xref: /dpdk/drivers/common/mlx5/mlx5_common_mr.c (revision 0dff3f26d6faad4e51f75e5245f0387ee9bb0c6d)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2020 Mellanox Technologies, Ltd
4  */
5 #include <stddef.h>
6 
7 #include <rte_eal_memconfig.h>
8 #include <rte_eal_paging.h>
9 #include <rte_errno.h>
10 #include <rte_mempool.h>
11 #include <rte_malloc.h>
12 #include <rte_rwlock.h>
13 
14 #include "mlx5_glue.h"
15 #include "mlx5_common.h"
16 #include "mlx5_common_mp.h"
17 #include "mlx5_common_mr.h"
18 #include "mlx5_common_os.h"
19 #include "mlx5_common_log.h"
20 #include "mlx5_malloc.h"
21 
22 struct mr_find_contig_memsegs_data {
23 	uintptr_t addr;
24 	uintptr_t start;
25 	uintptr_t end;
26 	const struct rte_memseg_list *msl;
27 };
28 
29 /* Virtual memory range. */
30 struct mlx5_range {
31 	uintptr_t start;
32 	uintptr_t end;
33 };
34 
35 /** Memory region for a mempool. */
36 struct mlx5_mempool_mr {
37 	struct mlx5_pmd_mr pmd_mr;
38 	uint32_t refcnt; /**< Number of mempools sharing this MR. */
39 };
40 
41 /* Mempool registration. */
42 struct mlx5_mempool_reg {
43 	LIST_ENTRY(mlx5_mempool_reg) next;
44 	/** Registered mempool, used to designate registrations. */
45 	struct rte_mempool *mp;
46 	/** Memory regions for the address ranges of the mempool. */
47 	struct mlx5_mempool_mr *mrs;
48 	/** Number of memory regions. */
49 	unsigned int mrs_n;
50 	/** Whether the MR were created for external pinned memory. */
51 	bool is_extmem;
52 };
53 
54 void
55 mlx5_mprq_buf_free_cb(void *addr __rte_unused, void *opaque)
56 {
57 	struct mlx5_mprq_buf *buf = opaque;
58 
59 	if (__atomic_load_n(&buf->refcnt, __ATOMIC_RELAXED) == 1) {
60 		rte_mempool_put(buf->mp, buf);
61 	} else if (unlikely(__atomic_sub_fetch(&buf->refcnt, 1,
62 					       __ATOMIC_RELAXED) == 0)) {
63 		__atomic_store_n(&buf->refcnt, 1, __ATOMIC_RELAXED);
64 		rte_mempool_put(buf->mp, buf);
65 	}
66 }
67 
68 /**
69  * Expand B-tree table to a given size. Can't be called with holding
70  * memory_hotplug_lock or share_cache.rwlock due to rte_realloc().
71  *
72  * @param bt
73  *   Pointer to B-tree structure.
74  * @param n
75  *   Number of entries for expansion.
76  *
77  * @return
78  *   0 on success, -1 on failure.
79  */
80 static int
81 mr_btree_expand(struct mlx5_mr_btree *bt, int n)
82 {
83 	void *mem;
84 	int ret = 0;
85 
86 	if (n <= bt->size)
87 		return ret;
88 	/*
89 	 * Downside of directly using rte_realloc() is that SOCKET_ID_ANY is
90 	 * used inside if there's no room to expand. Because this is a quite
91 	 * rare case and a part of very slow path, it is very acceptable.
92 	 * Initially cache_bh[] will be given practically enough space and once
93 	 * it is expanded, expansion wouldn't be needed again ever.
94 	 */
95 	mem = mlx5_realloc(bt->table, MLX5_MEM_RTE | MLX5_MEM_ZERO,
96 			   n * sizeof(struct mr_cache_entry), 0, SOCKET_ID_ANY);
97 	if (mem == NULL) {
98 		/* Not an error, B-tree search will be skipped. */
99 		DRV_LOG(WARNING, "failed to expand MR B-tree (%p) table",
100 			(void *)bt);
101 		ret = -1;
102 	} else {
103 		DRV_LOG(DEBUG, "expanded MR B-tree table (size=%u)", n);
104 		bt->table = mem;
105 		bt->size = n;
106 	}
107 	return ret;
108 }
109 
110 /**
111  * Look up LKey from given B-tree lookup table, store the last index and return
112  * searched LKey.
113  *
114  * @param bt
115  *   Pointer to B-tree structure.
116  * @param[out] idx
117  *   Pointer to index. Even on search failure, returns index where it stops
118  *   searching so that index can be used when inserting a new entry.
119  * @param addr
120  *   Search key.
121  *
122  * @return
123  *   Searched LKey on success, UINT32_MAX on no match.
124  */
125 static uint32_t
126 mr_btree_lookup(struct mlx5_mr_btree *bt, uint16_t *idx, uintptr_t addr)
127 {
128 	struct mr_cache_entry *lkp_tbl;
129 	uint16_t n;
130 	uint16_t base = 0;
131 
132 	MLX5_ASSERT(bt != NULL);
133 	lkp_tbl = *bt->table;
134 	n = bt->len;
135 	/* First entry must be NULL for comparison. */
136 	MLX5_ASSERT(bt->len > 0 || (lkp_tbl[0].start == 0 &&
137 				    lkp_tbl[0].lkey == UINT32_MAX));
138 	/* Binary search. */
139 	do {
140 		register uint16_t delta = n >> 1;
141 
142 		if (addr < lkp_tbl[base + delta].start) {
143 			n = delta;
144 		} else {
145 			base += delta;
146 			n -= delta;
147 		}
148 	} while (n > 1);
149 	MLX5_ASSERT(addr >= lkp_tbl[base].start);
150 	*idx = base;
151 	if (addr < lkp_tbl[base].end)
152 		return lkp_tbl[base].lkey;
153 	/* Not found. */
154 	return UINT32_MAX;
155 }
156 
157 /**
158  * Insert an entry to B-tree lookup table.
159  *
160  * @param bt
161  *   Pointer to B-tree structure.
162  * @param entry
163  *   Pointer to new entry to insert.
164  *
165  * @return
166  *   0 on success, -1 on failure.
167  */
168 static int
169 mr_btree_insert(struct mlx5_mr_btree *bt, struct mr_cache_entry *entry)
170 {
171 	struct mr_cache_entry *lkp_tbl;
172 	uint16_t idx = 0;
173 	size_t shift;
174 
175 	MLX5_ASSERT(bt != NULL);
176 	MLX5_ASSERT(bt->len <= bt->size);
177 	MLX5_ASSERT(bt->len > 0);
178 	lkp_tbl = *bt->table;
179 	/* Find out the slot for insertion. */
180 	if (mr_btree_lookup(bt, &idx, entry->start) != UINT32_MAX) {
181 		DRV_LOG(DEBUG,
182 			"abort insertion to B-tree(%p): already exist at"
183 			" idx=%u [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
184 			(void *)bt, idx, entry->start, entry->end, entry->lkey);
185 		/* Already exist, return. */
186 		return 0;
187 	}
188 	/* If table is full, return error. */
189 	if (unlikely(bt->len == bt->size)) {
190 		bt->overflow = 1;
191 		return -1;
192 	}
193 	/* Insert entry. */
194 	++idx;
195 	shift = (bt->len - idx) * sizeof(struct mr_cache_entry);
196 	if (shift)
197 		memmove(&lkp_tbl[idx + 1], &lkp_tbl[idx], shift);
198 	lkp_tbl[idx] = *entry;
199 	bt->len++;
200 	DRV_LOG(DEBUG,
201 		"inserted B-tree(%p)[%u],"
202 		" [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
203 		(void *)bt, idx, entry->start, entry->end, entry->lkey);
204 	return 0;
205 }
206 
207 /**
208  * Initialize B-tree and allocate memory for lookup table.
209  *
210  * @param bt
211  *   Pointer to B-tree structure.
212  * @param n
213  *   Number of entries to allocate.
214  * @param socket
215  *   NUMA socket on which memory must be allocated.
216  *
217  * @return
218  *   0 on success, a negative errno value otherwise and rte_errno is set.
219  */
220 static int
221 mlx5_mr_btree_init(struct mlx5_mr_btree *bt, int n, int socket)
222 {
223 	if (bt == NULL) {
224 		rte_errno = EINVAL;
225 		return -rte_errno;
226 	}
227 	MLX5_ASSERT(!bt->table && !bt->size);
228 	memset(bt, 0, sizeof(*bt));
229 	bt->table = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO,
230 				sizeof(struct mr_cache_entry) * n,
231 				0, socket);
232 	if (bt->table == NULL) {
233 		rte_errno = ENOMEM;
234 		DRV_LOG(DEBUG,
235 			"failed to allocate memory for btree cache on socket "
236 			"%d", socket);
237 		return -rte_errno;
238 	}
239 	bt->size = n;
240 	/* First entry must be NULL for binary search. */
241 	(*bt->table)[bt->len++] = (struct mr_cache_entry) {
242 		.lkey = UINT32_MAX,
243 	};
244 	DRV_LOG(DEBUG, "initialized B-tree %p with table %p",
245 	      (void *)bt, (void *)bt->table);
246 	return 0;
247 }
248 
249 /**
250  * Free B-tree resources.
251  *
252  * @param bt
253  *   Pointer to B-tree structure.
254  */
255 void
256 mlx5_mr_btree_free(struct mlx5_mr_btree *bt)
257 {
258 	if (bt == NULL)
259 		return;
260 	DRV_LOG(DEBUG, "freeing B-tree %p with table %p",
261 	      (void *)bt, (void *)bt->table);
262 	mlx5_free(bt->table);
263 	memset(bt, 0, sizeof(*bt));
264 }
265 
266 /**
267  * Dump all the entries in a B-tree
268  *
269  * @param bt
270  *   Pointer to B-tree structure.
271  */
272 void
273 mlx5_mr_btree_dump(struct mlx5_mr_btree *bt __rte_unused)
274 {
275 #ifdef RTE_LIBRTE_MLX5_DEBUG
276 	int idx;
277 	struct mr_cache_entry *lkp_tbl;
278 
279 	if (bt == NULL)
280 		return;
281 	lkp_tbl = *bt->table;
282 	for (idx = 0; idx < bt->len; ++idx) {
283 		struct mr_cache_entry *entry = &lkp_tbl[idx];
284 
285 		DRV_LOG(DEBUG, "B-tree(%p)[%u],"
286 		      " [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
287 		      (void *)bt, idx, entry->start, entry->end, entry->lkey);
288 	}
289 #endif
290 }
291 
292 /**
293  * Initialize per-queue MR control descriptor.
294  *
295  * @param mr_ctrl
296  *   Pointer to MR control structure.
297  * @param dev_gen_ptr
298  *   Pointer to generation number of global cache.
299  * @param socket
300  *   NUMA socket on which memory must be allocated.
301  *
302  * @return
303  *   0 on success, a negative errno value otherwise and rte_errno is set.
304  */
305 int
306 mlx5_mr_ctrl_init(struct mlx5_mr_ctrl *mr_ctrl, uint32_t *dev_gen_ptr,
307 		  int socket)
308 {
309 	if (mr_ctrl == NULL) {
310 		rte_errno = EINVAL;
311 		return -rte_errno;
312 	}
313 	/* Save pointer of global generation number to check memory event. */
314 	mr_ctrl->dev_gen_ptr = dev_gen_ptr;
315 	/* Initialize B-tree and allocate memory for bottom-half cache table. */
316 	return mlx5_mr_btree_init(&mr_ctrl->cache_bh, MLX5_MR_BTREE_CACHE_N,
317 				  socket);
318 }
319 
320 /**
321  * Find virtually contiguous memory chunk in a given MR.
322  *
323  * @param dev
324  *   Pointer to MR structure.
325  * @param[out] entry
326  *   Pointer to returning MR cache entry. If not found, this will not be
327  *   updated.
328  * @param start_idx
329  *   Start index of the memseg bitmap.
330  *
331  * @return
332  *   Next index to go on lookup.
333  */
334 static int
335 mr_find_next_chunk(struct mlx5_mr *mr, struct mr_cache_entry *entry,
336 		   int base_idx)
337 {
338 	uintptr_t start = 0;
339 	uintptr_t end = 0;
340 	uint32_t idx = 0;
341 
342 	/* MR for external memory doesn't have memseg list. */
343 	if (mr->msl == NULL) {
344 		MLX5_ASSERT(mr->ms_bmp_n == 1);
345 		MLX5_ASSERT(mr->ms_n == 1);
346 		MLX5_ASSERT(base_idx == 0);
347 		/*
348 		 * Can't search it from memseg list but get it directly from
349 		 * pmd_mr as there's only one chunk.
350 		 */
351 		entry->start = (uintptr_t)mr->pmd_mr.addr;
352 		entry->end = (uintptr_t)mr->pmd_mr.addr + mr->pmd_mr.len;
353 		entry->lkey = rte_cpu_to_be_32(mr->pmd_mr.lkey);
354 		/* Returning 1 ends iteration. */
355 		return 1;
356 	}
357 	for (idx = base_idx; idx < mr->ms_bmp_n; ++idx) {
358 		if (rte_bitmap_get(mr->ms_bmp, idx)) {
359 			const struct rte_memseg_list *msl;
360 			const struct rte_memseg *ms;
361 
362 			msl = mr->msl;
363 			ms = rte_fbarray_get(&msl->memseg_arr,
364 					     mr->ms_base_idx + idx);
365 			MLX5_ASSERT(msl->page_sz == ms->hugepage_sz);
366 			if (!start)
367 				start = ms->addr_64;
368 			end = ms->addr_64 + ms->hugepage_sz;
369 		} else if (start) {
370 			/* Passed the end of a fragment. */
371 			break;
372 		}
373 	}
374 	if (start) {
375 		/* Found one chunk. */
376 		entry->start = start;
377 		entry->end = end;
378 		entry->lkey = rte_cpu_to_be_32(mr->pmd_mr.lkey);
379 	}
380 	return idx;
381 }
382 
383 /**
384  * Insert a MR to the global B-tree cache. It may fail due to low-on-memory.
385  * Then, this entry will have to be searched by mr_lookup_list() in
386  * mlx5_mr_create() on miss.
387  *
388  * @param share_cache
389  *   Pointer to a global shared MR cache.
390  * @param mr
391  *   Pointer to MR to insert.
392  *
393  * @return
394  *   0 on success, -1 on failure.
395  */
396 int
397 mlx5_mr_insert_cache(struct mlx5_mr_share_cache *share_cache,
398 		     struct mlx5_mr *mr)
399 {
400 	unsigned int n;
401 
402 	DRV_LOG(DEBUG, "Inserting MR(%p) to global cache(%p)",
403 		(void *)mr, (void *)share_cache);
404 	for (n = 0; n < mr->ms_bmp_n; ) {
405 		struct mr_cache_entry entry;
406 
407 		memset(&entry, 0, sizeof(entry));
408 		/* Find a contiguous chunk and advance the index. */
409 		n = mr_find_next_chunk(mr, &entry, n);
410 		if (!entry.end)
411 			break;
412 		if (mr_btree_insert(&share_cache->cache, &entry) < 0) {
413 			/*
414 			 * Overflowed, but the global table cannot be expanded
415 			 * because of deadlock.
416 			 */
417 			return -1;
418 		}
419 	}
420 	return 0;
421 }
422 
423 /**
424  * Look up address in the original global MR list.
425  *
426  * @param share_cache
427  *   Pointer to a global shared MR cache.
428  * @param[out] entry
429  *   Pointer to returning MR cache entry. If no match, this will not be updated.
430  * @param addr
431  *   Search key.
432  *
433  * @return
434  *   Found MR on match, NULL otherwise.
435  */
436 struct mlx5_mr *
437 mlx5_mr_lookup_list(struct mlx5_mr_share_cache *share_cache,
438 		    struct mr_cache_entry *entry, uintptr_t addr)
439 {
440 	struct mlx5_mr *mr;
441 
442 	/* Iterate all the existing MRs. */
443 	LIST_FOREACH(mr, &share_cache->mr_list, mr) {
444 		unsigned int n;
445 
446 		if (mr->ms_n == 0)
447 			continue;
448 		for (n = 0; n < mr->ms_bmp_n; ) {
449 			struct mr_cache_entry ret;
450 
451 			memset(&ret, 0, sizeof(ret));
452 			n = mr_find_next_chunk(mr, &ret, n);
453 			if (addr >= ret.start && addr < ret.end) {
454 				/* Found. */
455 				*entry = ret;
456 				return mr;
457 			}
458 		}
459 	}
460 	return NULL;
461 }
462 
463 /**
464  * Look up address on global MR cache.
465  *
466  * @param share_cache
467  *   Pointer to a global shared MR cache.
468  * @param[out] entry
469  *   Pointer to returning MR cache entry. If no match, this will not be updated.
470  * @param addr
471  *   Search key.
472  *
473  * @return
474  *   Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
475  */
476 static uint32_t
477 mlx5_mr_lookup_cache(struct mlx5_mr_share_cache *share_cache,
478 		     struct mr_cache_entry *entry, uintptr_t addr)
479 {
480 	uint16_t idx;
481 	uint32_t lkey = UINT32_MAX;
482 	struct mlx5_mr *mr;
483 
484 	/*
485 	 * If the global cache has overflowed since it failed to expand the
486 	 * B-tree table, it can't have all the existing MRs. Then, the address
487 	 * has to be searched by traversing the original MR list instead, which
488 	 * is very slow path. Otherwise, the global cache is all inclusive.
489 	 */
490 	if (!unlikely(share_cache->cache.overflow)) {
491 		lkey = mr_btree_lookup(&share_cache->cache, &idx, addr);
492 		if (lkey != UINT32_MAX)
493 			*entry = (*share_cache->cache.table)[idx];
494 	} else {
495 		/* Falling back to the slowest path. */
496 		mr = mlx5_mr_lookup_list(share_cache, entry, addr);
497 		if (mr != NULL)
498 			lkey = entry->lkey;
499 	}
500 	MLX5_ASSERT(lkey == UINT32_MAX || (addr >= entry->start &&
501 					   addr < entry->end));
502 	return lkey;
503 }
504 
505 /**
506  * Free MR resources. MR lock must not be held to avoid a deadlock. rte_free()
507  * can raise memory free event and the callback function will spin on the lock.
508  *
509  * @param mr
510  *   Pointer to MR to free.
511  */
512 void
513 mlx5_mr_free(struct mlx5_mr *mr, mlx5_dereg_mr_t dereg_mr_cb)
514 {
515 	if (mr == NULL)
516 		return;
517 	DRV_LOG(DEBUG, "freeing MR(%p):", (void *)mr);
518 	dereg_mr_cb(&mr->pmd_mr);
519 	if (mr->ms_bmp != NULL)
520 		rte_bitmap_free(mr->ms_bmp);
521 	mlx5_free(mr);
522 }
523 
524 void
525 mlx5_mr_rebuild_cache(struct mlx5_mr_share_cache *share_cache)
526 {
527 	struct mlx5_mr *mr;
528 
529 	DRV_LOG(DEBUG, "Rebuild dev cache[] %p", (void *)share_cache);
530 	/* Flush cache to rebuild. */
531 	share_cache->cache.len = 1;
532 	share_cache->cache.overflow = 0;
533 	/* Iterate all the existing MRs. */
534 	LIST_FOREACH(mr, &share_cache->mr_list, mr)
535 		if (mlx5_mr_insert_cache(share_cache, mr) < 0)
536 			return;
537 }
538 
539 /**
540  * Release resources of detached MR having no online entry.
541  *
542  * @param share_cache
543  *   Pointer to a global shared MR cache.
544  */
545 static void
546 mlx5_mr_garbage_collect(struct mlx5_mr_share_cache *share_cache)
547 {
548 	struct mlx5_mr *mr_next;
549 	struct mlx5_mr_list free_list = LIST_HEAD_INITIALIZER(free_list);
550 
551 	/* Must be called from the primary process. */
552 	MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY);
553 	/*
554 	 * MR can't be freed with holding the lock because rte_free() could call
555 	 * memory free callback function. This will be a deadlock situation.
556 	 */
557 	rte_rwlock_write_lock(&share_cache->rwlock);
558 	/* Detach the whole free list and release it after unlocking. */
559 	free_list = share_cache->mr_free_list;
560 	LIST_INIT(&share_cache->mr_free_list);
561 	rte_rwlock_write_unlock(&share_cache->rwlock);
562 	/* Release resources. */
563 	mr_next = LIST_FIRST(&free_list);
564 	while (mr_next != NULL) {
565 		struct mlx5_mr *mr = mr_next;
566 
567 		mr_next = LIST_NEXT(mr, mr);
568 		mlx5_mr_free(mr, share_cache->dereg_mr_cb);
569 	}
570 }
571 
572 /* Called during rte_memseg_contig_walk() by mlx5_mr_create(). */
573 static int
574 mr_find_contig_memsegs_cb(const struct rte_memseg_list *msl,
575 			  const struct rte_memseg *ms, size_t len, void *arg)
576 {
577 	struct mr_find_contig_memsegs_data *data = arg;
578 
579 	if (data->addr < ms->addr_64 || data->addr >= ms->addr_64 + len)
580 		return 0;
581 	/* Found, save it and stop walking. */
582 	data->start = ms->addr_64;
583 	data->end = ms->addr_64 + len;
584 	data->msl = msl;
585 	return 1;
586 }
587 
588 /**
589  * Create a new global Memory Region (MR) for a missing virtual address.
590  * This API should be called on a secondary process, then a request is sent to
591  * the primary process in order to create a MR for the address. As the global MR
592  * list is on the shared memory, following LKey lookup should succeed unless the
593  * request fails.
594  *
595  * @param cdev
596  *   Pointer to the mlx5 common device.
597  * @param share_cache
598  *   Pointer to a global shared MR cache.
599  * @param[out] entry
600  *   Pointer to returning MR cache entry, found in the global cache or newly
601  *   created. If failed to create one, this will not be updated.
602  * @param addr
603  *   Target virtual address to register.
604  *
605  * @return
606  *   Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
607  */
608 static uint32_t
609 mlx5_mr_create_secondary(struct mlx5_common_device *cdev,
610 			 struct mlx5_mr_share_cache *share_cache,
611 			 struct mr_cache_entry *entry, uintptr_t addr)
612 {
613 	int ret;
614 
615 	DRV_LOG(DEBUG, "Requesting MR creation for address (%p)", (void *)addr);
616 	ret = mlx5_mp_req_mr_create(cdev, addr);
617 	if (ret) {
618 		DRV_LOG(DEBUG, "Fail to request MR creation for address (%p)",
619 			(void *)addr);
620 		return UINT32_MAX;
621 	}
622 	rte_rwlock_read_lock(&share_cache->rwlock);
623 	/* Fill in output data. */
624 	mlx5_mr_lookup_cache(share_cache, entry, addr);
625 	/* Lookup can't fail. */
626 	MLX5_ASSERT(entry->lkey != UINT32_MAX);
627 	rte_rwlock_read_unlock(&share_cache->rwlock);
628 	DRV_LOG(DEBUG, "MR CREATED by primary process for %p:\n"
629 		"  [0x%" PRIxPTR ", 0x%" PRIxPTR "), lkey=0x%x",
630 		(void *)addr, entry->start, entry->end, entry->lkey);
631 	return entry->lkey;
632 }
633 
634 /**
635  * Create a new global Memory Region (MR) for a missing virtual address.
636  * Register entire virtually contiguous memory chunk around the address.
637  *
638  * @param pd
639  *   Pointer to pd of a device (net, regex, vdpa,...).
640  * @param share_cache
641  *   Pointer to a global shared MR cache.
642  * @param[out] entry
643  *   Pointer to returning MR cache entry, found in the global cache or newly
644  *   created. If failed to create one, this will not be updated.
645  * @param addr
646  *   Target virtual address to register.
647  * @param mr_ext_memseg_en
648  *   Configurable flag about external memory segment enable or not.
649  *
650  * @return
651  *   Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
652  */
653 static uint32_t
654 mlx5_mr_create_primary(void *pd,
655 		       struct mlx5_mr_share_cache *share_cache,
656 		       struct mr_cache_entry *entry, uintptr_t addr,
657 		       unsigned int mr_ext_memseg_en)
658 {
659 	struct mr_find_contig_memsegs_data data = {.addr = addr, };
660 	struct mr_find_contig_memsegs_data data_re;
661 	const struct rte_memseg_list *msl;
662 	const struct rte_memseg *ms;
663 	struct mlx5_mr *mr = NULL;
664 	int ms_idx_shift = -1;
665 	uint32_t bmp_size;
666 	void *bmp_mem;
667 	uint32_t ms_n;
668 	uint32_t n;
669 	size_t len;
670 
671 	DRV_LOG(DEBUG, "Creating a MR using address (%p)", (void *)addr);
672 	/*
673 	 * Release detached MRs if any. This can't be called with holding either
674 	 * memory_hotplug_lock or share_cache->rwlock. MRs on the free list have
675 	 * been detached by the memory free event but it couldn't be released
676 	 * inside the callback due to deadlock. As a result, releasing resources
677 	 * is quite opportunistic.
678 	 */
679 	mlx5_mr_garbage_collect(share_cache);
680 	/*
681 	 * If enabled, find out a contiguous virtual address chunk in use, to
682 	 * which the given address belongs, in order to register maximum range.
683 	 * In the best case where mempools are not dynamically recreated and
684 	 * '--socket-mem' is specified as an EAL option, it is very likely to
685 	 * have only one MR(LKey) per a socket and per a hugepage-size even
686 	 * though the system memory is highly fragmented. As the whole memory
687 	 * chunk will be pinned by kernel, it can't be reused unless entire
688 	 * chunk is freed from EAL.
689 	 *
690 	 * If disabled, just register one memseg (page). Then, memory
691 	 * consumption will be minimized but it may drop performance if there
692 	 * are many MRs to lookup on the datapath.
693 	 */
694 	if (!mr_ext_memseg_en) {
695 		data.msl = rte_mem_virt2memseg_list((void *)addr);
696 		data.start = RTE_ALIGN_FLOOR(addr, data.msl->page_sz);
697 		data.end = data.start + data.msl->page_sz;
698 	} else if (!rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data)) {
699 		DRV_LOG(WARNING,
700 			"Unable to find virtually contiguous"
701 			" chunk for address (%p)."
702 			" rte_memseg_contig_walk() failed.", (void *)addr);
703 		rte_errno = ENXIO;
704 		goto err_nolock;
705 	}
706 alloc_resources:
707 	/* Addresses must be page-aligned. */
708 	MLX5_ASSERT(data.msl);
709 	MLX5_ASSERT(rte_is_aligned((void *)data.start, data.msl->page_sz));
710 	MLX5_ASSERT(rte_is_aligned((void *)data.end, data.msl->page_sz));
711 	msl = data.msl;
712 	ms = rte_mem_virt2memseg((void *)data.start, msl);
713 	len = data.end - data.start;
714 	MLX5_ASSERT(ms);
715 	MLX5_ASSERT(msl->page_sz == ms->hugepage_sz);
716 	/* Number of memsegs in the range. */
717 	ms_n = len / msl->page_sz;
718 	DRV_LOG(DEBUG, "Extending %p to [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
719 	      " page_sz=0x%" PRIx64 ", ms_n=%u",
720 	      (void *)addr, data.start, data.end, msl->page_sz, ms_n);
721 	/* Size of memory for bitmap. */
722 	bmp_size = rte_bitmap_get_memory_footprint(ms_n);
723 	mr = mlx5_malloc(MLX5_MEM_RTE |  MLX5_MEM_ZERO,
724 			 RTE_ALIGN_CEIL(sizeof(*mr), RTE_CACHE_LINE_SIZE) +
725 			 bmp_size, RTE_CACHE_LINE_SIZE, msl->socket_id);
726 	if (mr == NULL) {
727 		DRV_LOG(DEBUG, "Unable to allocate memory for a new MR of"
728 		      " address (%p).", (void *)addr);
729 		rte_errno = ENOMEM;
730 		goto err_nolock;
731 	}
732 	mr->msl = msl;
733 	/*
734 	 * Save the index of the first memseg and initialize memseg bitmap. To
735 	 * see if a memseg of ms_idx in the memseg-list is still valid, check:
736 	 *	rte_bitmap_get(mr->bmp, ms_idx - mr->ms_base_idx)
737 	 */
738 	mr->ms_base_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
739 	bmp_mem = RTE_PTR_ALIGN_CEIL(mr + 1, RTE_CACHE_LINE_SIZE);
740 	mr->ms_bmp = rte_bitmap_init(ms_n, bmp_mem, bmp_size);
741 	if (mr->ms_bmp == NULL) {
742 		DRV_LOG(DEBUG, "Unable to initialize bitmap for a new MR of"
743 		      " address (%p).", (void *)addr);
744 		rte_errno = EINVAL;
745 		goto err_nolock;
746 	}
747 	/*
748 	 * Should recheck whether the extended contiguous chunk is still valid.
749 	 * Because memory_hotplug_lock can't be held if there's any memory
750 	 * related calls in a critical path, resource allocation above can't be
751 	 * locked. If the memory has been changed at this point, try again with
752 	 * just single page. If not, go on with the big chunk atomically from
753 	 * here.
754 	 */
755 	rte_mcfg_mem_read_lock();
756 	data_re = data;
757 	if (len > msl->page_sz &&
758 	    !rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data_re)) {
759 		DRV_LOG(DEBUG,
760 			"Unable to find virtually contiguous chunk for address "
761 			"(%p). rte_memseg_contig_walk() failed.", (void *)addr);
762 		rte_errno = ENXIO;
763 		goto err_memlock;
764 	}
765 	if (data.start != data_re.start || data.end != data_re.end) {
766 		/*
767 		 * The extended contiguous chunk has been changed. Try again
768 		 * with single memseg instead.
769 		 */
770 		data.start = RTE_ALIGN_FLOOR(addr, msl->page_sz);
771 		data.end = data.start + msl->page_sz;
772 		rte_mcfg_mem_read_unlock();
773 		mlx5_mr_free(mr, share_cache->dereg_mr_cb);
774 		goto alloc_resources;
775 	}
776 	MLX5_ASSERT(data.msl == data_re.msl);
777 	rte_rwlock_write_lock(&share_cache->rwlock);
778 	/*
779 	 * Check the address is really missing. If other thread already created
780 	 * one or it is not found due to overflow, abort and return.
781 	 */
782 	if (mlx5_mr_lookup_cache(share_cache, entry, addr) != UINT32_MAX) {
783 		/*
784 		 * Insert to the global cache table. It may fail due to
785 		 * low-on-memory. Then, this entry will have to be searched
786 		 * here again.
787 		 */
788 		mr_btree_insert(&share_cache->cache, entry);
789 		DRV_LOG(DEBUG, "Found MR for %p on final lookup, abort",
790 			(void *)addr);
791 		rte_rwlock_write_unlock(&share_cache->rwlock);
792 		rte_mcfg_mem_read_unlock();
793 		/*
794 		 * Must be unlocked before calling rte_free() because
795 		 * mlx5_mr_mem_event_free_cb() can be called inside.
796 		 */
797 		mlx5_mr_free(mr, share_cache->dereg_mr_cb);
798 		return entry->lkey;
799 	}
800 	/*
801 	 * Trim start and end addresses for verbs MR. Set bits for registering
802 	 * memsegs but exclude already registered ones. Bitmap can be
803 	 * fragmented.
804 	 */
805 	for (n = 0; n < ms_n; ++n) {
806 		uintptr_t start;
807 		struct mr_cache_entry ret;
808 
809 		memset(&ret, 0, sizeof(ret));
810 		start = data_re.start + n * msl->page_sz;
811 		/* Exclude memsegs already registered by other MRs. */
812 		if (mlx5_mr_lookup_cache(share_cache, &ret, start) ==
813 		    UINT32_MAX) {
814 			/*
815 			 * Start from the first unregistered memseg in the
816 			 * extended range.
817 			 */
818 			if (ms_idx_shift == -1) {
819 				mr->ms_base_idx += n;
820 				data.start = start;
821 				ms_idx_shift = n;
822 			}
823 			data.end = start + msl->page_sz;
824 			rte_bitmap_set(mr->ms_bmp, n - ms_idx_shift);
825 			++mr->ms_n;
826 		}
827 	}
828 	len = data.end - data.start;
829 	mr->ms_bmp_n = len / msl->page_sz;
830 	MLX5_ASSERT(ms_idx_shift + mr->ms_bmp_n <= ms_n);
831 	/*
832 	 * Finally create an MR for the memory chunk. Verbs: ibv_reg_mr() can
833 	 * be called with holding the memory lock because it doesn't use
834 	 * mlx5_alloc_buf_extern() which eventually calls rte_malloc_socket()
835 	 * through mlx5_alloc_verbs_buf().
836 	 */
837 	share_cache->reg_mr_cb(pd, (void *)data.start, len, &mr->pmd_mr);
838 	if (mr->pmd_mr.obj == NULL) {
839 		DRV_LOG(DEBUG, "Fail to create an MR for address (%p)",
840 		      (void *)addr);
841 		rte_errno = EINVAL;
842 		goto err_mrlock;
843 	}
844 	MLX5_ASSERT((uintptr_t)mr->pmd_mr.addr == data.start);
845 	MLX5_ASSERT(mr->pmd_mr.len);
846 	LIST_INSERT_HEAD(&share_cache->mr_list, mr, mr);
847 	DRV_LOG(DEBUG, "MR CREATED (%p) for %p:\n"
848 	      "  [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
849 	      " lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u",
850 	      (void *)mr, (void *)addr, data.start, data.end,
851 	      rte_cpu_to_be_32(mr->pmd_mr.lkey),
852 	      mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n);
853 	/* Insert to the global cache table. */
854 	mlx5_mr_insert_cache(share_cache, mr);
855 	/* Fill in output data. */
856 	mlx5_mr_lookup_cache(share_cache, entry, addr);
857 	/* Lookup can't fail. */
858 	MLX5_ASSERT(entry->lkey != UINT32_MAX);
859 	rte_rwlock_write_unlock(&share_cache->rwlock);
860 	rte_mcfg_mem_read_unlock();
861 	return entry->lkey;
862 err_mrlock:
863 	rte_rwlock_write_unlock(&share_cache->rwlock);
864 err_memlock:
865 	rte_mcfg_mem_read_unlock();
866 err_nolock:
867 	/*
868 	 * In case of error, as this can be called in a datapath, a warning
869 	 * message per an error is preferable instead. Must be unlocked before
870 	 * calling rte_free() because mlx5_mr_mem_event_free_cb() can be called
871 	 * inside.
872 	 */
873 	mlx5_mr_free(mr, share_cache->dereg_mr_cb);
874 	return UINT32_MAX;
875 }
876 
877 /**
878  * Create a new global Memory Region (MR) for a missing virtual address.
879  * This can be called from primary and secondary process.
880  *
881  * @param cdev
882  *   Pointer to the mlx5 common device.
883  * @param share_cache
884  *   Pointer to a global shared MR cache.
885  * @param[out] entry
886  *   Pointer to returning MR cache entry, found in the global cache or newly
887  *   created. If failed to create one, this will not be updated.
888  * @param addr
889  *   Target virtual address to register.
890  *
891  * @return
892  *   Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
893  */
894 uint32_t
895 mlx5_mr_create(struct mlx5_common_device *cdev,
896 	       struct mlx5_mr_share_cache *share_cache,
897 	       struct mr_cache_entry *entry, uintptr_t addr)
898 {
899 	uint32_t ret = 0;
900 
901 	switch (rte_eal_process_type()) {
902 	case RTE_PROC_PRIMARY:
903 		ret = mlx5_mr_create_primary(cdev->pd, share_cache, entry, addr,
904 					     cdev->config.mr_ext_memseg_en);
905 		break;
906 	case RTE_PROC_SECONDARY:
907 		ret = mlx5_mr_create_secondary(cdev, share_cache, entry, addr);
908 		break;
909 	default:
910 		break;
911 	}
912 	return ret;
913 }
914 
915 /**
916  * Look up address in the global MR cache table. If not found, create a new MR.
917  * Insert the found/created entry to local bottom-half cache table.
918  *
919  * @param mr_ctrl
920  *   Pointer to per-queue MR control structure.
921  * @param[out] entry
922  *   Pointer to returning MR cache entry, found in the global cache or newly
923  *   created. If failed to create one, this is not written.
924  * @param addr
925  *   Search key.
926  *
927  * @return
928  *   Searched LKey on success, UINT32_MAX on no match.
929  */
930 static uint32_t
931 mr_lookup_caches(struct mlx5_mr_ctrl *mr_ctrl,
932 		 struct mr_cache_entry *entry, uintptr_t addr)
933 {
934 	struct mlx5_mr_share_cache *share_cache =
935 		container_of(mr_ctrl->dev_gen_ptr, struct mlx5_mr_share_cache,
936 			     dev_gen);
937 	struct mlx5_common_device *cdev =
938 		container_of(share_cache, struct mlx5_common_device, mr_scache);
939 	struct mlx5_mr_btree *bt = &mr_ctrl->cache_bh;
940 	uint32_t lkey;
941 	uint16_t idx;
942 
943 	/* If local cache table is full, try to double it. */
944 	if (unlikely(bt->len == bt->size))
945 		mr_btree_expand(bt, bt->size << 1);
946 	/* Look up in the global cache. */
947 	rte_rwlock_read_lock(&share_cache->rwlock);
948 	lkey = mr_btree_lookup(&share_cache->cache, &idx, addr);
949 	if (lkey != UINT32_MAX) {
950 		/* Found. */
951 		*entry = (*share_cache->cache.table)[idx];
952 		rte_rwlock_read_unlock(&share_cache->rwlock);
953 		/*
954 		 * Update local cache. Even if it fails, return the found entry
955 		 * to update top-half cache. Next time, this entry will be found
956 		 * in the global cache.
957 		 */
958 		mr_btree_insert(bt, entry);
959 		return lkey;
960 	}
961 	rte_rwlock_read_unlock(&share_cache->rwlock);
962 	/* First time to see the address? Create a new MR. */
963 	lkey = mlx5_mr_create(cdev, share_cache, entry, addr);
964 	/*
965 	 * Update the local cache if successfully created a new global MR. Even
966 	 * if failed to create one, there's no action to take in this datapath
967 	 * code. As returning LKey is invalid, this will eventually make HW
968 	 * fail.
969 	 */
970 	if (lkey != UINT32_MAX)
971 		mr_btree_insert(bt, entry);
972 	return lkey;
973 }
974 
975 /**
976  * Bottom-half of LKey search on datapath. First search in cache_bh[] and if
977  * misses, search in the global MR cache table and update the new entry to
978  * per-queue local caches.
979  *
980  * @param mr_ctrl
981  *   Pointer to per-queue MR control structure.
982  * @param addr
983  *   Search key.
984  *
985  * @return
986  *   Searched LKey on success, UINT32_MAX on no match.
987  */
988 static uint32_t
989 mlx5_mr_addr2mr_bh(struct mlx5_mr_ctrl *mr_ctrl, uintptr_t addr)
990 {
991 	uint32_t lkey;
992 	uint16_t bh_idx = 0;
993 	/* Victim in top-half cache to replace with new entry. */
994 	struct mr_cache_entry *repl = &mr_ctrl->cache[mr_ctrl->head];
995 
996 	/* Binary-search MR translation table. */
997 	lkey = mr_btree_lookup(&mr_ctrl->cache_bh, &bh_idx, addr);
998 	/* Update top-half cache. */
999 	if (likely(lkey != UINT32_MAX)) {
1000 		*repl = (*mr_ctrl->cache_bh.table)[bh_idx];
1001 	} else {
1002 		/*
1003 		 * If missed in local lookup table, search in the global cache
1004 		 * and local cache_bh[] will be updated inside if possible.
1005 		 * Top-half cache entry will also be updated.
1006 		 */
1007 		lkey = mr_lookup_caches(mr_ctrl, repl, addr);
1008 		if (unlikely(lkey == UINT32_MAX))
1009 			return UINT32_MAX;
1010 	}
1011 	/* Update the most recently used entry. */
1012 	mr_ctrl->mru = mr_ctrl->head;
1013 	/* Point to the next victim, the oldest. */
1014 	mr_ctrl->head = (mr_ctrl->head + 1) % MLX5_MR_CACHE_N;
1015 	return lkey;
1016 }
1017 
1018 /**
1019  * Release all the created MRs and resources on global MR cache of a device
1020  * list.
1021  *
1022  * @param share_cache
1023  *   Pointer to a global shared MR cache.
1024  */
1025 void
1026 mlx5_mr_release_cache(struct mlx5_mr_share_cache *share_cache)
1027 {
1028 	struct mlx5_mr *mr_next;
1029 
1030 	rte_rwlock_write_lock(&share_cache->rwlock);
1031 	/* Detach from MR list and move to free list. */
1032 	mr_next = LIST_FIRST(&share_cache->mr_list);
1033 	while (mr_next != NULL) {
1034 		struct mlx5_mr *mr = mr_next;
1035 
1036 		mr_next = LIST_NEXT(mr, mr);
1037 		LIST_REMOVE(mr, mr);
1038 		LIST_INSERT_HEAD(&share_cache->mr_free_list, mr, mr);
1039 	}
1040 	LIST_INIT(&share_cache->mr_list);
1041 	/* Free global cache. */
1042 	mlx5_mr_btree_free(&share_cache->cache);
1043 	rte_rwlock_write_unlock(&share_cache->rwlock);
1044 	/* Free all remaining MRs. */
1045 	mlx5_mr_garbage_collect(share_cache);
1046 }
1047 
1048 /**
1049  * Initialize global MR cache of a device.
1050  *
1051  * @param share_cache
1052  *   Pointer to a global shared MR cache.
1053  * @param socket
1054  *   NUMA socket on which memory must be allocated.
1055  *
1056  * @return
1057  *   0 on success, a negative errno value otherwise and rte_errno is set.
1058  */
1059 int
1060 mlx5_mr_create_cache(struct mlx5_mr_share_cache *share_cache, int socket)
1061 {
1062 	/* Set the reg_mr and dereg_mr callback functions */
1063 	mlx5_os_set_reg_mr_cb(&share_cache->reg_mr_cb,
1064 			      &share_cache->dereg_mr_cb);
1065 	rte_rwlock_init(&share_cache->rwlock);
1066 	rte_rwlock_init(&share_cache->mprwlock);
1067 	share_cache->mp_cb_registered = 0;
1068 	/* Initialize B-tree and allocate memory for global MR cache table. */
1069 	return mlx5_mr_btree_init(&share_cache->cache,
1070 				  MLX5_MR_BTREE_CACHE_N * 2, socket);
1071 }
1072 
1073 /**
1074  * Flush all of the local cache entries.
1075  *
1076  * @param mr_ctrl
1077  *   Pointer to per-queue MR local cache.
1078  */
1079 void
1080 mlx5_mr_flush_local_cache(struct mlx5_mr_ctrl *mr_ctrl)
1081 {
1082 	/* Reset the most-recently-used index. */
1083 	mr_ctrl->mru = 0;
1084 	/* Reset the linear search array. */
1085 	mr_ctrl->head = 0;
1086 	memset(mr_ctrl->cache, 0, sizeof(mr_ctrl->cache));
1087 	/* Reset the B-tree table. */
1088 	mr_ctrl->cache_bh.len = 1;
1089 	mr_ctrl->cache_bh.overflow = 0;
1090 	/* Update the generation number. */
1091 	mr_ctrl->cur_gen = *mr_ctrl->dev_gen_ptr;
1092 	DRV_LOG(DEBUG, "mr_ctrl(%p): flushed, cur_gen=%d",
1093 		(void *)mr_ctrl, mr_ctrl->cur_gen);
1094 }
1095 
1096 /**
1097  * Creates a memory region for external memory, that is memory which is not
1098  * part of the DPDK memory segments.
1099  *
1100  * @param pd
1101  *   Pointer to pd of a device (net, regex, vdpa,...).
1102  * @param addr
1103  *   Starting virtual address of memory.
1104  * @param len
1105  *   Length of memory segment being mapped.
1106  * @param socked_id
1107  *   Socket to allocate heap memory for the control structures.
1108  *
1109  * @return
1110  *   Pointer to MR structure on success, NULL otherwise.
1111  */
1112 struct mlx5_mr *
1113 mlx5_create_mr_ext(void *pd, uintptr_t addr, size_t len, int socket_id,
1114 		   mlx5_reg_mr_t reg_mr_cb)
1115 {
1116 	struct mlx5_mr *mr = NULL;
1117 
1118 	mr = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO,
1119 			 RTE_ALIGN_CEIL(sizeof(*mr), RTE_CACHE_LINE_SIZE),
1120 			 RTE_CACHE_LINE_SIZE, socket_id);
1121 	if (mr == NULL)
1122 		return NULL;
1123 	reg_mr_cb(pd, (void *)addr, len, &mr->pmd_mr);
1124 	if (mr->pmd_mr.obj == NULL) {
1125 		DRV_LOG(WARNING,
1126 			"Fail to create MR for address (%p)",
1127 			(void *)addr);
1128 		mlx5_free(mr);
1129 		return NULL;
1130 	}
1131 	mr->msl = NULL; /* Mark it is external memory. */
1132 	mr->ms_bmp = NULL;
1133 	mr->ms_n = 1;
1134 	mr->ms_bmp_n = 1;
1135 	DRV_LOG(DEBUG,
1136 		"MR CREATED (%p) for external memory %p:\n"
1137 		"  [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
1138 		" lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u",
1139 		(void *)mr, (void *)addr,
1140 		addr, addr + len, rte_cpu_to_be_32(mr->pmd_mr.lkey),
1141 		mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n);
1142 	return mr;
1143 }
1144 
1145 /**
1146  * Callback for memory free event. Iterate freed memsegs and check whether it
1147  * belongs to an existing MR. If found, clear the bit from bitmap of MR. As a
1148  * result, the MR would be fragmented. If it becomes empty, the MR will be freed
1149  * later by mlx5_mr_garbage_collect(). Even if this callback is called from a
1150  * secondary process, the garbage collector will be called in primary process
1151  * as the secondary process can't call mlx5_mr_create().
1152  *
1153  * The global cache must be rebuilt if there's any change and this event has to
1154  * be propagated to dataplane threads to flush the local caches.
1155  *
1156  * @param share_cache
1157  *   Pointer to a global shared MR cache.
1158  * @param ibdev_name
1159  *   Name of ibv device.
1160  * @param addr
1161  *   Address of freed memory.
1162  * @param len
1163  *   Size of freed memory.
1164  */
1165 void
1166 mlx5_free_mr_by_addr(struct mlx5_mr_share_cache *share_cache,
1167 		     const char *ibdev_name, const void *addr, size_t len)
1168 {
1169 	const struct rte_memseg_list *msl;
1170 	struct mlx5_mr *mr;
1171 	int ms_n;
1172 	int i;
1173 	int rebuild = 0;
1174 
1175 	DRV_LOG(DEBUG, "device %s free callback: addr=%p, len=%zu",
1176 		ibdev_name, addr, len);
1177 	msl = rte_mem_virt2memseg_list(addr);
1178 	/* addr and len must be page-aligned. */
1179 	MLX5_ASSERT((uintptr_t)addr ==
1180 		    RTE_ALIGN((uintptr_t)addr, msl->page_sz));
1181 	MLX5_ASSERT(len == RTE_ALIGN(len, msl->page_sz));
1182 	ms_n = len / msl->page_sz;
1183 	rte_rwlock_write_lock(&share_cache->rwlock);
1184 	/* Clear bits of freed memsegs from MR. */
1185 	for (i = 0; i < ms_n; ++i) {
1186 		const struct rte_memseg *ms;
1187 		struct mr_cache_entry entry;
1188 		uintptr_t start;
1189 		int ms_idx;
1190 		uint32_t pos;
1191 
1192 		/* Find MR having this memseg. */
1193 		start = (uintptr_t)addr + i * msl->page_sz;
1194 		mr = mlx5_mr_lookup_list(share_cache, &entry, start);
1195 		if (mr == NULL)
1196 			continue;
1197 		MLX5_ASSERT(mr->msl); /* Can't be external memory. */
1198 		ms = rte_mem_virt2memseg((void *)start, msl);
1199 		MLX5_ASSERT(ms != NULL);
1200 		MLX5_ASSERT(msl->page_sz == ms->hugepage_sz);
1201 		ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
1202 		pos = ms_idx - mr->ms_base_idx;
1203 		MLX5_ASSERT(rte_bitmap_get(mr->ms_bmp, pos));
1204 		MLX5_ASSERT(pos < mr->ms_bmp_n);
1205 		DRV_LOG(DEBUG, "device %s MR(%p): clear bitmap[%u] for addr %p",
1206 			ibdev_name, (void *)mr, pos, (void *)start);
1207 		rte_bitmap_clear(mr->ms_bmp, pos);
1208 		if (--mr->ms_n == 0) {
1209 			LIST_REMOVE(mr, mr);
1210 			LIST_INSERT_HEAD(&share_cache->mr_free_list, mr, mr);
1211 			DRV_LOG(DEBUG, "device %s remove MR(%p) from list",
1212 				ibdev_name, (void *)mr);
1213 		}
1214 		/*
1215 		 * MR is fragmented or will be freed. the global cache must be
1216 		 * rebuilt.
1217 		 */
1218 		rebuild = 1;
1219 	}
1220 	if (rebuild) {
1221 		mlx5_mr_rebuild_cache(share_cache);
1222 		/*
1223 		 * No explicit wmb is needed after updating dev_gen due to
1224 		 * store-release ordering in unlock that provides the
1225 		 * implicit barrier at the software visible level.
1226 		 */
1227 		++share_cache->dev_gen;
1228 		DRV_LOG(DEBUG, "broadcasting local cache flush, gen=%d",
1229 			share_cache->dev_gen);
1230 	}
1231 	rte_rwlock_write_unlock(&share_cache->rwlock);
1232 }
1233 
1234 /**
1235  * Dump all the created MRs and the global cache entries.
1236  *
1237  * @param share_cache
1238  *   Pointer to a global shared MR cache.
1239  */
1240 void
1241 mlx5_mr_dump_cache(struct mlx5_mr_share_cache *share_cache __rte_unused)
1242 {
1243 #ifdef RTE_LIBRTE_MLX5_DEBUG
1244 	struct mlx5_mr *mr;
1245 	int mr_n = 0;
1246 	int chunk_n = 0;
1247 
1248 	rte_rwlock_read_lock(&share_cache->rwlock);
1249 	/* Iterate all the existing MRs. */
1250 	LIST_FOREACH(mr, &share_cache->mr_list, mr) {
1251 		unsigned int n;
1252 
1253 		DRV_LOG(DEBUG, "MR[%u], LKey = 0x%x, ms_n = %u, ms_bmp_n = %u",
1254 		      mr_n++, rte_cpu_to_be_32(mr->pmd_mr.lkey),
1255 		      mr->ms_n, mr->ms_bmp_n);
1256 		if (mr->ms_n == 0)
1257 			continue;
1258 		for (n = 0; n < mr->ms_bmp_n; ) {
1259 			struct mr_cache_entry ret = { 0, };
1260 
1261 			n = mr_find_next_chunk(mr, &ret, n);
1262 			if (!ret.end)
1263 				break;
1264 			DRV_LOG(DEBUG,
1265 				"  chunk[%u], [0x%" PRIxPTR ", 0x%" PRIxPTR ")",
1266 				chunk_n++, ret.start, ret.end);
1267 		}
1268 	}
1269 	DRV_LOG(DEBUG, "Dumping global cache %p", (void *)share_cache);
1270 	mlx5_mr_btree_dump(&share_cache->cache);
1271 	rte_rwlock_read_unlock(&share_cache->rwlock);
1272 #endif
1273 }
1274 
1275 static int
1276 mlx5_range_compare_start(const void *lhs, const void *rhs)
1277 {
1278 	const struct mlx5_range *r1 = lhs, *r2 = rhs;
1279 
1280 	if (r1->start > r2->start)
1281 		return 1;
1282 	else if (r1->start < r2->start)
1283 		return -1;
1284 	return 0;
1285 }
1286 
1287 static void
1288 mlx5_range_from_mempool_chunk(struct rte_mempool *mp, void *opaque,
1289 			      struct rte_mempool_memhdr *memhdr,
1290 			      unsigned int idx)
1291 {
1292 	struct mlx5_range *ranges = opaque, *range = &ranges[idx];
1293 	uint64_t page_size = rte_mem_page_size();
1294 
1295 	RTE_SET_USED(mp);
1296 	range->start = RTE_ALIGN_FLOOR((uintptr_t)memhdr->addr, page_size);
1297 	range->end = RTE_ALIGN_CEIL(range->start + memhdr->len, page_size);
1298 }
1299 
1300 /**
1301  * Collect page-aligned memory ranges of the mempool.
1302  */
1303 static int
1304 mlx5_mempool_get_chunks(struct rte_mempool *mp, struct mlx5_range **out,
1305 			unsigned int *out_n)
1306 {
1307 	unsigned int n;
1308 
1309 	DRV_LOG(DEBUG, "Collecting chunks of regular mempool %s", mp->name);
1310 	n = mp->nb_mem_chunks;
1311 	*out = calloc(sizeof(**out), n);
1312 	if (*out == NULL)
1313 		return -1;
1314 	rte_mempool_mem_iter(mp, mlx5_range_from_mempool_chunk, *out);
1315 	*out_n = n;
1316 	return 0;
1317 }
1318 
1319 struct mlx5_mempool_get_extmem_data {
1320 	struct mlx5_range *heap;
1321 	unsigned int heap_size;
1322 	int ret;
1323 };
1324 
1325 static void
1326 mlx5_mempool_get_extmem_cb(struct rte_mempool *mp, void *opaque,
1327 			   void *obj, unsigned int obj_idx)
1328 {
1329 	struct mlx5_mempool_get_extmem_data *data = opaque;
1330 	struct rte_mbuf *mbuf = obj;
1331 	uintptr_t addr = (uintptr_t)mbuf->buf_addr;
1332 	struct mlx5_range *seg, *heap;
1333 	struct rte_memseg_list *msl;
1334 	size_t page_size;
1335 	uintptr_t page_start;
1336 	unsigned int pos = 0, len = data->heap_size, delta;
1337 
1338 	RTE_SET_USED(mp);
1339 	RTE_SET_USED(obj_idx);
1340 	if (data->ret < 0)
1341 		return;
1342 	/* Binary search for an already visited page. */
1343 	while (len > 1) {
1344 		delta = len / 2;
1345 		if (addr < data->heap[pos + delta].start) {
1346 			len = delta;
1347 		} else {
1348 			pos += delta;
1349 			len -= delta;
1350 		}
1351 	}
1352 	if (data->heap != NULL) {
1353 		seg = &data->heap[pos];
1354 		if (seg->start <= addr && addr < seg->end)
1355 			return;
1356 	}
1357 	/* Determine the page boundaries and remember them. */
1358 	heap = realloc(data->heap, sizeof(heap[0]) * (data->heap_size + 1));
1359 	if (heap == NULL) {
1360 		free(data->heap);
1361 		data->heap = NULL;
1362 		data->ret = -1;
1363 		return;
1364 	}
1365 	data->heap = heap;
1366 	data->heap_size++;
1367 	seg = &heap[data->heap_size - 1];
1368 	msl = rte_mem_virt2memseg_list((void *)addr);
1369 	page_size = msl != NULL ? msl->page_sz : rte_mem_page_size();
1370 	page_start = RTE_PTR_ALIGN_FLOOR(addr, page_size);
1371 	seg->start = page_start;
1372 	seg->end = page_start + page_size;
1373 	/* Maintain the heap order. */
1374 	qsort(data->heap, data->heap_size, sizeof(heap[0]),
1375 	      mlx5_range_compare_start);
1376 }
1377 
1378 /**
1379  * Recover pages of external memory as close as possible
1380  * for a mempool with RTE_PKTMBUF_POOL_PINNED_EXT_BUF.
1381  * Pages are stored in a heap for efficient search, for mbufs are many.
1382  */
1383 static int
1384 mlx5_mempool_get_extmem(struct rte_mempool *mp, struct mlx5_range **out,
1385 			unsigned int *out_n)
1386 {
1387 	struct mlx5_mempool_get_extmem_data data;
1388 
1389 	DRV_LOG(DEBUG, "Recovering external pinned pages of mempool %s",
1390 		mp->name);
1391 	memset(&data, 0, sizeof(data));
1392 	rte_mempool_obj_iter(mp, mlx5_mempool_get_extmem_cb, &data);
1393 	*out = data.heap;
1394 	*out_n = data.heap_size;
1395 	return data.ret;
1396 }
1397 
1398 /**
1399  * Get VA-contiguous ranges of the mempool memory.
1400  * Each range start and end is aligned to the system page size.
1401  *
1402  * @param[in] mp
1403  *   Analyzed mempool.
1404  * @param[in] is_extmem
1405  *   Whether the pool is contains only external pinned buffers.
1406  * @param[out] out
1407  *   Receives the ranges, caller must release it with free().
1408  * @param[out] out_n
1409  *   Receives the number of @p out elements.
1410  *
1411  * @return
1412  *   0 on success, (-1) on failure.
1413  */
1414 static int
1415 mlx5_get_mempool_ranges(struct rte_mempool *mp, bool is_extmem,
1416 			struct mlx5_range **out, unsigned int *out_n)
1417 {
1418 	struct mlx5_range *chunks;
1419 	unsigned int chunks_n, contig_n, i;
1420 	int ret;
1421 
1422 	/* Collect the pool underlying memory. */
1423 	ret = is_extmem ? mlx5_mempool_get_extmem(mp, &chunks, &chunks_n) :
1424 			  mlx5_mempool_get_chunks(mp, &chunks, &chunks_n);
1425 	if (ret < 0)
1426 		return ret;
1427 	/* Merge adjacent chunks and place them at the beginning. */
1428 	qsort(chunks, chunks_n, sizeof(chunks[0]), mlx5_range_compare_start);
1429 	contig_n = 1;
1430 	for (i = 1; i < chunks_n; i++)
1431 		if (chunks[i - 1].end != chunks[i].start) {
1432 			chunks[contig_n - 1].end = chunks[i - 1].end;
1433 			chunks[contig_n] = chunks[i];
1434 			contig_n++;
1435 		}
1436 	/* Extend the last contiguous chunk to the end of the mempool. */
1437 	chunks[contig_n - 1].end = chunks[i - 1].end;
1438 	*out = chunks;
1439 	*out_n = contig_n;
1440 	return 0;
1441 }
1442 
1443 /**
1444  * Analyze mempool memory to select memory ranges to register.
1445  *
1446  * @param[in] mp
1447  *   Mempool to analyze.
1448  * @param[in] is_extmem
1449  *   Whether the pool is contains only external pinned buffers.
1450  * @param[out] out
1451  *   Receives memory ranges to register, aligned to the system page size.
1452  *   The caller must release them with free().
1453  * @param[out] out_n
1454  *   Receives the number of @p out items.
1455  * @param[out] share_hugepage
1456  *   Receives True if the entire pool resides within a single hugepage.
1457  *
1458  * @return
1459  *   0 on success, (-1) on failure.
1460  */
1461 static int
1462 mlx5_mempool_reg_analyze(struct rte_mempool *mp, bool is_extmem,
1463 			 struct mlx5_range **out, unsigned int *out_n,
1464 			 bool *share_hugepage)
1465 {
1466 	struct mlx5_range *ranges = NULL;
1467 	unsigned int i, ranges_n = 0;
1468 	struct rte_memseg_list *msl;
1469 
1470 	if (mlx5_get_mempool_ranges(mp, is_extmem, &ranges, &ranges_n) < 0) {
1471 		DRV_LOG(ERR, "Cannot get address ranges for mempool %s",
1472 			mp->name);
1473 		return -1;
1474 	}
1475 	/* Check if the hugepage of the pool can be shared. */
1476 	*share_hugepage = false;
1477 	msl = rte_mem_virt2memseg_list((void *)ranges[0].start);
1478 	if (msl != NULL) {
1479 		uint64_t hugepage_sz = 0;
1480 
1481 		/* Check that all ranges are on pages of the same size. */
1482 		for (i = 0; i < ranges_n; i++) {
1483 			if (hugepage_sz != 0 && hugepage_sz != msl->page_sz)
1484 				break;
1485 			hugepage_sz = msl->page_sz;
1486 		}
1487 		if (i == ranges_n) {
1488 			/*
1489 			 * If the entire pool is within one hugepage,
1490 			 * combine all ranges into one of the hugepage size.
1491 			 */
1492 			uintptr_t reg_start = ranges[0].start;
1493 			uintptr_t reg_end = ranges[ranges_n - 1].end;
1494 			uintptr_t hugepage_start =
1495 				RTE_ALIGN_FLOOR(reg_start, hugepage_sz);
1496 			uintptr_t hugepage_end = hugepage_start + hugepage_sz;
1497 			if (reg_end < hugepage_end) {
1498 				ranges[0].start = hugepage_start;
1499 				ranges[0].end = hugepage_end;
1500 				ranges_n = 1;
1501 				*share_hugepage = true;
1502 			}
1503 		}
1504 	}
1505 	*out = ranges;
1506 	*out_n = ranges_n;
1507 	return 0;
1508 }
1509 
1510 /** Create a registration object for the mempool. */
1511 static struct mlx5_mempool_reg *
1512 mlx5_mempool_reg_create(struct rte_mempool *mp, unsigned int mrs_n,
1513 			bool is_extmem)
1514 {
1515 	struct mlx5_mempool_reg *mpr = NULL;
1516 
1517 	mpr = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO,
1518 			  sizeof(struct mlx5_mempool_reg),
1519 			  RTE_CACHE_LINE_SIZE, SOCKET_ID_ANY);
1520 	if (mpr == NULL) {
1521 		DRV_LOG(ERR, "Cannot allocate mempool %s registration object",
1522 			mp->name);
1523 		return NULL;
1524 	}
1525 	mpr->mrs = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO,
1526 			       mrs_n * sizeof(struct mlx5_mempool_mr),
1527 			       RTE_CACHE_LINE_SIZE, SOCKET_ID_ANY);
1528 	if (!mpr->mrs) {
1529 		DRV_LOG(ERR, "Cannot allocate mempool %s registration MRs",
1530 			mp->name);
1531 		mlx5_free(mpr);
1532 		return NULL;
1533 	}
1534 	mpr->mp = mp;
1535 	mpr->mrs_n = mrs_n;
1536 	mpr->is_extmem = is_extmem;
1537 	return mpr;
1538 }
1539 
1540 /**
1541  * Destroy a mempool registration object.
1542  *
1543  * @param standalone
1544  *   Whether @p mpr owns its MRs exclusively, i.e. they are not shared.
1545  */
1546 static void
1547 mlx5_mempool_reg_destroy(struct mlx5_mr_share_cache *share_cache,
1548 			 struct mlx5_mempool_reg *mpr, bool standalone)
1549 {
1550 	if (standalone) {
1551 		unsigned int i;
1552 
1553 		for (i = 0; i < mpr->mrs_n; i++)
1554 			share_cache->dereg_mr_cb(&mpr->mrs[i].pmd_mr);
1555 		mlx5_free(mpr->mrs);
1556 	}
1557 	mlx5_free(mpr);
1558 }
1559 
1560 /** Find registration object of a mempool. */
1561 static struct mlx5_mempool_reg *
1562 mlx5_mempool_reg_lookup(struct mlx5_mr_share_cache *share_cache,
1563 			struct rte_mempool *mp)
1564 {
1565 	struct mlx5_mempool_reg *mpr;
1566 
1567 	LIST_FOREACH(mpr, &share_cache->mempool_reg_list, next)
1568 		if (mpr->mp == mp)
1569 			break;
1570 	return mpr;
1571 }
1572 
1573 /** Increment reference counters of MRs used in the registration. */
1574 static void
1575 mlx5_mempool_reg_attach(struct mlx5_mempool_reg *mpr)
1576 {
1577 	unsigned int i;
1578 
1579 	for (i = 0; i < mpr->mrs_n; i++)
1580 		__atomic_add_fetch(&mpr->mrs[i].refcnt, 1, __ATOMIC_RELAXED);
1581 }
1582 
1583 /**
1584  * Decrement reference counters of MRs used in the registration.
1585  *
1586  * @return True if no more references to @p mpr MRs exist, False otherwise.
1587  */
1588 static bool
1589 mlx5_mempool_reg_detach(struct mlx5_mempool_reg *mpr)
1590 {
1591 	unsigned int i;
1592 	bool ret = false;
1593 
1594 	for (i = 0; i < mpr->mrs_n; i++)
1595 		ret |= __atomic_sub_fetch(&mpr->mrs[i].refcnt, 1,
1596 					  __ATOMIC_RELAXED) == 0;
1597 	return ret;
1598 }
1599 
1600 static int
1601 mlx5_mr_mempool_register_primary(struct mlx5_mr_share_cache *share_cache,
1602 				 void *pd, struct rte_mempool *mp,
1603 				 bool is_extmem)
1604 {
1605 	struct mlx5_range *ranges = NULL;
1606 	struct mlx5_mempool_reg *mpr, *old_mpr, *new_mpr;
1607 	unsigned int i, ranges_n;
1608 	bool share_hugepage, standalone = false;
1609 	int ret = -1;
1610 
1611 	/* Early check to avoid unnecessary creation of MRs. */
1612 	rte_rwlock_read_lock(&share_cache->rwlock);
1613 	old_mpr = mlx5_mempool_reg_lookup(share_cache, mp);
1614 	rte_rwlock_read_unlock(&share_cache->rwlock);
1615 	if (old_mpr != NULL && (!is_extmem || old_mpr->is_extmem)) {
1616 		DRV_LOG(DEBUG, "Mempool %s is already registered for PD %p",
1617 			mp->name, pd);
1618 		rte_errno = EEXIST;
1619 		goto exit;
1620 	}
1621 	if (mlx5_mempool_reg_analyze(mp, is_extmem, &ranges, &ranges_n,
1622 				     &share_hugepage) < 0) {
1623 		DRV_LOG(ERR, "Cannot get mempool %s memory ranges", mp->name);
1624 		rte_errno = ENOMEM;
1625 		goto exit;
1626 	}
1627 	new_mpr = mlx5_mempool_reg_create(mp, ranges_n, is_extmem);
1628 	if (new_mpr == NULL) {
1629 		DRV_LOG(ERR,
1630 			"Cannot create a registration object for mempool %s in PD %p",
1631 			mp->name, pd);
1632 		rte_errno = ENOMEM;
1633 		goto exit;
1634 	}
1635 	/*
1636 	 * If the entire mempool fits in a single hugepage, the MR for this
1637 	 * hugepage can be shared across mempools that also fit in it.
1638 	 */
1639 	if (share_hugepage) {
1640 		rte_rwlock_write_lock(&share_cache->rwlock);
1641 		LIST_FOREACH(mpr, &share_cache->mempool_reg_list, next) {
1642 			if (mpr->mrs[0].pmd_mr.addr == (void *)ranges[0].start)
1643 				break;
1644 		}
1645 		if (mpr != NULL) {
1646 			new_mpr->mrs = mpr->mrs;
1647 			mlx5_mempool_reg_attach(new_mpr);
1648 			LIST_INSERT_HEAD(&share_cache->mempool_reg_list,
1649 					 new_mpr, next);
1650 		}
1651 		rte_rwlock_write_unlock(&share_cache->rwlock);
1652 		if (mpr != NULL) {
1653 			DRV_LOG(DEBUG, "Shared MR %#x in PD %p for mempool %s with mempool %s",
1654 				mpr->mrs[0].pmd_mr.lkey, pd, mp->name,
1655 				mpr->mp->name);
1656 			ret = 0;
1657 			goto exit;
1658 		}
1659 	}
1660 	for (i = 0; i < ranges_n; i++) {
1661 		struct mlx5_mempool_mr *mr = &new_mpr->mrs[i];
1662 		const struct mlx5_range *range = &ranges[i];
1663 		size_t len = range->end - range->start;
1664 
1665 		if (share_cache->reg_mr_cb(pd, (void *)range->start, len,
1666 		    &mr->pmd_mr) < 0) {
1667 			DRV_LOG(ERR,
1668 				"Failed to create an MR in PD %p for address range "
1669 				"[0x%" PRIxPTR ", 0x%" PRIxPTR "] (%zu bytes) for mempool %s",
1670 				pd, range->start, range->end, len, mp->name);
1671 			break;
1672 		}
1673 		DRV_LOG(DEBUG,
1674 			"Created a new MR %#x in PD %p for address range "
1675 			"[0x%" PRIxPTR ", 0x%" PRIxPTR "] (%zu bytes) for mempool %s",
1676 			mr->pmd_mr.lkey, pd, range->start, range->end, len,
1677 			mp->name);
1678 	}
1679 	if (i != ranges_n) {
1680 		mlx5_mempool_reg_destroy(share_cache, new_mpr, true);
1681 		rte_errno = EINVAL;
1682 		goto exit;
1683 	}
1684 	/* Concurrent registration is not supposed to happen. */
1685 	rte_rwlock_write_lock(&share_cache->rwlock);
1686 	mpr = mlx5_mempool_reg_lookup(share_cache, mp);
1687 	if (mpr == old_mpr && old_mpr != NULL) {
1688 		LIST_REMOVE(old_mpr, next);
1689 		standalone = mlx5_mempool_reg_detach(mpr);
1690 		/* No need to flush the cache: old MRs cannot be in use. */
1691 		mpr = NULL;
1692 	}
1693 	if (mpr == NULL) {
1694 		mlx5_mempool_reg_attach(new_mpr);
1695 		LIST_INSERT_HEAD(&share_cache->mempool_reg_list, new_mpr, next);
1696 		ret = 0;
1697 	}
1698 	rte_rwlock_write_unlock(&share_cache->rwlock);
1699 	if (mpr != NULL) {
1700 		DRV_LOG(DEBUG, "Mempool %s is already registered for PD %p",
1701 			mp->name, pd);
1702 		mlx5_mempool_reg_destroy(share_cache, new_mpr, true);
1703 		rte_errno = EEXIST;
1704 		goto exit;
1705 	} else if (old_mpr != NULL) {
1706 		DRV_LOG(DEBUG, "Mempool %s registration for PD %p updated for external memory",
1707 			mp->name, pd);
1708 		mlx5_mempool_reg_destroy(share_cache, old_mpr, standalone);
1709 	}
1710 exit:
1711 	free(ranges);
1712 	return ret;
1713 }
1714 
1715 static int
1716 mlx5_mr_mempool_register_secondary(struct mlx5_common_device *cdev,
1717 				   struct rte_mempool *mp, bool is_extmem)
1718 {
1719 	return mlx5_mp_req_mempool_reg(cdev, mp, true, is_extmem);
1720 }
1721 
1722 /**
1723  * Register the memory of a mempool in the protection domain.
1724  *
1725  * @param cdev
1726  *   Pointer to the mlx5 common device.
1727  * @param mp
1728  *   Mempool to register.
1729  *
1730  * @return
1731  *   0 on success, (-1) on failure and rte_errno is set.
1732  */
1733 int
1734 mlx5_mr_mempool_register(struct mlx5_common_device *cdev,
1735 			 struct rte_mempool *mp, bool is_extmem)
1736 {
1737 	if (mp->flags & RTE_MEMPOOL_F_NON_IO)
1738 		return 0;
1739 	switch (rte_eal_process_type()) {
1740 	case RTE_PROC_PRIMARY:
1741 		return mlx5_mr_mempool_register_primary(&cdev->mr_scache,
1742 							cdev->pd, mp,
1743 							is_extmem);
1744 	case RTE_PROC_SECONDARY:
1745 		return mlx5_mr_mempool_register_secondary(cdev, mp, is_extmem);
1746 	default:
1747 		return -1;
1748 	}
1749 }
1750 
1751 static int
1752 mlx5_mr_mempool_unregister_primary(struct mlx5_mr_share_cache *share_cache,
1753 				   struct rte_mempool *mp)
1754 {
1755 	struct mlx5_mempool_reg *mpr;
1756 	bool standalone = false;
1757 
1758 	rte_rwlock_write_lock(&share_cache->rwlock);
1759 	LIST_FOREACH(mpr, &share_cache->mempool_reg_list, next)
1760 		if (mpr->mp == mp) {
1761 			LIST_REMOVE(mpr, next);
1762 			standalone = mlx5_mempool_reg_detach(mpr);
1763 			if (standalone)
1764 				/*
1765 				 * The unlock operation below provides a memory
1766 				 * barrier due to its store-release semantics.
1767 				 */
1768 				++share_cache->dev_gen;
1769 			break;
1770 		}
1771 	rte_rwlock_write_unlock(&share_cache->rwlock);
1772 	if (mpr == NULL) {
1773 		rte_errno = ENOENT;
1774 		return -1;
1775 	}
1776 	mlx5_mempool_reg_destroy(share_cache, mpr, standalone);
1777 	return 0;
1778 }
1779 
1780 static int
1781 mlx5_mr_mempool_unregister_secondary(struct mlx5_common_device *cdev,
1782 				     struct rte_mempool *mp)
1783 {
1784 	return mlx5_mp_req_mempool_reg(cdev, mp, false, false /* is_extmem */);
1785 }
1786 
1787 /**
1788  * Unregister the memory of a mempool from the protection domain.
1789  *
1790  * @param cdev
1791  *   Pointer to the mlx5 common device.
1792  * @param mp
1793  *   Mempool to unregister.
1794  *
1795  * @return
1796  *   0 on success, (-1) on failure and rte_errno is set.
1797  */
1798 int
1799 mlx5_mr_mempool_unregister(struct mlx5_common_device *cdev,
1800 			   struct rte_mempool *mp)
1801 {
1802 	if (mp->flags & RTE_MEMPOOL_F_NON_IO)
1803 		return 0;
1804 	switch (rte_eal_process_type()) {
1805 	case RTE_PROC_PRIMARY:
1806 		return mlx5_mr_mempool_unregister_primary(&cdev->mr_scache, mp);
1807 	case RTE_PROC_SECONDARY:
1808 		return mlx5_mr_mempool_unregister_secondary(cdev, mp);
1809 	default:
1810 		return -1;
1811 	}
1812 }
1813 
1814 /**
1815  * Lookup a MR key by and address in a registered mempool.
1816  *
1817  * @param mpr
1818  *   Mempool registration object.
1819  * @param addr
1820  *   Address within the mempool.
1821  * @param entry
1822  *   Bottom-half cache entry to fill.
1823  *
1824  * @return
1825  *   MR key or UINT32_MAX on failure, which can only happen
1826  *   if the address is not from within the mempool.
1827  */
1828 static uint32_t
1829 mlx5_mempool_reg_addr2mr(struct mlx5_mempool_reg *mpr, uintptr_t addr,
1830 			 struct mr_cache_entry *entry)
1831 {
1832 	uint32_t lkey = UINT32_MAX;
1833 	unsigned int i;
1834 
1835 	for (i = 0; i < mpr->mrs_n; i++) {
1836 		const struct mlx5_pmd_mr *mr = &mpr->mrs[i].pmd_mr;
1837 		uintptr_t mr_start = (uintptr_t)mr->addr;
1838 		uintptr_t mr_end = mr_start + mr->len;
1839 
1840 		if (mr_start <= addr && addr < mr_end) {
1841 			lkey = rte_cpu_to_be_32(mr->lkey);
1842 			entry->start = mr_start;
1843 			entry->end = mr_end;
1844 			entry->lkey = lkey;
1845 			break;
1846 		}
1847 	}
1848 	return lkey;
1849 }
1850 
1851 /**
1852  * Update bottom-half cache from the list of mempool registrations.
1853  *
1854  * @param mr_ctrl
1855  *   Per-queue MR control handle.
1856  * @param entry
1857  *   Pointer to an entry in the bottom-half cache to update
1858  *   with the MR lkey looked up.
1859  * @param mp
1860  *   Mempool containing the address.
1861  * @param addr
1862  *   Address to lookup.
1863  * @return
1864  *   MR lkey on success, UINT32_MAX on failure.
1865  */
1866 static uint32_t
1867 mlx5_lookup_mempool_regs(struct mlx5_mr_ctrl *mr_ctrl,
1868 			 struct mr_cache_entry *entry,
1869 			 struct rte_mempool *mp, uintptr_t addr)
1870 {
1871 	struct mlx5_mr_share_cache *share_cache =
1872 		container_of(mr_ctrl->dev_gen_ptr, struct mlx5_mr_share_cache,
1873 			     dev_gen);
1874 	struct mlx5_mr_btree *bt = &mr_ctrl->cache_bh;
1875 	struct mlx5_mempool_reg *mpr;
1876 	uint32_t lkey = UINT32_MAX;
1877 
1878 	/* If local cache table is full, try to double it. */
1879 	if (unlikely(bt->len == bt->size))
1880 		mr_btree_expand(bt, bt->size << 1);
1881 	/* Look up in mempool registrations. */
1882 	rte_rwlock_read_lock(&share_cache->rwlock);
1883 	mpr = mlx5_mempool_reg_lookup(share_cache, mp);
1884 	if (mpr != NULL)
1885 		lkey = mlx5_mempool_reg_addr2mr(mpr, addr, entry);
1886 	rte_rwlock_read_unlock(&share_cache->rwlock);
1887 	/*
1888 	 * Update local cache. Even if it fails, return the found entry
1889 	 * to update top-half cache. Next time, this entry will be found
1890 	 * in the global cache.
1891 	 */
1892 	if (lkey != UINT32_MAX)
1893 		mr_btree_insert(bt, entry);
1894 	return lkey;
1895 }
1896 
1897 /**
1898  * Populate cache with LKeys of all MRs used by the mempool.
1899  * It is intended to be used to register Rx mempools in advance.
1900  *
1901  * @param mr_ctrl
1902  *  Per-queue MR control handle.
1903  * @param mp
1904  *  Registered memory pool.
1905  *
1906  * @return
1907  *  0 on success, (-1) on failure and rte_errno is set.
1908  */
1909 int
1910 mlx5_mr_mempool_populate_cache(struct mlx5_mr_ctrl *mr_ctrl,
1911 			       struct rte_mempool *mp)
1912 {
1913 	struct mlx5_mr_share_cache *share_cache =
1914 		container_of(mr_ctrl->dev_gen_ptr, struct mlx5_mr_share_cache,
1915 			     dev_gen);
1916 	struct mlx5_mr_btree *bt = &mr_ctrl->cache_bh;
1917 	struct mlx5_mempool_reg *mpr;
1918 	unsigned int i;
1919 
1920 	/*
1921 	 * Registration is valid after the lock is released,
1922 	 * because the function is called after the mempool is registered.
1923 	 */
1924 	rte_rwlock_read_lock(&share_cache->rwlock);
1925 	mpr = mlx5_mempool_reg_lookup(share_cache, mp);
1926 	rte_rwlock_read_unlock(&share_cache->rwlock);
1927 	if (mpr == NULL) {
1928 		DRV_LOG(ERR, "Mempool %s is not registered", mp->name);
1929 		rte_errno = ENOENT;
1930 		return -1;
1931 	}
1932 	for (i = 0; i < mpr->mrs_n; i++) {
1933 		struct mlx5_mempool_mr *mr = &mpr->mrs[i];
1934 		struct mr_cache_entry entry;
1935 		uint32_t lkey;
1936 		uint16_t idx;
1937 
1938 		lkey = mr_btree_lookup(bt, &idx, (uintptr_t)mr->pmd_mr.addr);
1939 		if (lkey != UINT32_MAX)
1940 			continue;
1941 		if (bt->len == bt->size)
1942 			mr_btree_expand(bt, bt->size << 1);
1943 		entry.start = (uintptr_t)mr->pmd_mr.addr;
1944 		entry.end = entry.start + mr->pmd_mr.len;
1945 		entry.lkey = rte_cpu_to_be_32(mr->pmd_mr.lkey);
1946 		if (mr_btree_insert(bt, &entry) < 0) {
1947 			DRV_LOG(ERR, "Cannot insert cache entry for mempool %s MR %08x",
1948 				mp->name, entry.lkey);
1949 			rte_errno = EINVAL;
1950 			return -1;
1951 		}
1952 	}
1953 	return 0;
1954 }
1955 
1956 /**
1957  * Bottom-half lookup for the address from the mempool.
1958  *
1959  * @param mr_ctrl
1960  *   Per-queue MR control handle.
1961  * @param mp
1962  *   Mempool containing the address.
1963  * @param addr
1964  *   Address to lookup.
1965  * @return
1966  *   MR lkey on success, UINT32_MAX on failure.
1967  */
1968 uint32_t
1969 mlx5_mr_mempool2mr_bh(struct mlx5_mr_ctrl *mr_ctrl,
1970 		      struct rte_mempool *mp, uintptr_t addr)
1971 {
1972 	struct mr_cache_entry *repl = &mr_ctrl->cache[mr_ctrl->head];
1973 	uint32_t lkey;
1974 	uint16_t bh_idx = 0;
1975 
1976 	/* Binary-search MR translation table. */
1977 	lkey = mr_btree_lookup(&mr_ctrl->cache_bh, &bh_idx, addr);
1978 	/* Update top-half cache. */
1979 	if (likely(lkey != UINT32_MAX)) {
1980 		*repl = (*mr_ctrl->cache_bh.table)[bh_idx];
1981 	} else {
1982 		lkey = mlx5_lookup_mempool_regs(mr_ctrl, repl, mp, addr);
1983 		/* Can only fail if the address is not from the mempool. */
1984 		if (unlikely(lkey == UINT32_MAX))
1985 			return UINT32_MAX;
1986 	}
1987 	/* Update the most recently used entry. */
1988 	mr_ctrl->mru = mr_ctrl->head;
1989 	/* Point to the next victim, the oldest. */
1990 	mr_ctrl->head = (mr_ctrl->head + 1) % MLX5_MR_CACHE_N;
1991 	return lkey;
1992 }
1993 
1994 uint32_t
1995 mlx5_mr_mb2mr_bh(struct mlx5_mr_ctrl *mr_ctrl, struct rte_mbuf *mb)
1996 {
1997 	struct rte_mempool *mp;
1998 	struct mlx5_mprq_buf *buf;
1999 	uint32_t lkey;
2000 	uintptr_t addr = (uintptr_t)mb->buf_addr;
2001 	struct mlx5_mr_share_cache *share_cache =
2002 		container_of(mr_ctrl->dev_gen_ptr, struct mlx5_mr_share_cache,
2003 			     dev_gen);
2004 	struct mlx5_common_device *cdev =
2005 		container_of(share_cache, struct mlx5_common_device, mr_scache);
2006 	bool external, mprq, pinned = false;
2007 
2008 	/* Recover MPRQ mempool. */
2009 	external = RTE_MBUF_HAS_EXTBUF(mb);
2010 	if (external && mb->shinfo->free_cb == mlx5_mprq_buf_free_cb) {
2011 		mprq = true;
2012 		buf = mb->shinfo->fcb_opaque;
2013 		mp = buf->mp;
2014 	} else {
2015 		mprq = false;
2016 		mp = mlx5_mb2mp(mb);
2017 		pinned = rte_pktmbuf_priv_flags(mp) &
2018 			 RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF;
2019 	}
2020 	if (!external || mprq || pinned) {
2021 		lkey = mlx5_mr_mempool2mr_bh(mr_ctrl, mp, addr);
2022 		if (lkey != UINT32_MAX)
2023 			return lkey;
2024 		/* MPRQ is always registered. */
2025 		MLX5_ASSERT(!mprq);
2026 	}
2027 	/* Register pinned external memory if the mempool is not used for Rx. */
2028 	if (cdev->config.mr_mempool_reg_en && pinned) {
2029 		if (mlx5_mr_mempool_register(cdev, mp, true) < 0)
2030 			return UINT32_MAX;
2031 		lkey = mlx5_mr_mempool2mr_bh(mr_ctrl, mp, addr);
2032 		MLX5_ASSERT(lkey != UINT32_MAX);
2033 		return lkey;
2034 	}
2035 	/* Fallback to generic mechanism in corner cases. */
2036 	return mlx5_mr_addr2mr_bh(mr_ctrl, addr);
2037 }
2038