey lookup should succeed unless the
592  * request fails.
593  *
594  * @param cdev
595  *   Pointer to the mlx5 common device.
596  * @param share_cache
597  *   Pointer to a global shared MR cache.
598  * @param[out] entry
599  *   Pointer to returning MR cache entry, found in the global cache or newly
600  *   created. If failed to create one, this will not be updated.
601  * @param addr
602  *   Target virtual address to register.
603  *
604  * @return
605  *   Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
606  */
607 static uint32_t
608 mlx5_mr_create_secondary(struct mlx5_common_device *cdev,
609 			 struct mlx5_mr_share_cache *share_cache,
610 			 struct mr_cache_entry *entry, uintptr_t addr)
611 {
612 	int ret;
613 
614 	DRV_LOG(DEBUG, "Requesting MR creation for address (%p)", (void *)addr);
615 	ret = mlx5_mp_req_mr_create(cdev, addr);
616 	if (ret) {
617 		DRV_LOG(DEBUG, "Fail to request MR creation for address (%p)",
618 			(void *)addr);
619 		return UINT32_MAX;
620 	}
621 	rte_rwlock_read_lock(&share_cache->rwlock);
622 	/* Fill in output data. */
623 	mlx5_mr_lookup_cache(share_cache, entry, addr);
624 	/* Lookup can't fail. */
625 	MLX5_ASSERT(entry->lkey != UINT32_MAX);
626 	rte_rwlock_read_unlock(&share_cache->rwlock);
627 	DRV_LOG(DEBUG, "MR CREATED by primary process for %p:\n"
628 		"  [0x%" PRIxPTR ", 0x%" PRIxPTR "), lkey=0x%x",
629 		(void *)addr, entry->start, entry->end, entry->lkey);
630 	return entry->lkey;
631 }
632 
633 /**
634  * Create a new global Memory Region (MR) for a missing virtual address.
635  * Register entire virtually contiguous memory chunk around the address.
636  *
637  * @param pd
638  *   Pointer to pd of a device (net, regex, vdpa,...).
639  * @param share_cache
640  *   Pointer to a global shared MR cache.
641  * @param[out] entry
642  *   Pointer to returning MR cache entry, found in the global cache or newly
643  *   created. If failed to create one, this will not be updated.
644  * @param addr
645  *   Target virtual address to register.
646  * @param mr_ext_memseg_en
647  *   Configurable flag about external memory segment enable or not.
648  *
649  * @return
650  *   Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
651  */
652 static uint32_t
653 mlx5_mr_create_primary(void *pd,
654 		       struct mlx5_mr_share_cache *share_cache,
655 		       struct mr_cache_entry *entry, uintptr_t addr,
656 		       unsigned int mr_ext_memseg_en)
657 {
658 	struct mr_find_contig_memsegs_data data = {.addr = addr, };
659 	struct mr_find_contig_memsegs_data data_re;
660 	const struct rte_memseg_list *msl;
661 	const struct rte_memseg *ms;
662 	struct mlx5_mr *mr = NULL;
663 	int ms_idx_shift = -1;
664 	uint32_t bmp_size;
665 	void *bmp_mem;
666 	uint32_t ms_n;
667 	uint32_t n;
668 	size_t len;
669 
670 	DRV_LOG(DEBUG, "Creating a MR using address (%p)", (void *)addr);
671 	/*
672 	 * Release detached MRs if any. This can't be called with holding either
673 	 * memory_hotplug_lock or share_cache->rwlock. MRs on the free list have
674 	 * been detached by the memory free event but it couldn't be released
675 	 * inside the callback due to deadlock. As a result, releasing resources
676 	 * is quite opportunistic.
677 	 */
678 	mlx5_mr_garbage_collect(share_cache);
679 	/*
680 	 * If enabled, find out a contiguous virtual address chunk in use, to
681 	 * which the given address belongs, in order to register maximum range.
682 	 * In the best case where mempools are not dynamically recreated and
683 	 * '--socket-mem' is specified as an EAL option, it is very likely to
684 	 * have only one MR(LKey) per a socket and per a hugepage-size even
685 	 * though the system memory is highly fragmented. As the whole memory
686 	 * chunk will be pinned by kernel, it can't be reused unless entire
687 	 * chunk is freed from EAL.
688 	 *
689 	 * If disabled, just register one memseg (page). Then, memory
690 	 * consumption will be minimized but it may drop performance if there
691 	 * are many MRs to lookup on the datapath.
692 	 */
693 	if (!mr_ext_memseg_en) {
694 		data.msl = rte_mem_virt2memseg_list((void *)addr);
695 		data.start = RTE_ALIGN_FLOOR(addr, data.msl->page_sz);
696 		data.end = data.start + data.msl->page_sz;
697 	} else if (!rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data)) {
698 		DRV_LOG(WARNING,
699 			"Unable to find virtually contiguous"
700 			" chunk for address (%p)."
701 			" rte_memseg_contig_walk() failed.", (void *)addr);
702 		rte_errno = ENXIO;
703 		goto err_nolock;
704 	}
705 alloc_resources:
706 	/* Addresses must be page-aligned. */
707 	MLX5_ASSERT(data.msl);
708 	MLX5_ASSERT(rte_is_aligned((void *)data.start, data.msl->page_sz));
709 	MLX5_ASSERT(rte_is_aligned((void *)data.end, data.msl->page_sz));
710 	msl = data.msl;
711 	ms = rte_mem_virt2memseg((void *)data.start, msl);
712 	len = data.end - data.start;
713 	MLX5_ASSERT(ms);
714 	MLX5_ASSERT(msl->page_sz == ms->hugepage_sz);
715 	/* Number of memsegs in the range. */
716 	ms_n = len / msl->page_sz;
717 	DRV_LOG(DEBUG, "Extending %p to [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
718 	      " page_sz=0x%" PRIx64 ", ms_n=%u",
719 	      (void *)addr, data.start, data.end, msl->page_sz, ms_n);
720 	/* Size of memory for bitmap. */
721 	bmp_size = rte_bitmap_get_memory_footprint(ms_n);
722 	mr = mlx5_malloc(MLX5_MEM_RTE |  MLX5_MEM_ZERO,
723 			 RTE_ALIGN_CEIL(sizeof(*mr), RTE_CACHE_LINE_SIZE) +
724 			 bmp_size, RTE_CACHE_LINE_SIZE, msl->socket_id);
725 	if (mr == NULL) {
726 		DRV_LOG(DEBUG, "Unable to allocate memory for a new MR of"
727 		      " address (%p).", (void *)addr);
728 		rte_errno = ENOMEM;
729 		goto err_nolock;
730 	}
731 	mr->msl = msl;
732 	/*
733 	 * Save the index of the first memseg and initialize memseg bitmap. To
734 	 * see if a memseg of ms_idx in the memseg-list is still valid, check:
735 	 *	rte_bitmap_get(mr->bmp, ms_idx - mr->ms_base_idx)
736 	 */
737 	mr->ms_base_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
738 	bmp_mem = RTE_PTR_ALIGN_CEIL(mr + 1, RTE_CACHE_LINE_SIZE);
739 	mr->ms_bmp = rte_bitmap_init(ms_n, bmp_mem, bmp_size);
740 	if (mr->ms_bmp == NULL) {
741 		DRV_LOG(DEBUG, "Unable to initialize bitmap for a new MR of"
742 		      " address (%p).", (void *)addr);
743 		rte_errno = EINVAL;
744 		goto err_nolock;
745 	}
746 	/*
747 	 * Should recheck whether the extended contiguous chunk is still valid.
748 	 * Because memory_hotplug_lock can't be held if there's any memory
749 	 * related calls in a critical path, resource allocation above can't be
750 	 * locked. If the memory has been changed at this point, try again with
751 	 * just single page. If not, go on with the big chunk atomically from
752 	 * here.
753 	 */
754 	rte_mcfg_mem_read_lock();
755 	data_re = data;
756 	if (len > msl->page_sz &&
757 	    !rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data_re)) {
758 		DRV_LOG(DEBUG,
759 			"Unable to find virtually contiguous chunk for address "
760 			"(%p). rte_memseg_contig_walk() failed.", (void *)addr);
761 		rte_errno = ENXIO;
762 		goto err_memlock;
763 	}
764 	if (data.start != data_re.start || data.end != data_re.end) {
765 		/*
766 		 * The extended contiguous chunk has been changed. Try again
767 		 * with single memseg instead.
768 		 */
769 		data.start = RTE_ALIGN_FLOOR(addr, msl->page_sz);
770 		data.end = data.start + msl->page_sz;
771 		rte_mcfg_mem_read_unlock();
772 		mlx5_mr_free(mr, share_cache->dereg_mr_cb);
773 		goto alloc_resources;
774 	}
775 	MLX5_ASSERT(data.msl == data_re.msl);
776 	rte_rwlock_write_lock(&share_cache->rwlock);
777 	/*
778 	 * Check the address is really missing. If other thread already created
779 	 * one or it is not found due to overflow, abort and return.
780 	 */
781 	if (mlx5_mr_lookup_cache(share_cache, entry, addr) != UINT32_MAX) {
782 		/*
783 		 * Insert to the global cache table. It may fail due to
784 		 * low-on-memory. Then, this entry will have to be searched
785 		 * here again.
786 		 */
787 		mr_btree_insert(&share_cache->cache, entry);
788 		DRV_LOG(DEBUG, "Found MR for %p on final lookup, abort",
789 			(void *)addr);
790 		rte_rwlock_write_unlock(&share_cache->rwlock);
791 		rte_mcfg_mem_read_unlock();
792 		/*
793 		 * Must be unlocked before calling rte_free() because
794 		 * mlx5_mr_mem_event_free_cb() can be called inside.
795 		 */
796 		mlx5_mr_free(mr, share_cache->dereg_mr_cb);
797 		return entry->lkey;
798 	}
799 	/*
800 	 * Trim start and end addresses for verbs MR. Set bits for registering
801 	 * memsegs but exclude already registered ones. Bitmap can be
802 	 * fragmented.
803 	 */
804 	for (n = 0; n < ms_n; ++n) {
805 		uintptr_t start;
806 		struct mr_cache_entry ret;
807 
808 		memset(&ret, 0, sizeof(ret));
809 		start = data_re.start + n * msl->page_sz;
810 		/* Exclude memsegs already registered by other MRs. */
811 		if (mlx5_mr_lookup_cache(share_cache, &ret, start) ==
812 		    UINT32_MAX) {
813 			/*
814 			 * Start from the first unregistered memseg in the
815 			 * extended range.
816 			 */
817 			if (ms_idx_shift == -1) {
818 				mr->ms_base_idx += n;
819 				data.start = start;
820 				ms_idx_shift = n;
821 			}
822 			data.end = start + msl->page_sz;
823 			rte_bitmap_set(mr->ms_bmp, n - ms_idx_shift);
824 			++mr->ms_n;
825 		}
826 	}
827 	len = data.end - data.start;
828 	mr->ms_bmp_n = len / msl->page_sz;
829 	MLX5_ASSERT(ms_idx_shift + mr->ms_bmp_n <= ms_n);
830 	/*
831 	 * Finally create an MR for the memory chunk. Verbs: ibv_reg_mr() can
832 	 * be called with holding the memory lock because it doesn't use
833 	 * mlx5_alloc_buf_extern() which eventually calls rte_malloc_socket()
834 	 * through mlx5_alloc_verbs_buf().
835 	 */
836 	share_cache->reg_mr_cb(pd, (void *)data.start, len, &mr->pmd_mr);
837 	if (mr->pmd_mr.obj == NULL) {
838 		DRV_LOG(DEBUG, "Fail to create an MR for address (%p)",
839 		      (void *)addr);
840 		rte_errno = EINVAL;
841 		goto err_mrlock;
842 	}
843 	MLX5_ASSERT((uintptr_t)mr->pmd_mr.addr == data.start);
844 	MLX5_ASSERT(mr->pmd_mr.len);
845 	LIST_INSERT_HEAD(&share_cache->mr_list, mr, mr);
846 	DRV_LOG(DEBUG, "MR CREATED (%p) for %p:\n"
847 	      "  [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
848 	      " lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u",
849 	      (void *)mr, (void *)addr, data.start, data.end,
850 	      rte_cpu_to_be_32(mr->pmd_mr.lkey),
851 	      mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n);
852 	/* Insert to the global cache table. */
853 	mlx5_mr_insert_cache(share_cache, mr);
854 	/* Fill in output data. */
855 	mlx5_mr_lookup_cache(share_cache, entry, addr);
856 	/* Lookup can't fail. */
857 	MLX5_ASSERT(entry->lkey != UINT32_MAX);
858 	rte_rwlock_write_unlock(&share_cache->rwlock);
859 	rte_mcfg_mem_read_unlock();
860 	return entry->lkey;
861 err_mrlock:
862 	rte_rwlock_write_unlock(&share_cache->rwlock);
863 err_memlock:
864 	rte_mcfg_mem_read_unlock();
865 err_nolock:
866 	/*
867 	 * In case of error, as this can be called in a datapath, a warning
868 	 * message per an error is preferable instead. Must be unlocked before
869 	 * calling rte_free() because mlx5_mr_mem_event_free_cb() can be called
870 	 * inside.
871 	 */
872 	mlx5_mr_free(mr, share_cache->dereg_mr_cb);
873 	return UINT32_MAX;
874 }
875 
876 /**
877  * Create a new global Memory Region (MR) for a missing virtual address.
878  * This can be called from primary and secondary process.
879  *
880  * @param cdev
881  *   Pointer to the mlx5 common device.
882  * @param share_cache
883  *   Pointer to a global shared MR cache.
884  * @param[out] entry
885  *   Pointer to returning MR cache entry, found in the global cache or newly
886  *   created. If failed to create one, this will not be updated.
887  * @param addr
888  *   Target virtual address to register.
889  *
890  * @return
891  *   Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
892  */
893 uint32_t
894 mlx5_mr_create(struct mlx5_common_device *cdev,
895 	       struct mlx5_mr_share_cache *share_cache,
896 	       struct mr_cache_entry *entry, uintptr_t addr)
897 {
898 	uint32_t ret = 0;
899 
900 	switch (rte_eal_process_type()) {
901 	case RTE_PROC_PRIMARY:
902 		ret = mlx5_mr_create_primary(cdev->pd, share_cache, entry, addr,
903 					     cdev->config.mr_ext_memseg_en);
904 		break;
905 	case RTE_PROC_SECONDARY:
906 		ret = mlx5_mr_create_secondary(cdev, share_cache, entry, addr);
907 		break;
908 	default:
909 		break;
910 	}
911 	return ret;
912 }
913 
914 /**
915  * Look up address in the global MR cache table. If not found, create a new MR.
916  * Insert the found/created entry to local bottom-half cache table.
917  *
918  * @param mr_ctrl
919  *   Pointer to per-queue MR control structure.
920  * @param[out] entry
921  *   Pointer to returning MR cache entry, found in the global cache or newly
922  *   created. If failed to create one, this is not written.
923  * @param addr
924  *   Search key.
925  *
926  * @return
927  *   Searched LKey on success, UINT32_MAX on no match.
928  */
929 static uint32_t
930 mr_lookup_caches(struct mlx5_mr_ctrl *mr_ctrl,
931 		 struct mr_cache_entry *entry, uintptr_t addr)
932 {
933 	struct mlx5_mr_share_cache *share_cache =
934 		container_of(mr_ctrl->dev_gen_ptr, struct mlx5_mr_share_cache,
935 			     dev_gen);
936 	struct mlx5_common_device *cdev =
937 		container_of(share_cache, struct mlx5_common_device, mr_scache);
938 	struct mlx5_mr_btree *bt = &mr_ctrl->cache_bh;
939 	uint32_t lkey;
940 	uint16_t idx;
941 
942 	/* If local cache table is full, try to double it. */
943 	if (unlikely(bt->len == bt->size))
944 		mr_btree_expand(bt, bt->size << 1);
945 	/* Look up in the global cache. */
946 	rte_rwlock_read_lock(&share_cache->rwlock);
947 	lkey = mr_btree_lookup(&share_cache->cache, &idx, addr);
948 	if (lkey != UINT32_MAX) {
949 		/* Found. */
950 		*entry = (*share_cache->cache.table)[idx];
951 		rte_rwlock_read_unlock(&share_cache->rwlock);
952 		/*
953 		 * Update local cache. Even if it fails, return the found entry
954 		 * to update top-half cache. Next time, this entry will be found
955 		 * in the global cache.
956 		 */
957 		mr_btree_insert(bt, entry);
958 		return lkey;
959 	}
960 	rte_rwlock_read_unlock(&share_cache->rwlock);
961 	/* First time to see the address? Create a new MR. */
962 	lkey = mlx5_mr_create(cdev, share_cache, entry, addr);
963 	/*
964 	 * Update the local cache if successfully created a new global MR. Even
965 	 * if failed to create one, there's no action to take in this datapath
966 	 * code. As returning LKey is invalid, this will eventually make HW
967 	 * fail.
968 	 */
969 	if (lkey != UINT32_MAX)
970 		mr_btree_insert(bt, entry);
971 	return lkey;
972 }
973 
974 /**
975  * Bottom-half of LKey search on datapath. First search in cache_bh[] and if
976  * misses, search in the global MR cache table and update the new entry to
977  * per-queue local caches.
978  *
979  * @param mr_ctrl
980  *   Pointer to per-queue MR control structure.
981  * @param addr
982  *   Search key.
983  *
984  * @return
985  *   Searched LKey on success, UINT32_MAX on no match.
986  */
987 static uint32_t
988 mlx5_mr_addr2mr_bh(struct mlx5_mr_ctrl *mr_ctrl, uintptr_t addr)
989 {
990 	uint32_t lkey;
991 	uint16_t bh_idx = 0;
992 	/* Victim in top-half cache to replace with new entry. */
993 	struct mr_cache_entry *repl = &mr_ctrl->cache[mr_ctrl->head];
994 
995 	/* Binary-search MR translation table. */
996 	lkey = mr_btree_lookup(&mr_ctrl->cache_bh, &bh_idx, addr);
997 	/* Update top-half cache. */
998 	if (likely(lkey != UINT32_MAX)) {
999 		*repl = (*mr_ctrl->cache_bh.table)[bh_idx];
1000 	} else {
1001 		/*
1002 		 * If missed in local lookup table, search in the global cache
1003 		 * and local cache_bh[] will be updated inside if possible.
1004 		 * Top-half cache entry will also be updated.
1005 		 */
1006 		lkey = mr_lookup_caches(mr_ctrl, repl, addr);
1007 		if (unlikely(lkey == UINT32_MAX))
1008 			return UINT32_MAX;
1009 	}
1010 	/* Update the most recently used entry. */
1011 	mr_ctrl->mru = mr_ctrl->head;
1012 	/* Point to the next victim, the oldest. */
1013 	mr_ctrl->head = (mr_ctrl->head + 1) % MLX5_MR_CACHE_N;
1014 	return lkey;
1015 }
1016 
1017 /**
1018  * Release all the created MRs and resources on global MR cache of a device
1019  * list.
1020  *
1021  * @param share_cache
1022  *   Pointer to a global shared MR cache.
1023  */
1024 void
1025 mlx5_mr_release_cache(struct mlx5_mr_share_cache *share_cache)
1026 {
1027 	struct mlx5_mr *mr_next;
1028 
1029 	rte_rwlock_write_lock(&share_cache->rwlock);
1030 	/* Detach from MR list and move to free list. */
1031 	mr_next = LIST_FIRST(&share_cache->mr_list);
1032 	while (mr_next != NULL) {
1033 		struct mlx5_mr *mr = mr_next;
1034 
1035 		mr_next = LIST_NEXT(mr, mr);
1036 		LIST_REMOVE(mr, mr);
1037 		LIST_INSERT_HEAD(&share_cache->mr_free_list, mr, mr);
1038 	}
1039 	LIST_INIT(&share_cache->mr_list);
1040 	/* Free global cache. */
1041 	mlx5_mr_btree_free(&share_cache->cache);
1042 	rte_rwlock_write_unlock(&share_cache->rwlock);
1043 	/* Free all remaining MRs. */
1044 	mlx5_mr_garbage_collect(share_cache);
1045 }
1046 
1047 /**
1048  * Initialize global MR cache of a device.
1049  *
1050  * @param share_cache
1051  *   Pointer to a global shared MR cache.
1052  * @param socket
1053  *   NUMA socket on which memory must be allocated.
1054  *
1055  * @return
1056  *   0 on success, a negative errno value otherwise and rte_errno is set.
1057  */
1058 int
1059 mlx5_mr_create_cache(struct mlx5_mr_share_cache *share_cache, int socket)
1060 {
1061 	/* Set the reg_mr and dereg_mr callback functions */
1062 	mlx5_os_set_reg_mr_cb(&share_cache->reg_mr_cb,
1063 			      &share_cache->dereg_mr_cb);
1064 	rte_rwlock_init(&share_cache->rwlock);
1065 	rte_rwlock_init(&share_cache->mprwlock);
1066 	share_cache->mp_cb_registered = 0;
1067 	/* Initialize B-tree and allocate memory for global MR cache table. */
1068 	return mlx5_mr_btree_init(&share_cache->cache,
1069 				  MLX5_MR_BTREE_CACHE_N * 2, socket);
1070 }
1071 
1072 /**
1073  * Flush all of the local cache entries.
1074  *
1075  * @param mr_ctrl
1076  *   Pointer to per-queue MR local cache.
1077  */
1078 void
1079 mlx5_mr_flush_local_cache(struct mlx5_mr_ctrl *mr_ctrl)
1080 {
1081 	/* Reset the most-recently-used index. */
1082 	mr_ctrl->mru = 0;
1083 	/* Reset the linear search array. */
1084 	mr_ctrl->head = 0;
1085 	memset(mr_ctrl->cache, 0, sizeof(mr_ctrl->cache));
1086 	/* Reset the B-tree table. */
1087 	mr_ctrl->cache_bh.len = 1;
1088 	mr_ctrl->cache_bh.overflow = 0;
1089 	/* Update the generation number. */
1090 	mr_ctrl->cur_gen = *mr_ctrl->dev_gen_ptr;
1091 	DRV_LOG(DEBUG, "mr_ctrl(%p): flushed, cur_gen=%d",
1092 		(void *)mr_ctrl, mr_ctrl->cur_gen);
1093 }
1094 
1095 /**
1096  * Creates a memory region for external memory, that is memory which is not
1097  * part of the DPDK memory segments.
1098  *
1099  * @param pd
1100  *   Pointer to pd of a device (net, regex, vdpa,...).
1101  * @param addr
1102  *   Starting virtual address of memory.
1103  * @param len
1104  *   Length of memory segment being mapped.
1105  * @param socked_id
1106  *   Socket to allocate heap memory for the control structures.
1107  *
1108  * @return
1109  *   Pointer to MR structure on success, NULL otherwise.
1110  */
1111 struct mlx5_mr *
1112 mlx5_create_mr_ext(void *pd, uintptr_t addr, size_t len, int socket_id,
1113 		   mlx5_reg_mr_t reg_mr_cb)
1114 {
1115 	struct mlx5_mr *mr = NULL;
1116 
1117 	mr = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO,
1118 			 RTE_ALIGN_CEIL(sizeof(*mr), RTE_CACHE_LINE_SIZE),
1119 			 RTE_CACHE_LINE_SIZE, socket_id);
1120 	if (mr == NULL)
1121 		return NULL;
1122 	reg_mr_cb(pd, (void *)addr, len, &mr->pmd_mr);
1123 	if (mr->pmd_mr.obj == NULL) {
1124 		DRV_LOG(WARNING,
1125 			"Fail to create MR for address (%p)",
1126 			(void *)addr);
1127 		mlx5_free(mr);
1128 		return NULL;
1129 	}
1130 	mr->msl = NULL; /* Mark it is external memory. */
1131 	mr->ms_bmp = NULL;
1132 	mr->ms_n = 1;
1133 	mr->ms_bmp_n = 1;
1134 	DRV_LOG(DEBUG,
1135 		"MR CREATED (%p) for external memory %p:\n"
1136 		"  [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
1137 		" lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u",
1138 		(void *)mr, (void *)addr,
1139 		addr, addr + len, rte_cpu_to_be_32(mr->pmd_mr.lkey),
1140 		mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n);
1141 	return mr;
1142 }
1143 
1144 /**
1145  * Callback for memory free event. Iterate freed memsegs and check whether it
1146  * belongs to an existing MR. If found, clear the bit from bitmap of MR. As a
1147  * result, the MR would be fragmented. If it becomes empty, the MR will be freed
1148  * later by mlx5_mr_garbage_collect(). Even if this callback is called from a
1149  * secondary process, the garbage collector will be called in primary process
1150  * as the secondary process can't call mlx5_mr_create().
1151  *
1152  * The global cache must be rebuilt if there's any change and this event has to
1153  * be propagated to dataplane threads to flush the local caches.
1154  *
1155  * @param share_cache
1156  *   Pointer to a global shared MR cache.
1157  * @param ibdev_name
1158  *   Name of ibv device.
1159  * @param addr
1160  *   Address of freed memory.
1161  * @param len
1162  *   Size of freed memory.
1163  */
1164 void
1165 mlx5_free_mr_by_addr(struct mlx5_mr_share_cache *share_cache,
1166 		     const char *ibdev_name, const void *addr, size_t len)
1167 {
1168 	const struct rte_memseg_list *msl;
1169 	struct mlx5_mr *mr;
1170 	int ms_n;
1171 	int i;
1172 	int rebuild = 0;
1173 
1174 	DRV_LOG(DEBUG, "device %s free callback: addr=%p, len=%zu",
1175 		ibdev_name, addr, len);
1176 	msl = rte_mem_virt2memseg_list(addr);
1177 	/* addr and len must be page-aligned. */
1178 	MLX5_ASSERT((uintptr_t)addr ==
1179 		    RTE_ALIGN((uintptr_t)addr, msl->page_sz));
1180 	MLX5_ASSERT(len == RTE_ALIGN(len, msl->page_sz));
1181 	ms_n = len / msl->page_sz;
1182 	rte_rwlock_write_lock(&share_cache->rwlock);
1183 	/* Clear bits of freed memsegs from MR. */
1184 	for (i = 0; i < ms_n; ++i) {
1185 		const struct rte_memseg *ms;
1186 		struct mr_cache_entry entry;
1187 		uintptr_t start;
1188 		int ms_idx;
1189 		uint32_t pos;
1190 
1191 		/* Find MR having this memseg. */
1192 		start = (uintptr_t)addr + i * msl->page_sz;
1193 		mr = mlx5_mr_lookup_list(share_cache, &entry, start);
1194 		if (mr == NULL)
1195 			continue;
1196 		MLX5_ASSERT(mr->msl); /* Can't be external memory. */
1197 		ms = rte_mem_virt2memseg((void *)start, msl);
1198 		MLX5_ASSERT(ms != NULL);
1199 		MLX5_ASSERT(msl->page_sz == ms->hugepage_sz);
1200 		ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
1201 		pos = ms_idx - mr->ms_base_idx;
1202 		MLX5_ASSERT(rte_bitmap_get(mr->ms_bmp, pos));
1203 		MLX5_ASSERT(pos < mr->ms_bmp_n);
1204 		DRV_LOG(DEBUG, "device %s MR(%p): clear bitmap[%u] for addr %p",
1205 			ibdev_name, (void *)mr, pos, (void *)start);
1206 		rte_bitmap_clear(mr->ms_bmp, pos);
1207 		if (--mr->ms_n == 0) {
1208 			LIST_REMOVE(mr, mr);
1209 			LIST_INSERT_HEAD(&share_cache->mr_free_list, mr, mr);
1210 			DRV_LOG(DEBUG, "device %s remove MR(%p) from list",
1211 				ibdev_name, (void *)mr);
1212 		}
1213 		/*
1214 		 * MR is fragmented or will be freed. the global cache must be
1215 		 * rebuilt.
1216 		 */
1217 		rebuild = 1;
1218 	}
1219 	if (rebuild) {
1220 		mlx5_mr_rebuild_cache(share_cache);
1221 		/*
1222 		 * No explicit wmb is needed after updating dev_gen due to
1223 		 * store-release ordering in unlock that provides the
1224 		 * implicit barrier at the software visible level.
1225 		 */
1226 		++share_cache->dev_gen;
1227 		DRV_LOG(DEBUG, "broadcasting local cache flush, gen=%d",
1228 			share_cache->dev_gen);
1229 	}
1230 	rte_rwlock_write_unlock(&share_cache->rwlock);
1231 }
1232 
1233 /**
1234  * Dump all the created MRs and the global cache entries.
1235  *
1236  * @param share_cache
1237  *   Pointer to a global shared MR cache.
1238  */
1239 void
1240 mlx5_mr_dump_cache(struct mlx5_mr_share_cache *share_cache __rte_unused)
1241 {
1242 #ifdef RTE_LIBRTE_MLX5_DEBUG
1243 	struct mlx5_mr *mr;
1244 	int mr_n = 0;
1245 	int chunk_n = 0;
1246 
1247 	rte_rwlock_read_lock(&share_cache->rwlock);
1248 	/* Iterate all the existing MRs. */
1249 	LIST_FOREACH(mr, &share_cache->mr_list, mr) {
1250 		unsigned int n;
1251 
1252 		DRV_LOG(DEBUG, "MR[%u], LKey = 0x%x, ms_n = %u, ms_bmp_n = %u",
1253 		      mr_n++, rte_cpu_to_be_32(mr->pmd_mr.lkey),
1254 		      mr->ms_n, mr->ms_bmp_n);
1255 		if (mr->ms_n == 0)
1256 			continue;
1257 		for (n = 0; n < mr->ms_bmp_n; ) {
1258 			struct mr_cache_entry ret = { 0, };
1259 
1260 			n = mr_find_next_chunk(mr, &ret, n);
1261 			if (!ret.end)
1262 				break;
1263 			DRV_LOG(DEBUG,
1264 				"  chunk[%u], [0x%" PRIxPTR ", 0x%" PRIxPTR ")",
1265 				chunk_n++, ret.start, ret.end);
1266 		}
1267 	}
1268 	DRV_LOG(DEBUG, "Dumping global cache %p", (void *)share_cache);
1269 	mlx5_mr_btree_dump(&share_cache->cache);
1270 	rte_rwlock_read_unlock(&share_cache->rwlock);
1271 #endif
1272 }
1273 
1274 static int
1275 mlx5_range_compare_start(const void *lhs, const void *rhs)
1276 {
1277 	const struct mlx5_range *r1 = lhs, *r2 = rhs;
1278 
1279 	if (r1->start > r2->start)
1280 		return 1;
1281 	else if (r1->start < r2->start)
1282 		return -1;
1283 	return 0;
1284 }
1285 
1286 static void
1287 mlx5_range_from_mempool_chunk(struct rte_mempool *mp, void *opaque,
1288 			      struct rte_mempool_memhdr *memhdr,
1289 			      unsigned int idx)
1290 {
1291 	struct mlx5_range *ranges = opaque, *range = &ranges[idx];
1292 	uint64_t page_size = rte_mem_page_size();
1293 
1294 	RTE_SET_USED(mp);
1295 	range->start = RTE_ALIGN_FLOOR((uintptr_t)memhdr->addr, page_size);
1296 	range->end = RTE_ALIGN_CEIL(range->start + memhdr->len, page_size);
1297 }
1298 
1299 /**
1300  * Collect page-aligned memory ranges of the mempool.
1301  */
1302 static int
1303 mlx5_mempool_get_chunks(struct rte_mempool *mp, struct mlx5_range **out,
1304 			unsigned int *out_n)
1305 {
1306 	unsigned int n;
1307 
1308 	DRV_LOG(DEBUG, "Collecting chunks of regular mempool %s", mp->name);
1309 	n = mp->nb_mem_chunks;
1310 	*out = calloc(sizeof(**out), n);
1311 	if (*out == NULL)
1312 		return -1;
1313 	rte_mempool_mem_iter(mp, mlx5_range_from_mempool_chunk, *out);
1314 	*out_n = n;
1315 	return 0;
1316 }
1317 
1318 struct mlx5_mempool_get_extmem_data {
1319 	struct mlx5_range *heap;
1320 	unsigned int heap_size;
1321 	int ret;
1322 };
1323 
1324 static void
1325 mlx5_mempool_get_extmem_cb(struct rte_mempool *mp, void *opaque,
1326 			   void *obj, unsigned int obj_idx)
1327 {
1328 	struct mlx5_mempool_get_extmem_data *data = opaque;
1329 	struct rte_mbuf *mbuf = obj;
1330 	uintptr_t addr = (uintptr_t)mbuf->buf_addr;
1331 	struct mlx5_range *seg, *heap;
1332 	struct rte_memseg_list *msl;
1333 	size_t page_size;
1334 	uintptr_t page_start;
1335 	unsigned int pos = 0, len = data->heap_size, delta;
1336 
1337 	RTE_SET_USED(mp);
1338 	RTE_SET_USED(obj_idx);
1339 	if (data->ret < 0)
1340 		return;
1341 	/* Binary search for an already visited page. */
1342 	while (len > 1) {
1343 		delta = len / 2;
1344 		if (addr < data->heap[pos + delta].start) {
1345 			len = delta;
1346 		} else {
1347 			pos += delta;
1348 			len -= delta;
1349 		}
1350 	}
1351 	if (data->heap != NULL) {
1352 		seg = &data->heap[pos];
1353 		if (seg->start <= addr && addr < seg->end)
1354 			return;
1355 	}
1356 	/* Determine the page boundaries and remember them. */
1357 	heap = realloc(data->heap, sizeof(heap[0]) * (data->heap_size + 1));
1358 	if (heap == NULL) {
1359 		free(data->heap);
1360 		data->heap = NULL;
1361 		data->ret = -1;
1362 		return;
1363 	}
1364 	data->heap = heap;
1365 	data->heap_size++;
1366 	seg = &heap[data->heap_size - 1];
1367 	msl = rte_mem_virt2memseg_list((void *)addr);
1368 	page_size = msl != NULL ? msl->page_sz : rte_mem_page_size();
1369 	page_start = RTE_PTR_ALIGN_FLOOR(addr, page_size);
1370 	seg->start = page_start;
1371 	seg->end = page_start + page_size;
1372 	/* Maintain the heap order. */
1373 	qsort(data->heap, data->heap_size, sizeof(heap[0]),
1374 	      mlx5_range_compare_start);
1375 }
1376 
1377 /**
1378  * Recover pages of external memory as close as possible
1379  * for a mempool with RTE_PKTMBUF_POOL_PINNED_EXT_BUF.
1380  * Pages are stored in a heap for efficient search, for mbufs are many.
1381  */
1382 static int
1383 mlx5_mempool_get_extmem(struct rte_mempool *mp, struct mlx5_range **out,
1384 			unsigned int *out_n)
1385 {
1386 	struct mlx5_mempool_get_extmem_data data;
1387 
1388 	DRV_LOG(DEBUG, "Recovering external pinned pages of mempool %s",
1389 		mp->name);
1390 	memset(&data, 0, sizeof(data));
1391 	rte_mempool_obj_iter(mp, mlx5_mempool_get_extmem_cb, &data);
1392 	*out = data.heap;
1393 	*out_n = data.heap_size;
1394 	return data.ret;
1395 }
1396 
1397 /**
1398  * Get VA-contiguous ranges of the mempool memory.
1399  * Each range start and end is aligned to the system page size.
1400  *
1401  * @param[in] mp
1402  *   Analyzed mempool.
1403  * @param[in] is_extmem
1404  *   Whether the pool is contains only external pinned buffers.
1405  * @param[out] out
1406  *   Receives the ranges, caller must release it with free().
1407  * @param[out] out_n
1408  *   Receives the number of @p out elements.
1409  *
1410  * @return
1411  *   0 on success, (-1) on failure.
1412  */
1413 static int
1414 mlx5_get_mempool_ranges(struct rte_mempool *mp, bool is_extmem,
1415 			struct mlx5_range **out, unsigned int *out_n)
1416 {
1417 	struct mlx5_range *chunks;
1418 	unsigned int chunks_n, contig_n, i;
1419 	int ret;
1420 
1421 	/* Collect the pool underlying memory. */
1422 	ret = is_extmem ? mlx5_mempool_get_extmem(mp, &chunks, &chunks_n) :
1423 			  mlx5_mempool_get_chunks(mp, &chunks, &chunks_n);
1424 	if (ret < 0)
1425 		return ret;
1426 	/* Merge adjacent chunks and place them at the beginning. */
1427 	qsort(chunks, chunks_n, sizeof(chunks[0]), mlx5_range_compare_start);
1428 	contig_n = 1;
1429 	for (i = 1; i < chunks_n; i++)
1430 		if (chunks[i - 1].end != chunks[i].start) {
1431 			chunks[contig_n - 1].end = chunks[i - 1].end;
1432 			chunks[contig_n] = chunks[i];
1433 			contig_n++;
1434 		}
1435 	/* Extend the last contiguous chunk to the end of the mempool. */
1436 	chunks[contig_n - 1].end = chunks[i - 1].end;
1437 	*out = chunks;
1438 	*out_n = contig_n;
1439 	return 0;
1440 }
1441 
1442 /**
1443  * Analyze mempool memory to select memory ranges to register.
1444  *
1445  * @param[in] mp
1446  *   Mempool to analyze.
1447  * @param[in] is_extmem
1448  *   Whether the pool is contains only external pinned buffers.
1449  * @param[out] out
1450  *   Receives memory ranges to register, aligned to the system page size.
1451  *   The caller must release them with free().
1452  * @param[out] out_n
1453  *   Receives the number of @p out items.
1454  * @param[out] share_hugepage
1455  *   Receives True if the entire pool resides within a single hugepage.
1456  *
1457  * @return
1458  *   0 on success, (-1) on failure.
1459  */
1460 static int
1461 mlx5_mempool_reg_analyze(struct rte_mempool *mp, bool is_extmem,
1462 			 struct mlx5_range **out, unsigned int *out_n,
1463 			 bool *share_hugepage)
1464 {
1465 	struct mlx5_range *ranges = NULL;
1466 	unsigned int i, ranges_n = 0;
1467 	struct rte_memseg_list *msl;
1468 
1469 	if (mlx5_get_mempool_ranges(mp, is_extmem, &ranges, &ranges_n) < 0) {
1470 		DRV_LOG(ERR, "Cannot get address ranges for mempool %s",
1471 			mp->name);
1472 		return -1;
1473 	}
1474 	/* Check if the hugepage of the pool can be shared. */
1475 	*share_hugepage = false;
1476 	msl = rte_mem_virt2memseg_list((void *)ranges[0].start);
1477 	if (msl != NULL) {
1478 		uint64_t hugepage_sz = 0;
1479 
1480 		/* Check that all ranges are on pages of the same size. */
1481 		for (i = 0; i < ranges_n; i++) {
1482 			if (hugepage_sz != 0 && hugepage_sz != msl->page_sz)
1483 				break;
1484 			hugepage_sz = msl->page_sz;
1485 		}
1486 		if (i == ranges_n) {
1487 			/*
1488 			 * If the entire pool is within one hugepage,
1489 			 * combine all ranges into one of the hugepage size.
1490 			 */
1491 			uintptr_t reg_start = ranges[0].start;
1492 			uintptr_t reg_end = ranges[ranges_n - 1].end;
1493 			uintptr_t hugepage_start =
1494 				RTE_ALIGN_FLOOR(reg_start, hugepage_sz);
1495 			uintptr_t hugepage_end = hugepage_start + hugepage_sz;
1496 			if (reg_end < hugepage_end) {
1497 				ranges[0].start = hugepage_start;
1498 				ranges[0].end = hugepage_end;
1499 				ranges_n = 1;
1500 				*share_hugepage = true;
1501 			}
1502 		}
1503 	}
1504 	*out = ranges;
1505 	*out_n = ranges_n;
1506 	return 0;
1507 }
1508 
1509 /** Create a registration object for the mempool. */
1510 static struct mlx5_mempool_reg *
1511 mlx5_mempool_reg_create(struct rte_mempool *mp, unsigned int mrs_n,
1512 			bool is_extmem)
1513 {
1514 	struct mlx5_mempool_reg *mpr = NULL;
1515 
1516 	mpr = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO,
1517 			  sizeof(struct mlx5_mempool_reg),
1518 			  RTE_CACHE_LINE_SIZE, SOCKET_ID_ANY);
1519 	if (mpr == NULL) {
1520 		DRV_LOG(ERR, "Cannot allocate mempool %s registration object",
1521 			mp->name);
1522 		return NULL;
1523 	}
1524 	mpr->mrs = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO,
1525 			       mrs_n * sizeof(struct mlx5_mempool_mr),
1526 			       RTE_CACHE_LINE_SIZE, SOCKET_ID_ANY);
1527 	if (!mpr->mrs) {
1528 		DRV_LOG(ERR, "Cannot allocate mempool %s registration MRs",
1529 			mp->name);
1530 		mlx5_free(mpr);
1531 		return NULL;
1532 	}
1533 	mpr->mp = mp;
1534 	mpr->mrs_n = mrs_n;
1535 	mpr->is_extmem = is_extmem;
1536 	return mpr;
1537 }
1538 
1539 /**
1540  * Destroy a mempool registration object.
1541  *
1542  * @param standalone
1543  *   Whether @p mpr owns its MRs exclusively, i.e. they are not shared.
1544  */
1545 static void
1546 mlx5_mempool_reg_destroy(struct mlx5_mr_share_cache *share_cache,
1547 			 struct mlx5_mempool_reg *mpr, bool standalone)
1548 {
1549 	if (standalone) {
1550 		unsigned int i;
1551 
1552 		for (i = 0; i < mpr->mrs_n; i++)
1553 			share_cache->dereg_mr_cb(&mpr->mrs[i].pmd_mr);
1554 		mlx5_free(mpr->mrs);
1555 	}
1556 	mlx5_free(mpr);
1557 }
1558 
1559 /** Find registration object of a mempool. */
1560 static struct mlx5_mempool_reg *
1561 mlx5_mempool_reg_lookup(struct mlx5_mr_share_cache *share_cache,
1562 			struct rte_mempool *mp)
1563 {
1564 	struct mlx5_mempool_reg *mpr;
1565 
1566 	LIST_FOREACH(mpr, &share_cache->mempool_reg_list, next)
1567 		if (mpr->mp == mp)
1568 			break;
1569 	return mpr;
1570 }
1571 
1572 /** Increment reference counters of MRs used in the registration. */
1573 static void
1574 mlx5_mempool_reg_attach(struct mlx5_mempool_reg *mpr)
1575 {
1576 	unsigned int i;
1577 
1578 	for (i = 0; i < mpr->mrs_n; i++)
1579 		__atomic_add_fetch(&mpr->mrs[i].refcnt, 1, __ATOMIC_RELAXED);
1580 }
1581 
1582 /**
1583  * Decrement reference counters of MRs used in the registration.
1584  *
1585  * @return True if no more references to @p mpr MRs exist, False otherwise.
1586  */
1587 static bool
1588 mlx5_mempool_reg_detach(struct mlx5_mempool_reg *mpr)
1589 {
1590 	unsigned int i;
1591 	bool ret = false;
1592 
1593 	for (i = 0; i < mpr->mrs_n; i++)
1594 		ret |= __atomic_sub_fetch(&mpr->mrs[i].refcnt, 1,
1595 					  __ATOMIC_RELAXED) == 0;
1596 	return ret;
1597 }
1598 
1599 static int
1600 mlx5_mr_mempool_register_primary(struct mlx5_mr_share_cache *share_cache,
1601 				 void *pd, struct rte_mempool *mp,
1602 				 bool is_extmem)
1603 {
1604 	struct mlx5_range *ranges = NULL;
1605 	struct mlx5_mempool_reg *mpr, *old_mpr, *new_mpr;
1606 	unsigned int i, ranges_n;
1607 	bool share_hugepage, standalone = false;
1608 	int ret = -1;
1609 
1610 	/* Early check to avoid unnecessary creation of MRs. */
1611 	rte_rwlock_read_lock(&share_cache->rwlock);
1612 	old_mpr = mlx5_mempool_reg_lookup(share_cache, mp);
1613 	rte_rwlock_read_unlock(&share_cache->rwlock);
1614 	if (old_mpr != NULL && (!is_extmem || old_mpr->is_extmem)) {
1615 		DRV_LOG(DEBUG, "Mempool %s is already registered for PD %p",
1616 			mp->name, pd);
1617 		rte_errno = EEXIST;
1618 		goto exit;
1619 	}
1620 	if (mlx5_mempool_reg_analyze(mp, is_extmem, &ranges, &ranges_n,
1621 				     &share_hugepage) < 0) {
1622 		DRV_LOG(ERR, "Cannot get mempool %s memory ranges", mp->name);
1623 		rte_errno = ENOMEM;
1624 		goto exit;
1625 	}
1626 	new_mpr = mlx5_mempool_reg_create(mp, ranges_n, is_extmem);
1627 	if (new_mpr == NULL) {
1628 		DRV_LOG(ERR,
1629 			"Cannot create a registration object for mempool %s in PD %p",
1630 			mp->name, pd);
1631 		rte_errno = ENOMEM;
1632 		goto exit;
1633 	}
1634 	/*
1635 	 * If the entire mempool fits in a single hugepage, the MR for this
1636 	 * hugepage can be shared across mempools that also fit in it.
1637 	 */
1638 	if (share_hugepage) {
1639 		rte_rwlock_write_lock(&share_cache->rwlock);
1640 		LIST_FOREACH(mpr, &share_cache->mempool_reg_list, next) {
1641 			if (mpr->mrs[0].pmd_mr.addr == (void *)ranges[0].start)
1642 				break;
1643 		}
1644 		if (mpr != NULL) {
1645 			new_mpr->mrs = mpr->mrs;
1646 			mlx5_mempool_reg_attach(new_mpr);
1647 			LIST_INSERT_HEAD(&share_cache->mempool_reg_list,
1648 					 new_mpr, next);
1649 		}
1650 		rte_rwlock_write_unlock(&share_cache->rwlock);
1651 		if (mpr != NULL) {
1652 			DRV_LOG(DEBUG, "Shared MR %#x in PD %p for mempool %s with mempool %s",
1653 				mpr->mrs[0].pmd_mr.lkey, pd, mp->name,
1654 				mpr->mp->name);
1655 			ret = 0;
1656 			goto exit;
1657 		}
1658 	}
1659 	for (i = 0; i < ranges_n; i++) {
1660 		struct mlx5_mempool_mr *mr = &new_mpr->mrs[i];
1661 		const struct mlx5_range *range = &ranges[i];
1662 		size_t len = range->end - range->start;
1663 
1664 		if (share_cache->reg_mr_cb(pd, (void *)range->start, len,
1665 		    &mr->pmd_mr) < 0) {
1666 			DRV_LOG(ERR,
1667 				"Failed to create an MR in PD %p for address range "
1668 				"[0x%" PRIxPTR ", 0x%" PRIxPTR "] (%zu bytes) for mempool %s",
1669 				pd, range->start, range->end, len, mp->name);
1670 			break;
1671 		}
1672 		DRV_LOG(DEBUG,
1673 			"Created a new MR %#x in PD %p for address range "
1674 			"[0x%" PRIxPTR ", 0x%" PRIxPTR "] (%zu bytes) for mempool %s",
1675 			mr->pmd_mr.lkey, pd, range->start, range->end, len,
1676 			mp->name);
1677 	}
1678 	if (i != ranges_n) {
1679 		mlx5_mempool_reg_destroy(share_cache, new_mpr, true);
1680 		rte_errno = EINVAL;
1681 		goto exit;
1682 	}
1683 	/* Concurrent registration is not supposed to happen. */
1684 	rte_rwlock_write_lock(&share_cache->rwlock);
1685 	mpr = mlx5_mempool_reg_lookup(share_cache, mp);
1686 	if (mpr == old_mpr && old_mpr != NULL) {
1687 		LIST_REMOVE(old_mpr, next);
1688 		standalone = mlx5_mempool_reg_detach(mpr);
1689 		/* No need to flush the cache: old MRs cannot be in use. */
1690 		mpr = NULL;
1691 	}
1692 	if (mpr == NULL) {
1693 		mlx5_mempool_reg_attach(new_mpr);
1694 		LIST_INSERT_HEAD(&share_cache->mempool_reg_list, new_mpr, next);
1695 		ret = 0;
1696 	}
1697 	rte_rwlock_write_unlock(&share_cache->rwlock);
1698 	if (mpr != NULL) {
1699 		DRV_LOG(DEBUG, "Mempool %s is already registered for PD %p",
1700 			mp->name, pd);
1701 		mlx5_mempool_reg_destroy(share_cache, new_mpr, true);
1702 		rte_errno = EEXIST;
1703 		goto exit;
1704 	} else if (old_mpr != NULL) {
1705 		DRV_LOG(DEBUG, "Mempool %s registration for PD %p updated for external memory",
1706 			mp->name, pd);
1707 		mlx5_mempool_reg_destroy(share_cache, old_mpr, standalone);
1708 	}
1709 exit:
1710 	free(ranges);
1711 	return ret;
1712 }
1713 
1714 static int
1715 mlx5_mr_mempool_register_secondary(struct mlx5_common_device *cdev,
1716 				   struct rte_mempool *mp, bool is_extmem)
1717 {
1718 	return mlx5_mp_req_mempool_reg(cdev, mp, true, is_extmem);
1719 }
1720 
1721 /**
1722  * Register the memory of a mempool in the protection domain.
1723  *
1724  * @param cdev
1725  *   Pointer to the mlx5 common device.
1726  * @param mp
1727  *   Mempool to register.
1728  *
1729  * @return
1730  *   0 on success, (-1) on failure and rte_errno is set.
1731  */
1732 int
1733 mlx5_mr_mempool_register(struct mlx5_common_device *cdev,
1734 			 struct rte_mempool *mp, bool is_extmem)
1735 {
1736 	if (mp->flags & RTE_MEMPOOL_F_NON_IO)
1737 		return 0;
1738 	switch (rte_eal_process_type()) {
1739 	case RTE_PROC_PRIMARY:
1740 		return mlx5_mr_mempool_register_primary(&cdev->mr_scache,
1741 							cdev->pd, mp,
1742 							is_extmem);
1743 	case RTE_PROC_SECONDARY:
1744 		return mlx5_mr_mempool_register_secondary(cdev, mp, is_extmem);
1745 	default:
1746 		return -1;
1747 	}
1748 }
1749 
1750 static int
1751 mlx5_mr_mempool_unregister_primary(struct mlx5_mr_share_cache *share_cache,
1752 				   struct rte_mempool *mp)
1753 {
1754 	struct mlx5_mempool_reg *mpr;
1755 	bool standalone = false;
1756 
1757 	rte_rwlock_write_lock(&share_cache->rwlock);
1758 	LIST_FOREACH(mpr, &share_cache->mempool_reg_list, next)
1759 		if (mpr->mp == mp) {
1760 			LIST_REMOVE(mpr, next);
1761 			standalone = mlx5_mempool_reg_detach(mpr);
1762 			if (standalone)
1763 				/*
1764 				 * The unlock operation below provides a memory
1765 				 * barrier due to its store-release semantics.
1766 				 */
1767 				++share_cache->dev_gen;
1768 			break;
1769 		}
1770 	rte_rwlock_write_unlock(&share_cache->rwlock);
1771 	if (mpr == NULL) {
1772 		rte_errno = ENOENT;
1773 		return -1;
1774 	}
1775 	mlx5_mempool_reg_destroy(share_cache, mpr, standalone);
1776 	return 0;
1777 }
1778 
1779 static int
1780 mlx5_mr_mempool_unregister_secondary(struct mlx5_common_device *cdev,
1781 				     struct rte_mempool *mp)
1782 {
1783 	return mlx5_mp_req_mempool_reg(cdev, mp, false, false /* is_extmem */);
1784 }
1785 
1786 /**
1787  * Unregister the memory of a mempool from the protection domain.
1788  *
1789  * @param cdev
1790  *   Pointer to the mlx5 common device.
1791  * @param mp
1792  *   Mempool to unregister.
1793  *
1794  * @return
1795  *   0 on success, (-1) on failure and rte_errno is set.
1796  */
1797 int
1798 mlx5_mr_mempool_unregister(struct mlx5_common_device *cdev,
1799 			   struct rte_mempool *mp)
1800 {
1801 	if (mp->flags & RTE_MEMPOOL_F_NON_IO)
1802 		return 0;
1803 	switch (rte_eal_process_type()) {
1804 	case RTE_PROC_PRIMARY:
1805 		return mlx5_mr_mempool_unregister_primary(&cdev->mr_scache, mp);
1806 	case RTE_PROC_SECONDARY:
1807 		return mlx5_mr_mempool_unregister_secondary(cdev, mp);
1808 	default:
1809 		return -1;
1810 	}
1811 }
1812 
1813 /**
1814  * Lookup a MR key by and address in a registered mempool.
1815  *
1816  * @param mpr
1817  *   Mempool registration object.
1818  * @param addr
1819  *   Address within the mempool.
1820  * @param entry
1821  *   Bottom-half cache entry to fill.
1822  *
1823  * @return
1824  *   MR key or UINT32_MAX on failure, which can only happen
1825  *   if the address is not from within the mempool.
1826  */
1827 static uint32_t
1828 mlx5_mempool_reg_addr2mr(struct mlx5_mempool_reg *mpr, uintptr_t addr,
1829 			 struct mr_cache_entry *entry)
1830 {
1831 	uint32_t lkey = UINT32_MAX;
1832 	unsigned int i;
1833 
1834 	for (i = 0; i < mpr->mrs_n; i++) {
1835 		const struct mlx5_pmd_mr *mr = &mpr->mrs[i].pmd_mr;
1836 		uintptr_t mr_start = (uintptr_t)mr->addr;
1837 		uintptr_t mr_end = mr_start + mr->len;
1838 
1839 		if (mr_start <= addr && addr < mr_end) {
1840 			lkey = rte_cpu_to_be_32(mr->lkey);
1841 			entry->start = mr_start;
1842 			entry->end = mr_end;
1843 			entry->lkey = lkey;
1844 			break;
1845 		}
1846 	}
1847 	return lkey;
1848 }
1849 
1850 /**
1851  * Update bottom-half cache from the list of mempool registrations.
1852  *
1853  * @param mr_ctrl
1854  *   Per-queue MR control handle.
1855  * @param entry
1856  *   Pointer to an entry in the bottom-half cache to update
1857  *   with the MR lkey looked up.
1858  * @param mp
1859  *   Mempool containing the address.
1860  * @param addr
1861  *   Address to lookup.
1862  * @return
1863  *   MR lkey on success, UINT32_MAX on failure.
1864  */
1865 static uint32_t
1866 mlx5_lookup_mempool_regs(struct mlx5_mr_ctrl *mr_ctrl,
1867 			 struct mr_cache_entry *entry,
1868 			 struct rte_mempool *mp, uintptr_t addr)
1869 {
1870 	struct mlx5_mr_share_cache *share_cache =
1871 		container_of(mr_ctrl->dev_gen_ptr, struct mlx5_mr_share_cache,
1872 			     dev_gen);
1873 	struct mlx5_mr_btree *bt = &mr_ctrl->cache_bh;
1874 	struct mlx5_mempool_reg *mpr;
1875 	uint32_t lkey = UINT32_MAX;
1876 
1877 	/* If local cache table is full, try to double it. */
1878 	if (unlikely(bt->len == bt->size))
1879 		mr_btree_expand(bt, bt->size << 1);
1880 	/* Look up in mempool registrations. */
1881 	rte_rwlock_read_lock(&share_cache->rwlock);
1882 	mpr = mlx5_mempool_reg_lookup(share_cache, mp);
1883 	if (mpr != NULL)
1884 		lkey = mlx5_mempool_reg_addr2mr(mpr, addr, entry);
1885 	rte_rwlock_read_unlock(&share_cache->rwlock);
1886 	/*
1887 	 * Update local cache. Even if it fails, return the found entry
1888 	 * to update top-half cache. Next time, this entry will be found
1889 	 * in the global cache.
1890 	 */
1891 	if (lkey != UINT32_MAX)
1892 		mr_btree_insert(bt, entry);
1893 	return lkey;
1894 }
1895 
1896 /**
1897  * Populate cache with LKeys of all MRs used by the mempool.
1898  * It is intended to be used to register Rx mempools in advance.
1899  *
1900  * @param mr_ctrl
1901  *  Per-queue MR control handle.
1902  * @param mp
1903  *  Registered memory pool.
1904  *
1905  * @return
1906  *  0 on success, (-1) on failure and rte_errno is set.
1907  */
1908 int
1909 mlx5_mr_mempool_populate_cache(struct mlx5_mr_ctrl *mr_ctrl,
1910 			       struct rte_mempool *mp)
1911 {
1912 	struct mlx5_mr_share_cache *share_cache =
1913 		container_of(mr_ctrl->dev_gen_ptr, struct mlx5_mr_share_cache,
1914 			     dev_gen);
1915 	struct mlx5_mr_btree *bt = &mr_ctrl->cache_bh;
1916 	struct mlx5_mempool_reg *mpr;
1917 	unsigned int i;
1918 
1919 	/*
1920 	 * Registration is valid after the lock is released,
1921 	 * because the function is called after the mempool is registered.
1922 	 */
1923 	rte_rwlock_read_lock(&share_cache->rwlock);
1924 	mpr = mlx5_mempool_reg_lookup(share_cache, mp);
1925 	rte_rwlock_read_unlock(&share_cache->rwlock);
1926 	if (mpr == NULL) {
1927 		DRV_LOG(ERR, "Mempool %s is not registered", mp->name);
1928 		rte_errno = ENOENT;
1929 		return -1;
1930 	}
1931 	for (i = 0; i < mpr->mrs_n; i++) {
1932 		struct mlx5_mempool_mr *mr = &mpr->mrs[i];
1933 		struct mr_cache_entry entry;
1934 		uint32_t lkey;
1935 		uint16_t idx;
1936 
1937 		lkey = mr_btree_lookup(bt, &idx, (uintptr_t)mr->pmd_mr.addr);
1938 		if (lkey != UINT32_MAX)
1939 			continue;
1940 		if (bt->len == bt->size)
1941 			mr_btree_expand(bt, bt->size << 1);
1942 		entry.start = (uintptr_t)mr->pmd_mr.addr;
1943 		entry.end = entry.start + mr->pmd_mr.len;
1944 		entry.lkey = rte_cpu_to_be_32(mr->pmd_mr.lkey);
1945 		if (mr_btree_insert(bt, &entry) < 0) {
1946 			DRV_LOG(ERR, "Cannot insert cache entry for mempool %s MR %08x",
1947 				mp->name, entry.lkey);
1948 			rte_errno = EINVAL;
1949 			return -1;
1950 		}
1951 	}
1952 	return 0;
1953 }
1954 
1955 /**
1956  * Bottom-half lookup for the address from the mempool.
1957  *
1958  * @param mr_ctrl
1959  *   Per-queue MR control handle.
1960  * @param mp
1961  *   Mempool containing the address.
1962  * @param addr
1963  *   Address to lookup.
1964  * @return
1965  *   MR lkey on success, UINT32_MAX on failure.
1966  */
1967 uint32_t
1968 mlx5_mr_mempool2mr_bh(struct mlx5_mr_ctrl *mr_ctrl,
1969 		      struct rte_mempool *mp, uintptr_t addr)
1970 {
1971 	struct mr_cache_entry *repl = &mr_ctrl->cache[mr_ctrl->head];
1972 	uint32_t lkey;
1973 	uint16_t bh_idx = 0;
1974 
1975 	/* Binary-search MR translation table. */
1976 	lkey = mr_btree_lookup(&mr_ctrl->cache_bh, &bh_idx, addr);
1977 	/* Update top-half cache. */
1978 	if (likely(lkey != UINT32_MAX)) {
1979 		*repl = (*mr_ctrl->cache_bh.table)[bh_idx];
1980 	} else {
1981 		lkey = mlx5_lookup_mempool_regs(mr_ctrl, repl, mp, addr);
1982 		/* Can only fail if the address is not from the mempool. */
1983 		if (unlikely(lkey == UINT32_MAX))
1984 			return UINT32_MAX;
1985 	}
1986 	/* Update the most recently used entry. */
1987 	mr_ctrl->mru = mr_ctrl->head;
1988 	/* Point to the next victim, the oldest. */
1989 	mr_ctrl->head = (mr_ctrl->head + 1) % MLX5_MR_CACHE_N;
1990 	return lkey;
1991 }
1992 
1993 uint32_t
1994 mlx5_mr_mb2mr_bh(struct mlx5_mr_ctrl *mr_ctrl, struct rte_mbuf *mb)
1995 {
1996 	struct rte_mempool *mp;
1997 	struct mlx5_mprq_buf *buf;
1998 	uint32_t lkey;
1999 	uintptr_t addr = (uintptr_t)mb->buf_addr;
2000 	struct mlx5_mr_share_cache *share_cache =
2001 		container_of(mr_ctrl->dev_gen_ptr, struct mlx5_mr_share_cache,
2002 			     dev_gen);
2003 	struct mlx5_common_device *cdev =
2004 		container_of(share_cache, struct mlx5_common_device, mr_scache);
2005 	bool external, mprq, pinned = false;
2006 
2007 	/* Recover MPRQ mempool. */
2008 	external = RTE_MBUF_HAS_EXTBUF(mb);
2009 	if (external && mb->shinfo->free_cb == mlx5_mprq_buf_free_cb) {
2010 		mprq = true;
2011 		buf = mb->shinfo->fcb_opaque;
2012 		mp = buf->mp;
2013 	} else {
2014 		mprq = false;
2015 		mp = mlx5_mb2mp(mb);
2016 		pinned = rte_pktmbuf_priv_flags(mp) &
2017 			 RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF;
2018 	}
2019 	if (!external || mprq || pinned) {
2020 		lkey = mlx5_mr_mempool2mr_bh(mr_ctrl, mp, addr);
2021 		if (lkey != UINT32_MAX)
2022 			return lkey;
2023 		/* MPRQ is always registered. */
2024 		MLX5_ASSERT(!mprq);
2025 	}
2026 	/* Register pinned external memory if the mempool is not used for Rx. */
2027 	if (cdev->config.mr_mempool_reg_en && pinned) {
2028 		if (mlx5_mr_mempool_register(cdev, mp, true) < 0)
2029 			return UINT32_MAX;
2030 		lkey = mlx5_mr_mempool2mr_bh(mr_ctrl, mp, addr);
2031 		MLX5_ASSERT(lkey != UINT32_MAX);
2032 		return lkey;
2033 	}
2034 	/* Fallback to generic mechanism in corner cases. */
2035 	return mlx5_mr_addr2mr_bh(mr_ctrl, addr);
2036 }
2037