1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2017 Cavium, Inc 3 */ 4 5 #include <math.h> 6 7 #include "test_perf_common.h" 8 9 #define NB_CRYPTODEV_DESCRIPTORS 128 10 11 int 12 perf_test_result(struct evt_test *test, struct evt_options *opt) 13 { 14 RTE_SET_USED(opt); 15 int i; 16 uint64_t total = 0; 17 struct test_perf *t = evt_test_priv(test); 18 19 printf("Packet distribution across worker cores :\n"); 20 for (i = 0; i < t->nb_workers; i++) 21 total += t->worker[i].processed_pkts; 22 for (i = 0; i < t->nb_workers; i++) 23 printf("Worker %d packets: "CLGRN"%"PRIx64" "CLNRM"percentage:" 24 CLGRN" %3.2f"CLNRM"\n", i, 25 t->worker[i].processed_pkts, 26 (((double)t->worker[i].processed_pkts)/total) 27 * 100); 28 29 return t->result; 30 } 31 32 static inline int 33 perf_producer(void *arg) 34 { 35 int i; 36 struct prod_data *p = arg; 37 struct test_perf *t = p->t; 38 struct evt_options *opt = t->opt; 39 const uint8_t dev_id = p->dev_id; 40 const uint8_t port = p->port_id; 41 struct rte_mempool *pool = t->pool; 42 const uint64_t nb_pkts = t->nb_pkts; 43 const uint32_t nb_flows = t->nb_flows; 44 uint32_t flow_counter = 0; 45 uint64_t count = 0; 46 struct perf_elt *m[BURST_SIZE + 1] = {NULL}; 47 struct rte_event ev; 48 49 if (opt->verbose_level > 1) 50 printf("%s(): lcore %d dev_id %d port=%d queue %d\n", __func__, 51 rte_lcore_id(), dev_id, port, p->queue_id); 52 53 ev.event = 0; 54 ev.op = RTE_EVENT_OP_NEW; 55 ev.queue_id = p->queue_id; 56 ev.sched_type = t->opt->sched_type_list[0]; 57 ev.priority = RTE_EVENT_DEV_PRIORITY_NORMAL; 58 ev.event_type = RTE_EVENT_TYPE_CPU; 59 ev.sub_event_type = 0; /* stage 0 */ 60 61 while (count < nb_pkts && t->done == false) { 62 if (rte_mempool_get_bulk(pool, (void **)m, BURST_SIZE) < 0) 63 continue; 64 for (i = 0; i < BURST_SIZE; i++) { 65 ev.flow_id = flow_counter++ % nb_flows; 66 ev.event_ptr = m[i]; 67 m[i]->timestamp = rte_get_timer_cycles(); 68 while (rte_event_enqueue_burst(dev_id, 69 port, &ev, 1) != 1) { 70 if (t->done) 71 break; 72 rte_pause(); 73 m[i]->timestamp = rte_get_timer_cycles(); 74 } 75 } 76 count += BURST_SIZE; 77 } 78 79 return 0; 80 } 81 82 static inline int 83 perf_producer_burst(void *arg) 84 { 85 uint32_t i; 86 uint64_t timestamp; 87 struct rte_event_dev_info dev_info; 88 struct prod_data *p = arg; 89 struct test_perf *t = p->t; 90 struct evt_options *opt = t->opt; 91 const uint8_t dev_id = p->dev_id; 92 const uint8_t port = p->port_id; 93 struct rte_mempool *pool = t->pool; 94 const uint64_t nb_pkts = t->nb_pkts; 95 const uint32_t nb_flows = t->nb_flows; 96 uint32_t flow_counter = 0; 97 uint16_t enq = 0; 98 uint64_t count = 0; 99 struct perf_elt *m[MAX_PROD_ENQ_BURST_SIZE + 1]; 100 struct rte_event ev[MAX_PROD_ENQ_BURST_SIZE + 1]; 101 uint32_t burst_size = opt->prod_enq_burst_sz; 102 103 memset(m, 0, sizeof(*m) * (MAX_PROD_ENQ_BURST_SIZE + 1)); 104 rte_event_dev_info_get(dev_id, &dev_info); 105 if (dev_info.max_event_port_enqueue_depth < burst_size) 106 burst_size = dev_info.max_event_port_enqueue_depth; 107 108 if (opt->verbose_level > 1) 109 printf("%s(): lcore %d dev_id %d port=%d queue %d\n", __func__, 110 rte_lcore_id(), dev_id, port, p->queue_id); 111 112 for (i = 0; i < burst_size; i++) { 113 ev[i].op = RTE_EVENT_OP_NEW; 114 ev[i].queue_id = p->queue_id; 115 ev[i].sched_type = t->opt->sched_type_list[0]; 116 ev[i].priority = RTE_EVENT_DEV_PRIORITY_NORMAL; 117 ev[i].event_type = RTE_EVENT_TYPE_CPU; 118 ev[i].sub_event_type = 0; /* stage 0 */ 119 } 120 121 while (count < nb_pkts && t->done == false) { 122 if (rte_mempool_get_bulk(pool, (void **)m, burst_size) < 0) 123 continue; 124 timestamp = rte_get_timer_cycles(); 125 for (i = 0; i < burst_size; i++) { 126 ev[i].flow_id = flow_counter++ % nb_flows; 127 ev[i].event_ptr = m[i]; 128 m[i]->timestamp = timestamp; 129 } 130 enq = rte_event_enqueue_burst(dev_id, port, ev, burst_size); 131 while (enq < burst_size) { 132 enq += rte_event_enqueue_burst(dev_id, port, 133 ev + enq, 134 burst_size - enq); 135 if (t->done) 136 break; 137 rte_pause(); 138 timestamp = rte_get_timer_cycles(); 139 for (i = enq; i < burst_size; i++) 140 m[i]->timestamp = timestamp; 141 } 142 count += burst_size; 143 } 144 return 0; 145 } 146 147 static inline int 148 perf_event_timer_producer(void *arg) 149 { 150 int i; 151 struct prod_data *p = arg; 152 struct test_perf *t = p->t; 153 struct evt_options *opt = t->opt; 154 uint32_t flow_counter = 0; 155 uint64_t count = 0; 156 uint64_t arm_latency = 0; 157 const uint8_t nb_timer_adptrs = opt->nb_timer_adptrs; 158 const uint32_t nb_flows = t->nb_flows; 159 const uint64_t nb_timers = opt->nb_timers; 160 struct rte_mempool *pool = t->pool; 161 struct perf_elt *m[BURST_SIZE + 1] = {NULL}; 162 struct rte_event_timer_adapter **adptr = t->timer_adptr; 163 struct rte_event_timer tim; 164 uint64_t timeout_ticks = opt->expiry_nsec / opt->timer_tick_nsec; 165 166 memset(&tim, 0, sizeof(struct rte_event_timer)); 167 timeout_ticks = 168 opt->optm_timer_tick_nsec 169 ? ceil((double)(timeout_ticks * opt->timer_tick_nsec) / 170 opt->optm_timer_tick_nsec) 171 : timeout_ticks; 172 timeout_ticks += timeout_ticks ? 0 : 1; 173 tim.ev.event_type = RTE_EVENT_TYPE_TIMER; 174 tim.ev.op = RTE_EVENT_OP_NEW; 175 tim.ev.sched_type = t->opt->sched_type_list[0]; 176 tim.ev.queue_id = p->queue_id; 177 tim.ev.priority = RTE_EVENT_DEV_PRIORITY_NORMAL; 178 tim.state = RTE_EVENT_TIMER_NOT_ARMED; 179 tim.timeout_ticks = timeout_ticks; 180 181 if (opt->verbose_level > 1) 182 printf("%s(): lcore %d\n", __func__, rte_lcore_id()); 183 184 while (count < nb_timers && t->done == false) { 185 if (rte_mempool_get_bulk(pool, (void **)m, BURST_SIZE) < 0) 186 continue; 187 for (i = 0; i < BURST_SIZE; i++) { 188 rte_prefetch0(m[i + 1]); 189 m[i]->tim = tim; 190 m[i]->tim.ev.flow_id = flow_counter++ % nb_flows; 191 m[i]->tim.ev.event_ptr = m[i]; 192 m[i]->timestamp = rte_get_timer_cycles(); 193 while (rte_event_timer_arm_burst( 194 adptr[flow_counter % nb_timer_adptrs], 195 (struct rte_event_timer **)&m[i], 1) != 1) { 196 if (t->done) 197 break; 198 m[i]->timestamp = rte_get_timer_cycles(); 199 } 200 arm_latency += rte_get_timer_cycles() - m[i]->timestamp; 201 } 202 count += BURST_SIZE; 203 } 204 fflush(stdout); 205 rte_delay_ms(1000); 206 printf("%s(): lcore %d Average event timer arm latency = %.3f us\n", 207 __func__, rte_lcore_id(), 208 count ? (float)(arm_latency / count) / 209 (rte_get_timer_hz() / 1000000) : 0); 210 return 0; 211 } 212 213 static inline int 214 perf_event_timer_producer_burst(void *arg) 215 { 216 int i; 217 struct prod_data *p = arg; 218 struct test_perf *t = p->t; 219 struct evt_options *opt = t->opt; 220 uint32_t flow_counter = 0; 221 uint64_t count = 0; 222 uint64_t arm_latency = 0; 223 const uint8_t nb_timer_adptrs = opt->nb_timer_adptrs; 224 const uint32_t nb_flows = t->nb_flows; 225 const uint64_t nb_timers = opt->nb_timers; 226 struct rte_mempool *pool = t->pool; 227 struct perf_elt *m[BURST_SIZE + 1] = {NULL}; 228 struct rte_event_timer_adapter **adptr = t->timer_adptr; 229 struct rte_event_timer tim; 230 uint64_t timeout_ticks = opt->expiry_nsec / opt->timer_tick_nsec; 231 232 memset(&tim, 0, sizeof(struct rte_event_timer)); 233 timeout_ticks = 234 opt->optm_timer_tick_nsec 235 ? ceil((double)(timeout_ticks * opt->timer_tick_nsec) / 236 opt->optm_timer_tick_nsec) 237 : timeout_ticks; 238 timeout_ticks += timeout_ticks ? 0 : 1; 239 tim.ev.event_type = RTE_EVENT_TYPE_TIMER; 240 tim.ev.op = RTE_EVENT_OP_NEW; 241 tim.ev.sched_type = t->opt->sched_type_list[0]; 242 tim.ev.queue_id = p->queue_id; 243 tim.ev.priority = RTE_EVENT_DEV_PRIORITY_NORMAL; 244 tim.state = RTE_EVENT_TIMER_NOT_ARMED; 245 tim.timeout_ticks = timeout_ticks; 246 247 if (opt->verbose_level > 1) 248 printf("%s(): lcore %d\n", __func__, rte_lcore_id()); 249 250 while (count < nb_timers && t->done == false) { 251 if (rte_mempool_get_bulk(pool, (void **)m, BURST_SIZE) < 0) 252 continue; 253 for (i = 0; i < BURST_SIZE; i++) { 254 rte_prefetch0(m[i + 1]); 255 m[i]->tim = tim; 256 m[i]->tim.ev.flow_id = flow_counter++ % nb_flows; 257 m[i]->tim.ev.event_ptr = m[i]; 258 m[i]->timestamp = rte_get_timer_cycles(); 259 } 260 rte_event_timer_arm_tmo_tick_burst( 261 adptr[flow_counter % nb_timer_adptrs], 262 (struct rte_event_timer **)m, 263 tim.timeout_ticks, 264 BURST_SIZE); 265 arm_latency += rte_get_timer_cycles() - m[i - 1]->timestamp; 266 count += BURST_SIZE; 267 } 268 fflush(stdout); 269 rte_delay_ms(1000); 270 printf("%s(): lcore %d Average event timer arm latency = %.3f us\n", 271 __func__, rte_lcore_id(), 272 count ? (float)(arm_latency / count) / 273 (rte_get_timer_hz() / 1000000) : 0); 274 return 0; 275 } 276 277 static inline void 278 crypto_adapter_enq_op_new(struct prod_data *p) 279 { 280 struct rte_cryptodev_sym_session **crypto_sess = p->ca.crypto_sess; 281 struct test_perf *t = p->t; 282 const uint32_t nb_flows = t->nb_flows; 283 const uint64_t nb_pkts = t->nb_pkts; 284 struct rte_mempool *pool = t->pool; 285 struct rte_crypto_sym_op *sym_op; 286 struct evt_options *opt = t->opt; 287 uint16_t qp_id = p->ca.cdev_qp_id; 288 uint8_t cdev_id = p->ca.cdev_id; 289 uint32_t flow_counter = 0; 290 struct rte_crypto_op *op; 291 struct rte_mbuf *m; 292 uint64_t count = 0; 293 uint16_t len; 294 295 if (opt->verbose_level > 1) 296 printf("%s(): lcore %d queue %d cdev_id %u cdev_qp_id %u\n", 297 __func__, rte_lcore_id(), p->queue_id, p->ca.cdev_id, 298 p->ca.cdev_qp_id); 299 300 len = opt->mbuf_sz ? opt->mbuf_sz : RTE_ETHER_MIN_LEN; 301 302 while (count < nb_pkts && t->done == false) { 303 m = rte_pktmbuf_alloc(pool); 304 if (m == NULL) 305 continue; 306 307 rte_pktmbuf_append(m, len); 308 op = rte_crypto_op_alloc(t->ca_op_pool, 309 RTE_CRYPTO_OP_TYPE_SYMMETRIC); 310 sym_op = op->sym; 311 sym_op->m_src = m; 312 sym_op->cipher.data.offset = 0; 313 sym_op->cipher.data.length = len; 314 rte_crypto_op_attach_sym_session( 315 op, crypto_sess[flow_counter++ % nb_flows]); 316 317 while (rte_cryptodev_enqueue_burst(cdev_id, qp_id, &op, 1) != 1 && 318 t->done == false) 319 rte_pause(); 320 321 count++; 322 } 323 } 324 325 static inline void 326 crypto_adapter_enq_op_fwd(struct prod_data *p) 327 { 328 struct rte_cryptodev_sym_session **crypto_sess = p->ca.crypto_sess; 329 const uint8_t dev_id = p->dev_id; 330 const uint8_t port = p->port_id; 331 struct test_perf *t = p->t; 332 const uint32_t nb_flows = t->nb_flows; 333 const uint64_t nb_pkts = t->nb_pkts; 334 struct rte_mempool *pool = t->pool; 335 struct evt_options *opt = t->opt; 336 struct rte_crypto_sym_op *sym_op; 337 uint32_t flow_counter = 0; 338 struct rte_crypto_op *op; 339 struct rte_event ev; 340 struct rte_mbuf *m; 341 uint64_t count = 0; 342 uint16_t len; 343 344 if (opt->verbose_level > 1) 345 printf("%s(): lcore %d port %d queue %d cdev_id %u cdev_qp_id %u\n", 346 __func__, rte_lcore_id(), port, p->queue_id, 347 p->ca.cdev_id, p->ca.cdev_qp_id); 348 349 ev.event = 0; 350 ev.op = RTE_EVENT_OP_NEW; 351 ev.queue_id = p->queue_id; 352 ev.sched_type = RTE_SCHED_TYPE_ATOMIC; 353 ev.event_type = RTE_EVENT_TYPE_CPU; 354 len = opt->mbuf_sz ? opt->mbuf_sz : RTE_ETHER_MIN_LEN; 355 356 while (count < nb_pkts && t->done == false) { 357 m = rte_pktmbuf_alloc(pool); 358 if (m == NULL) 359 continue; 360 361 rte_pktmbuf_append(m, len); 362 op = rte_crypto_op_alloc(t->ca_op_pool, 363 RTE_CRYPTO_OP_TYPE_SYMMETRIC); 364 sym_op = op->sym; 365 sym_op->m_src = m; 366 sym_op->cipher.data.offset = 0; 367 sym_op->cipher.data.length = len; 368 rte_crypto_op_attach_sym_session( 369 op, crypto_sess[flow_counter++ % nb_flows]); 370 ev.event_ptr = op; 371 372 while (rte_event_crypto_adapter_enqueue(dev_id, port, &ev, 1) != 1 && 373 t->done == false) 374 rte_pause(); 375 376 count++; 377 } 378 } 379 380 static inline int 381 perf_event_crypto_producer(void *arg) 382 { 383 struct prod_data *p = arg; 384 struct evt_options *opt = p->t->opt; 385 386 if (opt->crypto_adptr_mode == RTE_EVENT_CRYPTO_ADAPTER_OP_NEW) 387 crypto_adapter_enq_op_new(p); 388 else 389 crypto_adapter_enq_op_fwd(p); 390 391 return 0; 392 } 393 394 static int 395 perf_producer_wrapper(void *arg) 396 { 397 struct prod_data *p = arg; 398 struct test_perf *t = p->t; 399 bool burst = evt_has_burst_mode(p->dev_id); 400 401 /* In case of synthetic producer, launch perf_producer or 402 * perf_producer_burst depending on producer enqueue burst size 403 */ 404 if (t->opt->prod_type == EVT_PROD_TYPE_SYNT && 405 t->opt->prod_enq_burst_sz == 1) 406 return perf_producer(arg); 407 else if (t->opt->prod_type == EVT_PROD_TYPE_SYNT && 408 t->opt->prod_enq_burst_sz > 1) { 409 if (!burst) 410 evt_err("This event device does not support burst mode"); 411 else 412 return perf_producer_burst(arg); 413 } 414 else if (t->opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR && 415 !t->opt->timdev_use_burst) 416 return perf_event_timer_producer(arg); 417 else if (t->opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR && 418 t->opt->timdev_use_burst) 419 return perf_event_timer_producer_burst(arg); 420 else if (t->opt->prod_type == EVT_PROD_TYPE_EVENT_CRYPTO_ADPTR) 421 return perf_event_crypto_producer(arg); 422 return 0; 423 } 424 425 static inline uint64_t 426 processed_pkts(struct test_perf *t) 427 { 428 uint8_t i; 429 uint64_t total = 0; 430 431 for (i = 0; i < t->nb_workers; i++) 432 total += t->worker[i].processed_pkts; 433 434 return total; 435 } 436 437 static inline uint64_t 438 total_latency(struct test_perf *t) 439 { 440 uint8_t i; 441 uint64_t total = 0; 442 443 for (i = 0; i < t->nb_workers; i++) 444 total += t->worker[i].latency; 445 446 return total; 447 } 448 449 450 int 451 perf_launch_lcores(struct evt_test *test, struct evt_options *opt, 452 int (*worker)(void *)) 453 { 454 int ret, lcore_id; 455 struct test_perf *t = evt_test_priv(test); 456 457 int port_idx = 0; 458 /* launch workers */ 459 RTE_LCORE_FOREACH_WORKER(lcore_id) { 460 if (!(opt->wlcores[lcore_id])) 461 continue; 462 463 ret = rte_eal_remote_launch(worker, 464 &t->worker[port_idx], lcore_id); 465 if (ret) { 466 evt_err("failed to launch worker %d", lcore_id); 467 return ret; 468 } 469 port_idx++; 470 } 471 472 /* launch producers */ 473 RTE_LCORE_FOREACH_WORKER(lcore_id) { 474 if (!(opt->plcores[lcore_id])) 475 continue; 476 477 ret = rte_eal_remote_launch(perf_producer_wrapper, 478 &t->prod[port_idx], lcore_id); 479 if (ret) { 480 evt_err("failed to launch perf_producer %d", lcore_id); 481 return ret; 482 } 483 port_idx++; 484 } 485 486 const uint64_t total_pkts = t->outstand_pkts; 487 488 uint64_t dead_lock_cycles = rte_get_timer_cycles(); 489 int64_t dead_lock_remaining = total_pkts; 490 const uint64_t dead_lock_sample = rte_get_timer_hz() * 5; 491 492 uint64_t perf_cycles = rte_get_timer_cycles(); 493 int64_t perf_remaining = total_pkts; 494 const uint64_t perf_sample = rte_get_timer_hz(); 495 496 static float total_mpps; 497 static uint64_t samples; 498 499 const uint64_t freq_mhz = rte_get_timer_hz() / 1000000; 500 int64_t remaining = t->outstand_pkts - processed_pkts(t); 501 502 while (t->done == false) { 503 const uint64_t new_cycles = rte_get_timer_cycles(); 504 505 if ((new_cycles - perf_cycles) > perf_sample) { 506 const uint64_t latency = total_latency(t); 507 const uint64_t pkts = processed_pkts(t); 508 509 remaining = t->outstand_pkts - pkts; 510 float mpps = (float)(perf_remaining-remaining)/1000000; 511 512 perf_remaining = remaining; 513 perf_cycles = new_cycles; 514 total_mpps += mpps; 515 ++samples; 516 if (opt->fwd_latency && pkts > 0) { 517 printf(CLGRN"\r%.3f mpps avg %.3f mpps [avg fwd latency %.3f us] "CLNRM, 518 mpps, total_mpps/samples, 519 (float)(latency/pkts)/freq_mhz); 520 } else { 521 printf(CLGRN"\r%.3f mpps avg %.3f mpps"CLNRM, 522 mpps, total_mpps/samples); 523 } 524 fflush(stdout); 525 526 if (remaining <= 0) { 527 t->result = EVT_TEST_SUCCESS; 528 if (opt->prod_type == EVT_PROD_TYPE_SYNT || 529 opt->prod_type == 530 EVT_PROD_TYPE_EVENT_TIMER_ADPTR || 531 opt->prod_type == 532 EVT_PROD_TYPE_EVENT_CRYPTO_ADPTR) { 533 t->done = true; 534 break; 535 } 536 } 537 } 538 539 if (new_cycles - dead_lock_cycles > dead_lock_sample && 540 (opt->prod_type == EVT_PROD_TYPE_SYNT || 541 opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR || 542 opt->prod_type == EVT_PROD_TYPE_EVENT_CRYPTO_ADPTR)) { 543 remaining = t->outstand_pkts - processed_pkts(t); 544 if (dead_lock_remaining == remaining) { 545 rte_event_dev_dump(opt->dev_id, stdout); 546 evt_err("No schedules for seconds, deadlock"); 547 t->done = true; 548 break; 549 } 550 dead_lock_remaining = remaining; 551 dead_lock_cycles = new_cycles; 552 } 553 } 554 printf("\n"); 555 return 0; 556 } 557 558 static int 559 perf_event_rx_adapter_setup(struct evt_options *opt, uint8_t stride, 560 struct rte_event_port_conf prod_conf) 561 { 562 int ret = 0; 563 uint16_t prod; 564 struct rte_event_eth_rx_adapter_queue_conf queue_conf; 565 566 memset(&queue_conf, 0, 567 sizeof(struct rte_event_eth_rx_adapter_queue_conf)); 568 queue_conf.ev.sched_type = opt->sched_type_list[0]; 569 RTE_ETH_FOREACH_DEV(prod) { 570 uint32_t cap; 571 572 ret = rte_event_eth_rx_adapter_caps_get(opt->dev_id, 573 prod, &cap); 574 if (ret) { 575 evt_err("failed to get event rx adapter[%d]" 576 " capabilities", 577 opt->dev_id); 578 return ret; 579 } 580 queue_conf.ev.queue_id = prod * stride; 581 ret = rte_event_eth_rx_adapter_create(prod, opt->dev_id, 582 &prod_conf); 583 if (ret) { 584 evt_err("failed to create rx adapter[%d]", prod); 585 return ret; 586 } 587 ret = rte_event_eth_rx_adapter_queue_add(prod, prod, -1, 588 &queue_conf); 589 if (ret) { 590 evt_err("failed to add rx queues to adapter[%d]", prod); 591 return ret; 592 } 593 594 if (!(cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT)) { 595 uint32_t service_id; 596 597 rte_event_eth_rx_adapter_service_id_get(prod, 598 &service_id); 599 ret = evt_service_setup(service_id); 600 if (ret) { 601 evt_err("Failed to setup service core" 602 " for Rx adapter\n"); 603 return ret; 604 } 605 } 606 } 607 608 return ret; 609 } 610 611 static int 612 perf_event_timer_adapter_setup(struct test_perf *t) 613 { 614 int i; 615 int ret; 616 struct rte_event_timer_adapter_info adapter_info; 617 struct rte_event_timer_adapter *wl; 618 uint8_t nb_producers = evt_nr_active_lcores(t->opt->plcores); 619 uint8_t flags = RTE_EVENT_TIMER_ADAPTER_F_ADJUST_RES; 620 621 if (nb_producers == 1) 622 flags |= RTE_EVENT_TIMER_ADAPTER_F_SP_PUT; 623 624 for (i = 0; i < t->opt->nb_timer_adptrs; i++) { 625 struct rte_event_timer_adapter_conf config = { 626 .event_dev_id = t->opt->dev_id, 627 .timer_adapter_id = i, 628 .timer_tick_ns = t->opt->timer_tick_nsec, 629 .max_tmo_ns = t->opt->max_tmo_nsec, 630 .nb_timers = t->opt->pool_sz, 631 .flags = flags, 632 }; 633 634 wl = rte_event_timer_adapter_create(&config); 635 if (wl == NULL) { 636 evt_err("failed to create event timer ring %d", i); 637 return rte_errno; 638 } 639 640 memset(&adapter_info, 0, 641 sizeof(struct rte_event_timer_adapter_info)); 642 rte_event_timer_adapter_get_info(wl, &adapter_info); 643 t->opt->optm_timer_tick_nsec = adapter_info.min_resolution_ns; 644 645 if (!(adapter_info.caps & 646 RTE_EVENT_TIMER_ADAPTER_CAP_INTERNAL_PORT)) { 647 uint32_t service_id = -1U; 648 649 rte_event_timer_adapter_service_id_get(wl, 650 &service_id); 651 ret = evt_service_setup(service_id); 652 if (ret) { 653 evt_err("Failed to setup service core" 654 " for timer adapter\n"); 655 return ret; 656 } 657 rte_service_runstate_set(service_id, 1); 658 } 659 t->timer_adptr[i] = wl; 660 } 661 return 0; 662 } 663 664 static int 665 perf_event_crypto_adapter_setup(struct test_perf *t, struct prod_data *p) 666 { 667 struct evt_options *opt = t->opt; 668 uint32_t cap; 669 int ret; 670 671 ret = rte_event_crypto_adapter_caps_get(p->dev_id, p->ca.cdev_id, &cap); 672 if (ret) { 673 evt_err("Failed to get crypto adapter capabilities"); 674 return ret; 675 } 676 677 if (((opt->crypto_adptr_mode == RTE_EVENT_CRYPTO_ADAPTER_OP_NEW) && 678 !(cap & RTE_EVENT_CRYPTO_ADAPTER_CAP_INTERNAL_PORT_OP_NEW)) || 679 ((opt->crypto_adptr_mode == RTE_EVENT_CRYPTO_ADAPTER_OP_FORWARD) && 680 !(cap & RTE_EVENT_CRYPTO_ADAPTER_CAP_INTERNAL_PORT_OP_FWD))) { 681 evt_err("crypto adapter %s mode unsupported\n", 682 opt->crypto_adptr_mode ? "OP_FORWARD" : "OP_NEW"); 683 return -ENOTSUP; 684 } else if (!(cap & RTE_EVENT_CRYPTO_ADAPTER_CAP_SESSION_PRIVATE_DATA)) { 685 evt_err("Storing crypto session not supported"); 686 return -ENOTSUP; 687 } 688 689 if (cap & RTE_EVENT_CRYPTO_ADAPTER_CAP_INTERNAL_PORT_QP_EV_BIND) { 690 struct rte_event response_info; 691 692 response_info.event = 0; 693 response_info.sched_type = RTE_SCHED_TYPE_ATOMIC; 694 response_info.queue_id = p->queue_id; 695 ret = rte_event_crypto_adapter_queue_pair_add( 696 TEST_PERF_CA_ID, p->ca.cdev_id, p->ca.cdev_qp_id, 697 &response_info); 698 } else { 699 ret = rte_event_crypto_adapter_queue_pair_add( 700 TEST_PERF_CA_ID, p->ca.cdev_id, p->ca.cdev_qp_id, NULL); 701 } 702 703 return ret; 704 } 705 706 static struct rte_cryptodev_sym_session * 707 cryptodev_sym_sess_create(struct prod_data *p, struct test_perf *t) 708 { 709 struct rte_crypto_sym_xform cipher_xform; 710 struct rte_cryptodev_sym_session *sess; 711 712 cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER; 713 cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_NULL; 714 cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; 715 cipher_xform.next = NULL; 716 717 sess = rte_cryptodev_sym_session_create(t->ca_sess_pool); 718 if (sess == NULL) { 719 evt_err("Failed to create sym session"); 720 return NULL; 721 } 722 723 if (rte_cryptodev_sym_session_init(p->ca.cdev_id, sess, &cipher_xform, 724 t->ca_sess_priv_pool)) { 725 evt_err("Failed to init session"); 726 return NULL; 727 } 728 729 return sess; 730 } 731 732 int 733 perf_event_dev_port_setup(struct evt_test *test, struct evt_options *opt, 734 uint8_t stride, uint8_t nb_queues, 735 const struct rte_event_port_conf *port_conf) 736 { 737 struct test_perf *t = evt_test_priv(test); 738 uint16_t port, prod; 739 int ret = -1; 740 741 /* setup one port per worker, linking to all queues */ 742 for (port = 0; port < evt_nr_active_lcores(opt->wlcores); 743 port++) { 744 struct worker_data *w = &t->worker[port]; 745 746 w->dev_id = opt->dev_id; 747 w->port_id = port; 748 w->t = t; 749 w->processed_pkts = 0; 750 w->latency = 0; 751 752 struct rte_event_port_conf conf = *port_conf; 753 conf.event_port_cfg |= RTE_EVENT_PORT_CFG_HINT_WORKER; 754 755 ret = rte_event_port_setup(opt->dev_id, port, &conf); 756 if (ret) { 757 evt_err("failed to setup port %d", port); 758 return ret; 759 } 760 761 ret = rte_event_port_link(opt->dev_id, port, NULL, NULL, 0); 762 if (ret != nb_queues) { 763 evt_err("failed to link all queues to port %d", port); 764 return -EINVAL; 765 } 766 } 767 768 /* port for producers, no links */ 769 if (opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR) { 770 for ( ; port < perf_nb_event_ports(opt); port++) { 771 struct prod_data *p = &t->prod[port]; 772 p->t = t; 773 } 774 775 struct rte_event_port_conf conf = *port_conf; 776 conf.event_port_cfg |= RTE_EVENT_PORT_CFG_HINT_PRODUCER; 777 778 ret = perf_event_rx_adapter_setup(opt, stride, conf); 779 if (ret) 780 return ret; 781 } else if (opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) { 782 prod = 0; 783 for ( ; port < perf_nb_event_ports(opt); port++) { 784 struct prod_data *p = &t->prod[port]; 785 p->queue_id = prod * stride; 786 p->t = t; 787 prod++; 788 } 789 790 ret = perf_event_timer_adapter_setup(t); 791 if (ret) 792 return ret; 793 } else if (opt->prod_type == EVT_PROD_TYPE_EVENT_CRYPTO_ADPTR) { 794 struct rte_event_port_conf conf = *port_conf; 795 uint8_t cdev_id = 0; 796 uint16_t qp_id = 0; 797 798 ret = rte_event_crypto_adapter_create(TEST_PERF_CA_ID, 799 opt->dev_id, &conf, 0); 800 if (ret) { 801 evt_err("Failed to create crypto adapter"); 802 return ret; 803 } 804 805 prod = 0; 806 for (; port < perf_nb_event_ports(opt); port++) { 807 struct rte_cryptodev_sym_session *crypto_sess; 808 union rte_event_crypto_metadata m_data; 809 struct prod_data *p = &t->prod[port]; 810 uint32_t flow_id; 811 812 if (qp_id == rte_cryptodev_queue_pair_count(cdev_id)) { 813 cdev_id++; 814 qp_id = 0; 815 } 816 817 p->dev_id = opt->dev_id; 818 p->port_id = port; 819 p->queue_id = prod * stride; 820 p->ca.cdev_id = cdev_id; 821 p->ca.cdev_qp_id = qp_id; 822 p->ca.crypto_sess = rte_zmalloc_socket( 823 NULL, sizeof(crypto_sess) * t->nb_flows, 824 RTE_CACHE_LINE_SIZE, opt->socket_id); 825 p->t = t; 826 827 m_data.request_info.cdev_id = p->ca.cdev_id; 828 m_data.request_info.queue_pair_id = p->ca.cdev_qp_id; 829 m_data.response_info.sched_type = RTE_SCHED_TYPE_ATOMIC; 830 m_data.response_info.queue_id = p->queue_id; 831 832 for (flow_id = 0; flow_id < t->nb_flows; flow_id++) { 833 crypto_sess = cryptodev_sym_sess_create(p, t); 834 if (crypto_sess == NULL) 835 return -ENOMEM; 836 837 m_data.response_info.flow_id = flow_id; 838 rte_cryptodev_sym_session_set_user_data( 839 crypto_sess, &m_data, sizeof(m_data)); 840 p->ca.crypto_sess[flow_id] = crypto_sess; 841 } 842 843 conf.event_port_cfg |= 844 RTE_EVENT_PORT_CFG_HINT_PRODUCER | 845 RTE_EVENT_PORT_CFG_HINT_CONSUMER; 846 847 ret = rte_event_port_setup(opt->dev_id, port, &conf); 848 if (ret) { 849 evt_err("failed to setup port %d", port); 850 return ret; 851 } 852 853 ret = perf_event_crypto_adapter_setup(t, p); 854 if (ret) 855 return ret; 856 857 qp_id++; 858 prod++; 859 } 860 } else { 861 prod = 0; 862 for ( ; port < perf_nb_event_ports(opt); port++) { 863 struct prod_data *p = &t->prod[port]; 864 865 p->dev_id = opt->dev_id; 866 p->port_id = port; 867 p->queue_id = prod * stride; 868 p->t = t; 869 870 struct rte_event_port_conf conf = *port_conf; 871 conf.event_port_cfg |= 872 RTE_EVENT_PORT_CFG_HINT_PRODUCER | 873 RTE_EVENT_PORT_CFG_HINT_CONSUMER; 874 875 ret = rte_event_port_setup(opt->dev_id, port, &conf); 876 if (ret) { 877 evt_err("failed to setup port %d", port); 878 return ret; 879 } 880 prod++; 881 } 882 } 883 884 return ret; 885 } 886 887 int 888 perf_opt_check(struct evt_options *opt, uint64_t nb_queues) 889 { 890 unsigned int lcores; 891 892 /* N producer + N worker + main when producer cores are used 893 * Else N worker + main when Rx adapter is used 894 */ 895 lcores = opt->prod_type == EVT_PROD_TYPE_SYNT ? 3 : 2; 896 897 if (rte_lcore_count() < lcores) { 898 evt_err("test need minimum %d lcores", lcores); 899 return -1; 900 } 901 902 /* Validate worker lcores */ 903 if (evt_lcores_has_overlap(opt->wlcores, rte_get_main_lcore())) { 904 evt_err("worker lcores overlaps with main lcore"); 905 return -1; 906 } 907 if (evt_lcores_has_overlap_multi(opt->wlcores, opt->plcores)) { 908 evt_err("worker lcores overlaps producer lcores"); 909 return -1; 910 } 911 if (evt_has_disabled_lcore(opt->wlcores)) { 912 evt_err("one or more workers lcores are not enabled"); 913 return -1; 914 } 915 if (!evt_has_active_lcore(opt->wlcores)) { 916 evt_err("minimum one worker is required"); 917 return -1; 918 } 919 920 if (opt->prod_type == EVT_PROD_TYPE_SYNT || 921 opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR || 922 opt->prod_type == EVT_PROD_TYPE_EVENT_CRYPTO_ADPTR) { 923 /* Validate producer lcores */ 924 if (evt_lcores_has_overlap(opt->plcores, 925 rte_get_main_lcore())) { 926 evt_err("producer lcores overlaps with main lcore"); 927 return -1; 928 } 929 if (evt_has_disabled_lcore(opt->plcores)) { 930 evt_err("one or more producer lcores are not enabled"); 931 return -1; 932 } 933 if (!evt_has_active_lcore(opt->plcores)) { 934 evt_err("minimum one producer is required"); 935 return -1; 936 } 937 } 938 939 if (evt_has_invalid_stage(opt)) 940 return -1; 941 942 if (evt_has_invalid_sched_type(opt)) 943 return -1; 944 945 if (nb_queues > EVT_MAX_QUEUES) { 946 evt_err("number of queues exceeds %d", EVT_MAX_QUEUES); 947 return -1; 948 } 949 if (perf_nb_event_ports(opt) > EVT_MAX_PORTS) { 950 evt_err("number of ports exceeds %d", EVT_MAX_PORTS); 951 return -1; 952 } 953 954 /* Fixups */ 955 if ((opt->nb_stages == 1 && 956 opt->prod_type != EVT_PROD_TYPE_EVENT_TIMER_ADPTR) && 957 opt->fwd_latency) { 958 evt_info("fwd_latency is valid when nb_stages > 1, disabling"); 959 opt->fwd_latency = 0; 960 } 961 962 if (opt->fwd_latency && !opt->q_priority) { 963 evt_info("enabled queue priority for latency measurement"); 964 opt->q_priority = 1; 965 } 966 if (opt->nb_pkts == 0) 967 opt->nb_pkts = INT64_MAX/evt_nr_active_lcores(opt->plcores); 968 969 return 0; 970 } 971 972 void 973 perf_opt_dump(struct evt_options *opt, uint8_t nb_queues) 974 { 975 evt_dump("nb_prod_lcores", "%d", evt_nr_active_lcores(opt->plcores)); 976 evt_dump_producer_lcores(opt); 977 evt_dump("nb_worker_lcores", "%d", evt_nr_active_lcores(opt->wlcores)); 978 evt_dump_worker_lcores(opt); 979 evt_dump_nb_stages(opt); 980 evt_dump("nb_evdev_ports", "%d", perf_nb_event_ports(opt)); 981 evt_dump("nb_evdev_queues", "%d", nb_queues); 982 evt_dump_queue_priority(opt); 983 evt_dump_sched_type_list(opt); 984 evt_dump_producer_type(opt); 985 evt_dump("prod_enq_burst_sz", "%d", opt->prod_enq_burst_sz); 986 } 987 988 static void 989 perf_event_port_flush(uint8_t dev_id __rte_unused, struct rte_event ev, 990 void *args) 991 { 992 rte_mempool_put(args, ev.event_ptr); 993 } 994 995 void 996 perf_worker_cleanup(struct rte_mempool *const pool, uint8_t dev_id, 997 uint8_t port_id, struct rte_event events[], uint16_t nb_enq, 998 uint16_t nb_deq) 999 { 1000 int i; 1001 1002 if (nb_deq) { 1003 for (i = nb_enq; i < nb_deq; i++) 1004 rte_mempool_put(pool, events[i].event_ptr); 1005 1006 for (i = 0; i < nb_deq; i++) 1007 events[i].op = RTE_EVENT_OP_RELEASE; 1008 rte_event_enqueue_burst(dev_id, port_id, events, nb_deq); 1009 } 1010 rte_event_port_quiesce(dev_id, port_id, perf_event_port_flush, pool); 1011 } 1012 1013 void 1014 perf_eventdev_destroy(struct evt_test *test, struct evt_options *opt) 1015 { 1016 int i; 1017 struct test_perf *t = evt_test_priv(test); 1018 1019 if (opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) { 1020 for (i = 0; i < opt->nb_timer_adptrs; i++) 1021 rte_event_timer_adapter_stop(t->timer_adptr[i]); 1022 } 1023 rte_event_dev_stop(opt->dev_id); 1024 rte_event_dev_close(opt->dev_id); 1025 } 1026 1027 static inline void 1028 perf_elt_init(struct rte_mempool *mp, void *arg __rte_unused, 1029 void *obj, unsigned i __rte_unused) 1030 { 1031 memset(obj, 0, mp->elt_size); 1032 } 1033 1034 #define NB_RX_DESC 128 1035 #define NB_TX_DESC 512 1036 int 1037 perf_ethdev_setup(struct evt_test *test, struct evt_options *opt) 1038 { 1039 uint16_t i; 1040 int ret; 1041 struct test_perf *t = evt_test_priv(test); 1042 struct rte_eth_conf port_conf = { 1043 .rxmode = { 1044 .mq_mode = RTE_ETH_MQ_RX_RSS, 1045 .split_hdr_size = 0, 1046 }, 1047 .rx_adv_conf = { 1048 .rss_conf = { 1049 .rss_key = NULL, 1050 .rss_hf = RTE_ETH_RSS_IP, 1051 }, 1052 }, 1053 }; 1054 1055 if (opt->prod_type != EVT_PROD_TYPE_ETH_RX_ADPTR) 1056 return 0; 1057 1058 if (!rte_eth_dev_count_avail()) { 1059 evt_err("No ethernet ports found."); 1060 return -ENODEV; 1061 } 1062 1063 RTE_ETH_FOREACH_DEV(i) { 1064 struct rte_eth_dev_info dev_info; 1065 struct rte_eth_conf local_port_conf = port_conf; 1066 1067 ret = rte_eth_dev_info_get(i, &dev_info); 1068 if (ret != 0) { 1069 evt_err("Error during getting device (port %u) info: %s\n", 1070 i, strerror(-ret)); 1071 return ret; 1072 } 1073 1074 local_port_conf.rx_adv_conf.rss_conf.rss_hf &= 1075 dev_info.flow_type_rss_offloads; 1076 if (local_port_conf.rx_adv_conf.rss_conf.rss_hf != 1077 port_conf.rx_adv_conf.rss_conf.rss_hf) { 1078 evt_info("Port %u modified RSS hash function based on hardware support," 1079 "requested:%#"PRIx64" configured:%#"PRIx64"\n", 1080 i, 1081 port_conf.rx_adv_conf.rss_conf.rss_hf, 1082 local_port_conf.rx_adv_conf.rss_conf.rss_hf); 1083 } 1084 1085 if (rte_eth_dev_configure(i, 1, 1, &local_port_conf) < 0) { 1086 evt_err("Failed to configure eth port [%d]", i); 1087 return -EINVAL; 1088 } 1089 1090 if (rte_eth_rx_queue_setup(i, 0, NB_RX_DESC, 1091 rte_socket_id(), NULL, t->pool) < 0) { 1092 evt_err("Failed to setup eth port [%d] rx_queue: %d.", 1093 i, 0); 1094 return -EINVAL; 1095 } 1096 1097 if (rte_eth_tx_queue_setup(i, 0, NB_TX_DESC, 1098 rte_socket_id(), NULL) < 0) { 1099 evt_err("Failed to setup eth port [%d] tx_queue: %d.", 1100 i, 0); 1101 return -EINVAL; 1102 } 1103 1104 ret = rte_eth_promiscuous_enable(i); 1105 if (ret != 0) { 1106 evt_err("Failed to enable promiscuous mode for eth port [%d]: %s", 1107 i, rte_strerror(-ret)); 1108 return ret; 1109 } 1110 } 1111 1112 return 0; 1113 } 1114 1115 void 1116 perf_ethdev_rx_stop(struct evt_test *test, struct evt_options *opt) 1117 { 1118 uint16_t i; 1119 RTE_SET_USED(test); 1120 1121 if (opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR) { 1122 RTE_ETH_FOREACH_DEV(i) { 1123 rte_event_eth_rx_adapter_stop(i); 1124 rte_event_eth_rx_adapter_queue_del(i, i, -1); 1125 rte_eth_dev_rx_queue_stop(i, 0); 1126 } 1127 } 1128 } 1129 1130 void 1131 perf_ethdev_destroy(struct evt_test *test, struct evt_options *opt) 1132 { 1133 uint16_t i; 1134 RTE_SET_USED(test); 1135 1136 if (opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR) { 1137 RTE_ETH_FOREACH_DEV(i) { 1138 rte_event_eth_tx_adapter_stop(i); 1139 rte_event_eth_tx_adapter_queue_del(i, i, -1); 1140 rte_eth_dev_tx_queue_stop(i, 0); 1141 rte_eth_dev_stop(i); 1142 } 1143 } 1144 } 1145 1146 int 1147 perf_cryptodev_setup(struct evt_test *test, struct evt_options *opt) 1148 { 1149 uint8_t cdev_count, cdev_id, nb_plcores, nb_qps; 1150 struct test_perf *t = evt_test_priv(test); 1151 unsigned int max_session_size; 1152 uint32_t nb_sessions; 1153 int ret; 1154 1155 if (opt->prod_type != EVT_PROD_TYPE_EVENT_CRYPTO_ADPTR) 1156 return 0; 1157 1158 cdev_count = rte_cryptodev_count(); 1159 if (cdev_count == 0) { 1160 evt_err("No crypto devices available\n"); 1161 return -ENODEV; 1162 } 1163 1164 t->ca_op_pool = rte_crypto_op_pool_create( 1165 "crypto_op_pool", RTE_CRYPTO_OP_TYPE_SYMMETRIC, opt->pool_sz, 1166 128, 0, rte_socket_id()); 1167 if (t->ca_op_pool == NULL) { 1168 evt_err("Failed to create crypto op pool"); 1169 return -ENOMEM; 1170 } 1171 1172 nb_sessions = evt_nr_active_lcores(opt->plcores) * t->nb_flows; 1173 t->ca_sess_pool = rte_cryptodev_sym_session_pool_create( 1174 "ca_sess_pool", nb_sessions, 0, 0, 1175 sizeof(union rte_event_crypto_metadata), SOCKET_ID_ANY); 1176 if (t->ca_sess_pool == NULL) { 1177 evt_err("Failed to create sym session pool"); 1178 ret = -ENOMEM; 1179 goto err; 1180 } 1181 1182 max_session_size = 0; 1183 for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) { 1184 unsigned int session_size; 1185 1186 session_size = 1187 rte_cryptodev_sym_get_private_session_size(cdev_id); 1188 if (session_size > max_session_size) 1189 max_session_size = session_size; 1190 } 1191 1192 max_session_size += sizeof(union rte_event_crypto_metadata); 1193 t->ca_sess_priv_pool = rte_mempool_create( 1194 "ca_sess_priv_pool", nb_sessions, max_session_size, 0, 0, NULL, 1195 NULL, NULL, NULL, SOCKET_ID_ANY, 0); 1196 if (t->ca_sess_priv_pool == NULL) { 1197 evt_err("failed to create sym session private pool"); 1198 ret = -ENOMEM; 1199 goto err; 1200 } 1201 1202 /* 1203 * Calculate number of needed queue pairs, based on the amount of 1204 * available number of logical cores and crypto devices. For instance, 1205 * if there are 4 cores and 2 crypto devices, 2 queue pairs will be set 1206 * up per device. 1207 */ 1208 nb_plcores = evt_nr_active_lcores(opt->plcores); 1209 nb_qps = (nb_plcores % cdev_count) ? (nb_plcores / cdev_count) + 1 : 1210 nb_plcores / cdev_count; 1211 for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) { 1212 struct rte_cryptodev_qp_conf qp_conf; 1213 struct rte_cryptodev_config conf; 1214 struct rte_cryptodev_info info; 1215 int qp_id; 1216 1217 rte_cryptodev_info_get(cdev_id, &info); 1218 if (nb_qps > info.max_nb_queue_pairs) { 1219 evt_err("Not enough queue pairs per cryptodev (%u)", 1220 nb_qps); 1221 ret = -EINVAL; 1222 goto err; 1223 } 1224 1225 conf.nb_queue_pairs = nb_qps; 1226 conf.socket_id = SOCKET_ID_ANY; 1227 conf.ff_disable = RTE_CRYPTODEV_FF_SECURITY; 1228 1229 ret = rte_cryptodev_configure(cdev_id, &conf); 1230 if (ret) { 1231 evt_err("Failed to configure cryptodev (%u)", cdev_id); 1232 goto err; 1233 } 1234 1235 qp_conf.nb_descriptors = NB_CRYPTODEV_DESCRIPTORS; 1236 qp_conf.mp_session = t->ca_sess_pool; 1237 qp_conf.mp_session_private = t->ca_sess_priv_pool; 1238 1239 for (qp_id = 0; qp_id < conf.nb_queue_pairs; qp_id++) { 1240 ret = rte_cryptodev_queue_pair_setup( 1241 cdev_id, qp_id, &qp_conf, 1242 rte_cryptodev_socket_id(cdev_id)); 1243 if (ret) { 1244 evt_err("Failed to setup queue pairs on cryptodev %u\n", 1245 cdev_id); 1246 goto err; 1247 } 1248 } 1249 } 1250 1251 return 0; 1252 err: 1253 for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) 1254 rte_cryptodev_close(cdev_id); 1255 1256 rte_mempool_free(t->ca_op_pool); 1257 rte_mempool_free(t->ca_sess_pool); 1258 rte_mempool_free(t->ca_sess_priv_pool); 1259 1260 return ret; 1261 } 1262 1263 void 1264 perf_cryptodev_destroy(struct evt_test *test, struct evt_options *opt) 1265 { 1266 uint8_t cdev_id, cdev_count = rte_cryptodev_count(); 1267 struct test_perf *t = evt_test_priv(test); 1268 uint16_t port; 1269 1270 if (opt->prod_type != EVT_PROD_TYPE_EVENT_CRYPTO_ADPTR) 1271 return; 1272 1273 for (port = t->nb_workers; port < perf_nb_event_ports(opt); port++) { 1274 struct rte_cryptodev_sym_session *sess; 1275 struct prod_data *p = &t->prod[port]; 1276 uint32_t flow_id; 1277 uint8_t cdev_id; 1278 1279 for (flow_id = 0; flow_id < t->nb_flows; flow_id++) { 1280 sess = p->ca.crypto_sess[flow_id]; 1281 cdev_id = p->ca.cdev_id; 1282 rte_cryptodev_sym_session_clear(cdev_id, sess); 1283 rte_cryptodev_sym_session_free(sess); 1284 } 1285 1286 rte_event_crypto_adapter_queue_pair_del( 1287 TEST_PERF_CA_ID, p->ca.cdev_id, p->ca.cdev_qp_id); 1288 } 1289 1290 rte_event_crypto_adapter_free(TEST_PERF_CA_ID); 1291 1292 for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) { 1293 rte_cryptodev_stop(cdev_id); 1294 rte_cryptodev_close(cdev_id); 1295 } 1296 1297 rte_mempool_free(t->ca_op_pool); 1298 rte_mempool_free(t->ca_sess_pool); 1299 rte_mempool_free(t->ca_sess_priv_pool); 1300 } 1301 1302 int 1303 perf_mempool_setup(struct evt_test *test, struct evt_options *opt) 1304 { 1305 struct test_perf *t = evt_test_priv(test); 1306 1307 if (opt->prod_type == EVT_PROD_TYPE_SYNT || 1308 opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) { 1309 t->pool = rte_mempool_create(test->name, /* mempool name */ 1310 opt->pool_sz, /* number of elements*/ 1311 sizeof(struct perf_elt), /* element size*/ 1312 512, /* cache size*/ 1313 0, NULL, NULL, 1314 perf_elt_init, /* obj constructor */ 1315 NULL, opt->socket_id, 0); /* flags */ 1316 } else { 1317 t->pool = rte_pktmbuf_pool_create(test->name, /* mempool name */ 1318 opt->pool_sz, /* number of elements*/ 1319 512, /* cache size*/ 1320 0, 1321 RTE_MBUF_DEFAULT_BUF_SIZE, 1322 opt->socket_id); /* flags */ 1323 1324 } 1325 1326 if (t->pool == NULL) { 1327 evt_err("failed to create mempool"); 1328 return -ENOMEM; 1329 } 1330 1331 return 0; 1332 } 1333 1334 void 1335 perf_mempool_destroy(struct evt_test *test, struct evt_options *opt) 1336 { 1337 RTE_SET_USED(opt); 1338 struct test_perf *t = evt_test_priv(test); 1339 1340 rte_mempool_free(t->pool); 1341 } 1342 1343 int 1344 perf_test_setup(struct evt_test *test, struct evt_options *opt) 1345 { 1346 void *test_perf; 1347 1348 test_perf = rte_zmalloc_socket(test->name, sizeof(struct test_perf), 1349 RTE_CACHE_LINE_SIZE, opt->socket_id); 1350 if (test_perf == NULL) { 1351 evt_err("failed to allocate test_perf memory"); 1352 goto nomem; 1353 } 1354 test->test_priv = test_perf; 1355 1356 struct test_perf *t = evt_test_priv(test); 1357 1358 if (opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) { 1359 t->outstand_pkts = opt->nb_timers * 1360 evt_nr_active_lcores(opt->plcores); 1361 t->nb_pkts = opt->nb_timers; 1362 } else { 1363 t->outstand_pkts = opt->nb_pkts * 1364 evt_nr_active_lcores(opt->plcores); 1365 t->nb_pkts = opt->nb_pkts; 1366 } 1367 1368 t->nb_workers = evt_nr_active_lcores(opt->wlcores); 1369 t->done = false; 1370 t->nb_flows = opt->nb_flows; 1371 t->result = EVT_TEST_FAILED; 1372 t->opt = opt; 1373 memcpy(t->sched_type_list, opt->sched_type_list, 1374 sizeof(opt->sched_type_list)); 1375 return 0; 1376 nomem: 1377 return -ENOMEM; 1378 } 1379 1380 void 1381 perf_test_destroy(struct evt_test *test, struct evt_options *opt) 1382 { 1383 RTE_SET_USED(opt); 1384 1385 rte_free(test->test_priv); 1386 } 1387