xref: /dpdk/app/test-pmd/txonly.c (revision f9e1d67f237a00cf94feb4413e3d978fdd632052)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation
3  */
4 
5 #include <stdarg.h>
6 #include <string.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <unistd.h>
11 #include <inttypes.h>
12 
13 #include <sys/queue.h>
14 #include <sys/stat.h>
15 
16 #include <rte_common.h>
17 #include <rte_byteorder.h>
18 #include <rte_log.h>
19 #include <rte_debug.h>
20 #include <rte_cycles.h>
21 #include <rte_memory.h>
22 #include <rte_memcpy.h>
23 #include <rte_launch.h>
24 #include <rte_eal.h>
25 #include <rte_per_lcore.h>
26 #include <rte_lcore.h>
27 #include <rte_branch_prediction.h>
28 #include <rte_mempool.h>
29 #include <rte_mbuf.h>
30 #include <rte_interrupts.h>
31 #include <rte_ether.h>
32 #include <rte_ethdev.h>
33 #include <rte_ip.h>
34 #include <rte_tcp.h>
35 #include <rte_udp.h>
36 #include <rte_string_fns.h>
37 #include <rte_flow.h>
38 
39 #include "testpmd.h"
40 
41 struct tx_timestamp {
42 	rte_be32_t signature;
43 	rte_be16_t pkt_idx;
44 	rte_be16_t queue_idx;
45 	rte_be64_t ts;
46 };
47 
48 /* use RFC863 Discard Protocol */
49 uint16_t tx_udp_src_port = 9;
50 uint16_t tx_udp_dst_port = 9;
51 
52 /* use RFC5735 / RFC2544 reserved network test addresses */
53 uint32_t tx_ip_src_addr = (198U << 24) | (18 << 16) | (0 << 8) | 1;
54 uint32_t tx_ip_dst_addr = (198U << 24) | (18 << 16) | (0 << 8) | 2;
55 
56 #define IP_DEFTTL  64   /* from RFC 1340. */
57 
58 static struct rte_ipv4_hdr pkt_ip_hdr; /**< IP header of transmitted packets. */
59 RTE_DEFINE_PER_LCORE(uint8_t, _src_port_var); /**< Source port variation */
60 static struct rte_udp_hdr pkt_udp_hdr; /**< UDP header of tx packets. */
61 
62 static uint64_t timestamp_mask; /**< Timestamp dynamic flag mask */
63 static int32_t timestamp_off; /**< Timestamp dynamic field offset */
64 static bool timestamp_enable; /**< Timestamp enable */
65 static uint64_t timestamp_initial[RTE_MAX_ETHPORTS];
66 
67 static void
68 copy_buf_to_pkt_segs(void* buf, unsigned len, struct rte_mbuf *pkt,
69 		     unsigned offset)
70 {
71 	struct rte_mbuf *seg;
72 	void *seg_buf;
73 	unsigned copy_len;
74 
75 	seg = pkt;
76 	while (offset >= seg->data_len) {
77 		offset -= seg->data_len;
78 		seg = seg->next;
79 	}
80 	copy_len = seg->data_len - offset;
81 	seg_buf = rte_pktmbuf_mtod_offset(seg, char *, offset);
82 	while (len > copy_len) {
83 		rte_memcpy(seg_buf, buf, (size_t) copy_len);
84 		len -= copy_len;
85 		buf = ((char*) buf + copy_len);
86 		seg = seg->next;
87 		seg_buf = rte_pktmbuf_mtod(seg, char *);
88 		copy_len = seg->data_len;
89 	}
90 	rte_memcpy(seg_buf, buf, (size_t) len);
91 }
92 
93 static inline void
94 copy_buf_to_pkt(void* buf, unsigned len, struct rte_mbuf *pkt, unsigned offset)
95 {
96 	if (offset + len <= pkt->data_len) {
97 		rte_memcpy(rte_pktmbuf_mtod_offset(pkt, char *, offset),
98 			buf, (size_t) len);
99 		return;
100 	}
101 	copy_buf_to_pkt_segs(buf, len, pkt, offset);
102 }
103 
104 static void
105 setup_pkt_udp_ip_headers(struct rte_ipv4_hdr *ip_hdr,
106 			 struct rte_udp_hdr *udp_hdr,
107 			 uint16_t pkt_data_len)
108 {
109 	uint16_t pkt_len;
110 
111 	/*
112 	 * Initialize UDP header.
113 	 */
114 	pkt_len = (uint16_t) (pkt_data_len + sizeof(struct rte_udp_hdr));
115 	udp_hdr->src_port = rte_cpu_to_be_16(tx_udp_src_port);
116 	udp_hdr->dst_port = rte_cpu_to_be_16(tx_udp_dst_port);
117 	udp_hdr->dgram_len      = RTE_CPU_TO_BE_16(pkt_len);
118 	udp_hdr->dgram_cksum    = 0; /* No UDP checksum. */
119 
120 	/*
121 	 * Initialize IP header.
122 	 */
123 	pkt_len = (uint16_t) (pkt_len + sizeof(struct rte_ipv4_hdr));
124 	ip_hdr->version_ihl   = RTE_IPV4_VHL_DEF;
125 	ip_hdr->type_of_service   = 0;
126 	ip_hdr->fragment_offset = 0;
127 	ip_hdr->time_to_live   = IP_DEFTTL;
128 	ip_hdr->next_proto_id = IPPROTO_UDP;
129 	ip_hdr->packet_id = 0;
130 	ip_hdr->total_length   = RTE_CPU_TO_BE_16(pkt_len);
131 	ip_hdr->src_addr = rte_cpu_to_be_32(tx_ip_src_addr);
132 	ip_hdr->dst_addr = rte_cpu_to_be_32(tx_ip_dst_addr);
133 
134 	/*
135 	 * Compute IP header checksum.
136 	 */
137 	ip_hdr->hdr_checksum = rte_ipv4_cksum_simple(ip_hdr);
138 }
139 
140 static inline void
141 update_pkt_header(struct rte_mbuf *pkt, uint32_t total_pkt_len)
142 {
143 	struct rte_ipv4_hdr *ip_hdr;
144 	struct rte_udp_hdr *udp_hdr;
145 	uint16_t pkt_data_len;
146 	uint16_t pkt_len;
147 
148 	pkt_data_len = (uint16_t) (total_pkt_len - (
149 					sizeof(struct rte_ether_hdr) +
150 					sizeof(struct rte_ipv4_hdr) +
151 					sizeof(struct rte_udp_hdr)));
152 	/* update UDP packet length */
153 	udp_hdr = rte_pktmbuf_mtod_offset(pkt, struct rte_udp_hdr *,
154 				sizeof(struct rte_ether_hdr) +
155 				sizeof(struct rte_ipv4_hdr));
156 	pkt_len = (uint16_t) (pkt_data_len + sizeof(struct rte_udp_hdr));
157 	udp_hdr->dgram_len = RTE_CPU_TO_BE_16(pkt_len);
158 
159 	/* update IP packet length and checksum */
160 	ip_hdr = rte_pktmbuf_mtod_offset(pkt, struct rte_ipv4_hdr *,
161 				sizeof(struct rte_ether_hdr));
162 	ip_hdr->hdr_checksum = 0;
163 	pkt_len = (uint16_t) (pkt_len + sizeof(struct rte_ipv4_hdr));
164 	ip_hdr->total_length = RTE_CPU_TO_BE_16(pkt_len);
165 	ip_hdr->hdr_checksum = rte_ipv4_cksum(ip_hdr);
166 }
167 
168 static inline bool
169 pkt_burst_prepare(struct rte_mbuf *pkt, struct rte_mempool *mbp,
170 		struct rte_ether_hdr *eth_hdr, const uint16_t vlan_tci,
171 		const uint16_t vlan_tci_outer, const uint64_t ol_flags,
172 		const uint16_t idx, struct fwd_stream *fs)
173 {
174 	struct rte_mbuf *pkt_segs[RTE_MAX_SEGS_PER_PKT];
175 	struct rte_mbuf *pkt_seg;
176 	uint32_t nb_segs, pkt_len;
177 	uint8_t i;
178 
179 	if (unlikely(tx_pkt_split == TX_PKT_SPLIT_RND))
180 		nb_segs = rte_rand() % tx_pkt_nb_segs + 1;
181 	else
182 		nb_segs = tx_pkt_nb_segs;
183 
184 	if (nb_segs > 1) {
185 		if (rte_mempool_get_bulk(mbp, (void **)pkt_segs, nb_segs - 1))
186 			return false;
187 	}
188 
189 	rte_pktmbuf_reset_headroom(pkt);
190 	pkt->data_len = tx_pkt_seg_lengths[0];
191 	pkt->ol_flags &= RTE_MBUF_F_EXTERNAL;
192 	pkt->ol_flags |= ol_flags;
193 	pkt->vlan_tci = vlan_tci;
194 	pkt->vlan_tci_outer = vlan_tci_outer;
195 	pkt->l2_len = sizeof(struct rte_ether_hdr);
196 	pkt->l3_len = sizeof(struct rte_ipv4_hdr);
197 
198 	pkt_len = pkt->data_len;
199 	pkt_seg = pkt;
200 	for (i = 1; i < nb_segs; i++) {
201 		pkt_seg->next = pkt_segs[i - 1];
202 		pkt_seg = pkt_seg->next;
203 		pkt_seg->data_len = tx_pkt_seg_lengths[i];
204 		pkt_len += pkt_seg->data_len;
205 	}
206 	pkt_seg->next = NULL; /* Last segment of packet. */
207 	/*
208 	 * Copy headers in first packet segment(s).
209 	 */
210 	copy_buf_to_pkt(eth_hdr, sizeof(*eth_hdr), pkt, 0);
211 	copy_buf_to_pkt(&pkt_ip_hdr, sizeof(pkt_ip_hdr), pkt,
212 			sizeof(struct rte_ether_hdr));
213 	copy_buf_to_pkt(&pkt_udp_hdr, sizeof(pkt_udp_hdr), pkt,
214 			sizeof(struct rte_ether_hdr) +
215 			sizeof(struct rte_ipv4_hdr));
216 	if (txonly_multi_flow) {
217 		uint16_t src_var = RTE_PER_LCORE(_src_port_var);
218 		struct rte_udp_hdr *udp_hdr;
219 		uint16_t src_port;
220 
221 		udp_hdr = rte_pktmbuf_mtod_offset(pkt,
222 				struct rte_udp_hdr *,
223 				sizeof(struct rte_ether_hdr) +
224 				sizeof(struct rte_ipv4_hdr));
225 		/*
226 		 * Generate multiple flows by varying UDP source port.
227 		 * This enables packets are well distributed by RSS in
228 		 * receiver side if any and txonly mode can be a decent
229 		 * packet generator for developer's quick performance
230 		 * regression test.
231 		 *
232 		 * Only ports in the range 49152 (0xC000) and 65535 (0xFFFF)
233 		 * will be used, with the least significant byte representing
234 		 * the lcore ID. As such, the most significant byte will cycle
235 		 * through 0xC0 and 0xFF.
236 		 */
237 		src_port = ((src_var++ | 0xC0) << 8) + rte_lcore_id();
238 		udp_hdr->src_port = rte_cpu_to_be_16(src_port);
239 		RTE_PER_LCORE(_src_port_var) = src_var;
240 	}
241 
242 	if (unlikely(tx_pkt_split == TX_PKT_SPLIT_RND) || txonly_multi_flow)
243 		update_pkt_header(pkt, pkt_len);
244 
245 	if (unlikely(timestamp_enable)) {
246 		uint64_t skew = fs->ts_skew;
247 		struct tx_timestamp timestamp_mark;
248 
249 		if (unlikely(!skew)) {
250 			struct rte_eth_dev_info dev_info;
251 			unsigned int txqs_n;
252 			uint64_t phase;
253 			int ret;
254 
255 			ret = eth_dev_info_get_print_err(fs->tx_port, &dev_info);
256 			if (ret != 0) {
257 				TESTPMD_LOG(ERR,
258 					"Failed to get device info for port %d,"
259 					"could not finish timestamp init",
260 					fs->tx_port);
261 				return false;
262 			}
263 			txqs_n = dev_info.nb_tx_queues;
264 			phase = tx_pkt_times_inter * fs->tx_queue /
265 					 (txqs_n ? txqs_n : 1);
266 			/*
267 			 * Initialize the scheduling time phase shift
268 			 * depending on queue index.
269 			 */
270 			skew = timestamp_initial[fs->tx_port] +
271 			       tx_pkt_times_inter + phase;
272 			fs->ts_skew = skew;
273 		}
274 		timestamp_mark.pkt_idx = rte_cpu_to_be_16(idx);
275 		timestamp_mark.queue_idx = rte_cpu_to_be_16(fs->tx_queue);
276 		timestamp_mark.signature = rte_cpu_to_be_32(0xBEEFC0DE);
277 		if (unlikely(!idx)) {
278 			skew +=	tx_pkt_times_inter;
279 			pkt->ol_flags |= timestamp_mask;
280 			*RTE_MBUF_DYNFIELD
281 				(pkt, timestamp_off, uint64_t *) = skew;
282 			fs->ts_skew = skew;
283 			timestamp_mark.ts = rte_cpu_to_be_64(skew);
284 		} else if (tx_pkt_times_intra) {
285 			skew +=	tx_pkt_times_intra;
286 			pkt->ol_flags |= timestamp_mask;
287 			*RTE_MBUF_DYNFIELD
288 				(pkt, timestamp_off, uint64_t *) = skew;
289 			fs->ts_skew = skew;
290 			timestamp_mark.ts = rte_cpu_to_be_64(skew);
291 		} else {
292 			timestamp_mark.ts = RTE_BE64(0);
293 		}
294 		copy_buf_to_pkt(&timestamp_mark, sizeof(timestamp_mark), pkt,
295 			sizeof(struct rte_ether_hdr) +
296 			sizeof(struct rte_ipv4_hdr) +
297 			sizeof(pkt_udp_hdr));
298 	}
299 	/*
300 	 * Complete first mbuf of packet and append it to the
301 	 * burst of packets to be transmitted.
302 	 */
303 	pkt->nb_segs = nb_segs;
304 	pkt->pkt_len = pkt_len;
305 
306 	return true;
307 }
308 
309 /*
310  * Transmit a burst of multi-segments packets.
311  */
312 static bool
313 pkt_burst_transmit(struct fwd_stream *fs)
314 {
315 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
316 	struct rte_port *txp;
317 	struct rte_mbuf *pkt;
318 	struct rte_mempool *mbp;
319 	struct rte_ether_hdr eth_hdr;
320 	uint16_t nb_tx;
321 	uint16_t nb_pkt;
322 	uint16_t vlan_tci, vlan_tci_outer;
323 	uint64_t ol_flags = 0;
324 	uint64_t tx_offloads;
325 
326 	mbp = current_fwd_lcore()->mbp;
327 	txp = &ports[fs->tx_port];
328 	tx_offloads = txp->dev_conf.txmode.offloads;
329 	vlan_tci = txp->tx_vlan_id;
330 	vlan_tci_outer = txp->tx_vlan_id_outer;
331 	if (tx_offloads	& RTE_ETH_TX_OFFLOAD_VLAN_INSERT)
332 		ol_flags = RTE_MBUF_F_TX_VLAN;
333 	if (tx_offloads & RTE_ETH_TX_OFFLOAD_QINQ_INSERT)
334 		ol_flags |= RTE_MBUF_F_TX_QINQ;
335 	if (tx_offloads & RTE_ETH_TX_OFFLOAD_MACSEC_INSERT)
336 		ol_flags |= RTE_MBUF_F_TX_MACSEC;
337 
338 	/*
339 	 * Initialize Ethernet header.
340 	 */
341 	rte_ether_addr_copy(&peer_eth_addrs[fs->peer_addr], &eth_hdr.dst_addr);
342 	rte_ether_addr_copy(&ports[fs->tx_port].eth_addr, &eth_hdr.src_addr);
343 	eth_hdr.ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
344 
345 	if (rte_mempool_get_bulk(mbp, (void **)pkts_burst,
346 				nb_pkt_per_burst) == 0) {
347 		for (nb_pkt = 0; nb_pkt < nb_pkt_per_burst; nb_pkt++) {
348 			if (unlikely(!pkt_burst_prepare(pkts_burst[nb_pkt], mbp,
349 							&eth_hdr, vlan_tci,
350 							vlan_tci_outer,
351 							ol_flags,
352 							nb_pkt, fs))) {
353 				rte_mempool_put_bulk(mbp,
354 						(void **)&pkts_burst[nb_pkt],
355 						nb_pkt_per_burst - nb_pkt);
356 				break;
357 			}
358 		}
359 	} else {
360 		for (nb_pkt = 0; nb_pkt < nb_pkt_per_burst; nb_pkt++) {
361 			pkt = rte_mbuf_raw_alloc(mbp);
362 			if (pkt == NULL)
363 				break;
364 			if (unlikely(!pkt_burst_prepare(pkt, mbp, &eth_hdr,
365 							vlan_tci,
366 							vlan_tci_outer,
367 							ol_flags,
368 							nb_pkt, fs))) {
369 				rte_pktmbuf_free(pkt);
370 				break;
371 			}
372 			pkts_burst[nb_pkt] = pkt;
373 		}
374 	}
375 
376 	if (nb_pkt == 0)
377 		return false;
378 
379 	nb_tx = common_fwd_stream_transmit(fs, pkts_burst, nb_pkt);
380 
381 	if (txonly_multi_flow)
382 		RTE_PER_LCORE(_src_port_var) -= nb_pkt - nb_tx;
383 
384 	if (unlikely(nb_tx < nb_pkt)) {
385 		if (verbose_level > 0 && fs->fwd_dropped == 0)
386 			printf("port %d tx_queue %d - drop "
387 			       "(nb_pkt:%u - nb_tx:%u)=%u packets\n",
388 			       fs->tx_port, fs->tx_queue,
389 			       (unsigned) nb_pkt, (unsigned) nb_tx,
390 			       (unsigned) (nb_pkt - nb_tx));
391 	}
392 
393 	return true;
394 }
395 
396 static int
397 tx_only_begin(portid_t pi)
398 {
399 	uint16_t pkt_hdr_len, pkt_data_len;
400 	int dynf;
401 
402 	pkt_hdr_len = (uint16_t)(sizeof(struct rte_ether_hdr) +
403 				 sizeof(struct rte_ipv4_hdr) +
404 				 sizeof(struct rte_udp_hdr));
405 	pkt_data_len = tx_pkt_length - pkt_hdr_len;
406 
407 	if ((tx_pkt_split == TX_PKT_SPLIT_RND || txonly_multi_flow) &&
408 	    tx_pkt_seg_lengths[0] < pkt_hdr_len) {
409 		TESTPMD_LOG(ERR,
410 			    "Random segment number or multiple flow is enabled, "
411 			    "but tx_pkt_seg_lengths[0] %u < %u (needed)\n",
412 			    tx_pkt_seg_lengths[0], pkt_hdr_len);
413 		return -EINVAL;
414 	}
415 
416 	setup_pkt_udp_ip_headers(&pkt_ip_hdr, &pkt_udp_hdr, pkt_data_len);
417 
418 	timestamp_enable = false;
419 	timestamp_mask = 0;
420 	timestamp_off = -1;
421 	dynf = rte_mbuf_dynflag_lookup
422 				(RTE_MBUF_DYNFLAG_TX_TIMESTAMP_NAME, NULL);
423 	if (dynf >= 0)
424 		timestamp_mask = 1ULL << dynf;
425 	dynf = rte_mbuf_dynfield_lookup
426 				(RTE_MBUF_DYNFIELD_TIMESTAMP_NAME, NULL);
427 	if (dynf >= 0)
428 		timestamp_off = dynf;
429 	timestamp_enable = tx_pkt_times_inter &&
430 			   timestamp_mask &&
431 			   timestamp_off >= 0 &&
432 			   !rte_eth_read_clock(pi, &timestamp_initial[pi]);
433 
434 	if (timestamp_enable) {
435 		pkt_hdr_len += sizeof(struct tx_timestamp);
436 
437 		if (tx_pkt_split == TX_PKT_SPLIT_RND) {
438 			if (tx_pkt_seg_lengths[0] < pkt_hdr_len) {
439 				TESTPMD_LOG(ERR,
440 					    "Time stamp and random segment number are enabled, "
441 					    "but tx_pkt_seg_lengths[0] %u < %u (needed)\n",
442 					    tx_pkt_seg_lengths[0], pkt_hdr_len);
443 				return -EINVAL;
444 			}
445 		} else {
446 			uint16_t total = 0;
447 			uint8_t i;
448 
449 			for (i = 0; i < tx_pkt_nb_segs; i++) {
450 				total += tx_pkt_seg_lengths[i];
451 				if (total >= pkt_hdr_len)
452 					break;
453 			}
454 
455 			if (total < pkt_hdr_len) {
456 				TESTPMD_LOG(ERR,
457 					    "Not enough Tx segment space for time stamp info, "
458 					    "total %u < %u (needed)\n",
459 					    total, pkt_hdr_len);
460 				return -EINVAL;
461 			}
462 		}
463 	}
464 
465 	/* Make sure all settings are visible on forwarding cores.*/
466 	rte_wmb();
467 	return 0;
468 }
469 
470 static void
471 tx_only_stream_init(struct fwd_stream *fs)
472 {
473 	fs->disabled = ports[fs->tx_port].txq[fs->tx_queue].state ==
474 						RTE_ETH_QUEUE_STATE_STOPPED;
475 }
476 
477 struct fwd_engine tx_only_engine = {
478 	.fwd_mode_name  = "txonly",
479 	.port_fwd_begin = tx_only_begin,
480 	.stream_init    = tx_only_stream_init,
481 	.packet_fwd     = pkt_burst_transmit,
482 };
483