xref: /dpdk/app/test-eventdev/test_perf_common.c (revision bca734c27e345af500d0d951421584e2567cd107)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Cavium, Inc
3  */
4 
5 #include <math.h>
6 
7 #include "test_perf_common.h"
8 
9 #define NB_CRYPTODEV_DESCRIPTORS 4096
10 #define DATA_SIZE		512
11 #define IV_OFFSET (sizeof(struct rte_crypto_op) + \
12 		   sizeof(struct rte_crypto_sym_op) + \
13 		   sizeof(union rte_event_crypto_metadata))
14 
15 struct modex_test_data {
16 	enum rte_crypto_asym_xform_type xform_type;
17 	struct {
18 		uint8_t data[DATA_SIZE];
19 		uint16_t len;
20 	} base;
21 	struct {
22 		uint8_t data[DATA_SIZE];
23 		uint16_t len;
24 	} exponent;
25 	struct {
26 		uint8_t data[DATA_SIZE];
27 		uint16_t len;
28 	} modulus;
29 	struct {
30 		uint8_t data[DATA_SIZE];
31 		uint16_t len;
32 	} reminder;
33 	uint16_t result_len;
34 };
35 
36 static struct
37 modex_test_data modex_test_case = {
38 	.xform_type = RTE_CRYPTO_ASYM_XFORM_MODEX,
39 	.base = {
40 		.data = {
41 			0xF8, 0xBA, 0x1A, 0x55, 0xD0, 0x2F, 0x85,
42 			0xAE, 0x96, 0x7B, 0xB6, 0x2F, 0xB6, 0xCD,
43 			0xA8, 0xEB, 0x7E, 0x78, 0xA0, 0x50
44 		},
45 		.len = 20,
46 	},
47 	.exponent = {
48 		.data = {
49 			0x01, 0x00, 0x01
50 		},
51 		.len = 3,
52 	},
53 	.reminder = {
54 		.data = {
55 			0x2C, 0x60, 0x75, 0x45, 0x98, 0x9D, 0xE0, 0x72,
56 			0xA0, 0x9D, 0x3A, 0x9E, 0x03, 0x38, 0x73, 0x3C,
57 			0x31, 0x83, 0x04, 0xFE, 0x75, 0x43, 0xE6, 0x17,
58 			0x5C, 0x01, 0x29, 0x51, 0x69, 0x33, 0x62, 0x2D,
59 			0x78, 0xBE, 0xAE, 0xC4, 0xBC, 0xDE, 0x7E, 0x2C,
60 			0x77, 0x84, 0xF2, 0xC5, 0x14, 0xB5, 0x2F, 0xF7,
61 			0xC5, 0x94, 0xEF, 0x86, 0x75, 0x75, 0xB5, 0x11,
62 			0xE5, 0x0E, 0x0A, 0x29, 0x76, 0xE2, 0xEA, 0x32,
63 			0x0E, 0x43, 0x77, 0x7E, 0x2C, 0x27, 0xAC, 0x3B,
64 			0x86, 0xA5, 0xDB, 0xC9, 0x48, 0x40, 0xE8, 0x99,
65 			0x9A, 0x0A, 0x3D, 0xD6, 0x74, 0xFA, 0x2E, 0x2E,
66 			0x5B, 0xAF, 0x8C, 0x99, 0x44, 0x2A, 0x67, 0x38,
67 			0x27, 0x41, 0x59, 0x9D, 0xB8, 0x51, 0xC9, 0xF7,
68 			0x43, 0x61, 0x31, 0x6E, 0xF1, 0x25, 0x38, 0x7F,
69 			0xAE, 0xC6, 0xD0, 0xBB, 0x29, 0x76, 0x3F, 0x46,
70 			0x2E, 0x1B, 0xE4, 0x67, 0x71, 0xE3, 0x87, 0x5A
71 		},
72 		.len = 128,
73 	},
74 	.modulus = {
75 		.data = {
76 			0xb3, 0xa1, 0xaf, 0xb7, 0x13, 0x08, 0x00, 0x0a,
77 			0x35, 0xdc, 0x2b, 0x20, 0x8d, 0xa1, 0xb5, 0xce,
78 			0x47, 0x8a, 0xc3, 0x80, 0xf4, 0x7d, 0x4a, 0xa2,
79 			0x62, 0xfd, 0x61, 0x7f, 0xb5, 0xa8, 0xde, 0x0a,
80 			0x17, 0x97, 0xa0, 0xbf, 0xdf, 0x56, 0x5a, 0x3d,
81 			0x51, 0x56, 0x4f, 0x70, 0x70, 0x3f, 0x63, 0x6a,
82 			0x44, 0x5b, 0xad, 0x84, 0x0d, 0x3f, 0x27, 0x6e,
83 			0x3b, 0x34, 0x91, 0x60, 0x14, 0xb9, 0xaa, 0x72,
84 			0xfd, 0xa3, 0x64, 0xd2, 0x03, 0xa7, 0x53, 0x87,
85 			0x9e, 0x88, 0x0b, 0xc1, 0x14, 0x93, 0x1a, 0x62,
86 			0xff, 0xb1, 0x5d, 0x74, 0xcd, 0x59, 0x63, 0x18,
87 			0x11, 0x3d, 0x4f, 0xba, 0x75, 0xd4, 0x33, 0x4e,
88 			0x23, 0x6b, 0x7b, 0x57, 0x44, 0xe1, 0xd3, 0x03,
89 			0x13, 0xa6, 0xf0, 0x8b, 0x60, 0xb0, 0x9e, 0xee,
90 			0x75, 0x08, 0x9d, 0x71, 0x63, 0x13, 0xcb, 0xa6,
91 			0x81, 0x92, 0x14, 0x03, 0x22, 0x2d, 0xde, 0x55
92 		},
93 		.len = 128,
94 	},
95 	.result_len = 128,
96 };
97 
98 int
99 perf_test_result(struct evt_test *test, struct evt_options *opt)
100 {
101 	RTE_SET_USED(opt);
102 	int i;
103 	uint64_t total = 0;
104 	struct test_perf *t = evt_test_priv(test);
105 
106 	printf("Packet distribution across worker cores :\n");
107 	for (i = 0; i < t->nb_workers; i++)
108 		total += t->worker[i].processed_pkts;
109 	for (i = 0; i < t->nb_workers; i++)
110 		printf("Worker %d packets: "CLGRN"%"PRIx64" "CLNRM"percentage:"
111 				CLGRN" %3.2f"CLNRM"\n", i,
112 				t->worker[i].processed_pkts,
113 				(((double)t->worker[i].processed_pkts)/total)
114 				* 100);
115 
116 	return t->result;
117 }
118 
119 static inline int
120 perf_producer(void *arg)
121 {
122 	int i;
123 	struct prod_data *p  = arg;
124 	struct test_perf *t = p->t;
125 	struct evt_options *opt = t->opt;
126 	const uint8_t dev_id = p->dev_id;
127 	const uint8_t port = p->port_id;
128 	struct rte_mempool *pool = t->pool;
129 	const uint64_t nb_pkts = t->nb_pkts;
130 	const uint32_t nb_flows = t->nb_flows;
131 	uint32_t flow_counter = 0;
132 	uint64_t count = 0;
133 	struct perf_elt *m[BURST_SIZE + 1] = {NULL};
134 	uint8_t enable_fwd_latency;
135 	struct rte_event ev;
136 
137 	enable_fwd_latency = opt->fwd_latency;
138 	if (opt->verbose_level > 1)
139 		printf("%s(): lcore %d dev_id %d port=%d queue %d\n", __func__,
140 				rte_lcore_id(), dev_id, port, p->queue_id);
141 
142 	ev.event = 0;
143 	ev.op = RTE_EVENT_OP_NEW;
144 	ev.queue_id = p->queue_id;
145 	ev.sched_type = t->opt->sched_type_list[0];
146 	ev.priority = RTE_EVENT_DEV_PRIORITY_NORMAL;
147 	ev.event_type =  RTE_EVENT_TYPE_CPU;
148 	ev.sub_event_type = 0; /* stage 0 */
149 
150 	while (count < nb_pkts && t->done == false) {
151 		if (rte_mempool_get_bulk(pool, (void **)m, BURST_SIZE) < 0)
152 			continue;
153 		for (i = 0; i < BURST_SIZE; i++) {
154 			ev.flow_id = flow_counter++ % nb_flows;
155 			ev.event_ptr = m[i];
156 			if (enable_fwd_latency)
157 				m[i]->timestamp = rte_get_timer_cycles();
158 			while (rte_event_enqueue_new_burst(dev_id, port, &ev,
159 							   1) != 1) {
160 				if (t->done)
161 					break;
162 				rte_pause();
163 				if (enable_fwd_latency)
164 					m[i]->timestamp =
165 						rte_get_timer_cycles();
166 			}
167 		}
168 		count += BURST_SIZE;
169 	}
170 
171 	return 0;
172 }
173 
174 static inline int
175 perf_producer_burst(void *arg)
176 {
177 	uint32_t i;
178 	uint64_t timestamp;
179 	struct prod_data *p  = arg;
180 	struct test_perf *t = p->t;
181 	struct evt_options *opt = t->opt;
182 	const uint8_t dev_id = p->dev_id;
183 	const uint8_t port = p->port_id;
184 	struct rte_mempool *pool = t->pool;
185 	const uint64_t nb_pkts = t->nb_pkts;
186 	const uint32_t nb_flows = t->nb_flows;
187 	uint32_t flow_counter = 0;
188 	uint16_t enq = 0;
189 	uint64_t count = 0;
190 	struct perf_elt *m[opt->prod_enq_burst_sz + 1];
191 	struct rte_event ev[opt->prod_enq_burst_sz + 1];
192 	uint32_t burst_size = opt->prod_enq_burst_sz;
193 	uint8_t enable_fwd_latency;
194 
195 	enable_fwd_latency = opt->fwd_latency;
196 	memset(m, 0, sizeof(*m) * (opt->prod_enq_burst_sz + 1));
197 	if (opt->verbose_level > 1)
198 		printf("%s(): lcore %d dev_id %d port=%d queue %d\n", __func__,
199 				rte_lcore_id(), dev_id, port, p->queue_id);
200 
201 	for (i = 0; i < burst_size; i++) {
202 		ev[i].op = RTE_EVENT_OP_NEW;
203 		ev[i].queue_id = p->queue_id;
204 		ev[i].sched_type = t->opt->sched_type_list[0];
205 		ev[i].priority = RTE_EVENT_DEV_PRIORITY_NORMAL;
206 		ev[i].event_type =  RTE_EVENT_TYPE_CPU;
207 		ev[i].sub_event_type = 0; /* stage 0 */
208 	}
209 
210 	while (count < nb_pkts && t->done == false) {
211 		if (rte_mempool_get_bulk(pool, (void **)m, burst_size) < 0)
212 			continue;
213 		timestamp = rte_get_timer_cycles();
214 		for (i = 0; i < burst_size; i++) {
215 			ev[i].flow_id = flow_counter++ % nb_flows;
216 			ev[i].event_ptr = m[i];
217 			if (enable_fwd_latency)
218 				m[i]->timestamp = timestamp;
219 		}
220 		enq = rte_event_enqueue_new_burst(dev_id, port, ev, burst_size);
221 		while (enq < burst_size) {
222 			enq += rte_event_enqueue_new_burst(
223 				dev_id, port, ev + enq, burst_size - enq);
224 			if (t->done)
225 				break;
226 			rte_pause();
227 			if (enable_fwd_latency) {
228 				timestamp = rte_get_timer_cycles();
229 				for (i = enq; i < burst_size; i++)
230 					m[i]->timestamp = timestamp;
231 			}
232 		}
233 		count += burst_size;
234 	}
235 	return 0;
236 }
237 
238 static inline int
239 perf_event_timer_producer(void *arg)
240 {
241 	int i;
242 	struct prod_data *p  = arg;
243 	struct test_perf *t = p->t;
244 	struct evt_options *opt = t->opt;
245 	uint32_t flow_counter = 0;
246 	uint64_t count = 0;
247 	uint64_t arm_latency = 0;
248 	const uint8_t nb_timer_adptrs = opt->nb_timer_adptrs;
249 	const uint32_t nb_flows = t->nb_flows;
250 	const uint64_t nb_timers = opt->nb_timers;
251 	struct rte_mempool *pool = t->pool;
252 	struct perf_elt *m[BURST_SIZE + 1] = {NULL};
253 	struct rte_event_timer_adapter **adptr = t->timer_adptr;
254 	struct rte_event_timer tim;
255 	uint64_t timeout_ticks = opt->expiry_nsec / opt->timer_tick_nsec;
256 
257 	memset(&tim, 0, sizeof(struct rte_event_timer));
258 	timeout_ticks =
259 		opt->optm_timer_tick_nsec
260 			? ceil((double)(timeout_ticks * opt->timer_tick_nsec) /
261 			       opt->optm_timer_tick_nsec)
262 			: timeout_ticks;
263 	timeout_ticks += timeout_ticks ? 0 : 1;
264 	tim.ev.event_type = RTE_EVENT_TYPE_TIMER;
265 	tim.ev.op = RTE_EVENT_OP_NEW;
266 	tim.ev.sched_type = t->opt->sched_type_list[0];
267 	tim.ev.queue_id = p->queue_id;
268 	tim.ev.priority = RTE_EVENT_DEV_PRIORITY_NORMAL;
269 	tim.state = RTE_EVENT_TIMER_NOT_ARMED;
270 	tim.timeout_ticks = timeout_ticks;
271 
272 	if (opt->verbose_level > 1)
273 		printf("%s(): lcore %d\n", __func__, rte_lcore_id());
274 
275 	while (count < nb_timers && t->done == false) {
276 		if (rte_mempool_get_bulk(pool, (void **)m, BURST_SIZE) < 0)
277 			continue;
278 		for (i = 0; i < BURST_SIZE; i++) {
279 			rte_prefetch0(m[i + 1]);
280 			m[i]->tim = tim;
281 			m[i]->tim.ev.flow_id = flow_counter++ % nb_flows;
282 			m[i]->tim.ev.event_ptr = m[i];
283 			m[i]->timestamp = rte_get_timer_cycles();
284 			while (rte_event_timer_arm_burst(
285 			       adptr[flow_counter % nb_timer_adptrs],
286 			       (struct rte_event_timer **)&m[i], 1) != 1) {
287 				if (t->done)
288 					break;
289 				m[i]->timestamp = rte_get_timer_cycles();
290 			}
291 			arm_latency += rte_get_timer_cycles() - m[i]->timestamp;
292 		}
293 		count += BURST_SIZE;
294 	}
295 	fflush(stdout);
296 	rte_delay_ms(1000);
297 	printf("%s(): lcore %d Average event timer arm latency = %.3f us\n",
298 			__func__, rte_lcore_id(),
299 			count ? (float)(arm_latency / count) /
300 			(rte_get_timer_hz() / 1000000) : 0);
301 	return 0;
302 }
303 
304 static inline int
305 perf_event_timer_producer_burst(void *arg)
306 {
307 	int i;
308 	struct prod_data *p  = arg;
309 	struct test_perf *t = p->t;
310 	struct evt_options *opt = t->opt;
311 	uint32_t flow_counter = 0;
312 	uint64_t count = 0;
313 	uint64_t arm_latency = 0;
314 	const uint8_t nb_timer_adptrs = opt->nb_timer_adptrs;
315 	const uint32_t nb_flows = t->nb_flows;
316 	const uint64_t nb_timers = opt->nb_timers;
317 	struct rte_mempool *pool = t->pool;
318 	struct perf_elt *m[BURST_SIZE + 1] = {NULL};
319 	struct rte_event_timer_adapter **adptr = t->timer_adptr;
320 	struct rte_event_timer tim;
321 	uint64_t timeout_ticks = opt->expiry_nsec / opt->timer_tick_nsec;
322 
323 	memset(&tim, 0, sizeof(struct rte_event_timer));
324 	timeout_ticks =
325 		opt->optm_timer_tick_nsec
326 			? ceil((double)(timeout_ticks * opt->timer_tick_nsec) /
327 			       opt->optm_timer_tick_nsec)
328 			: timeout_ticks;
329 	timeout_ticks += timeout_ticks ? 0 : 1;
330 	tim.ev.event_type = RTE_EVENT_TYPE_TIMER;
331 	tim.ev.op = RTE_EVENT_OP_NEW;
332 	tim.ev.sched_type = t->opt->sched_type_list[0];
333 	tim.ev.queue_id = p->queue_id;
334 	tim.ev.priority = RTE_EVENT_DEV_PRIORITY_NORMAL;
335 	tim.state = RTE_EVENT_TIMER_NOT_ARMED;
336 	tim.timeout_ticks = timeout_ticks;
337 
338 	if (opt->verbose_level > 1)
339 		printf("%s(): lcore %d\n", __func__, rte_lcore_id());
340 
341 	while (count < nb_timers && t->done == false) {
342 		if (rte_mempool_get_bulk(pool, (void **)m, BURST_SIZE) < 0)
343 			continue;
344 		for (i = 0; i < BURST_SIZE; i++) {
345 			rte_prefetch0(m[i + 1]);
346 			m[i]->tim = tim;
347 			m[i]->tim.ev.flow_id = flow_counter++ % nb_flows;
348 			m[i]->tim.ev.event_ptr = m[i];
349 			m[i]->timestamp = rte_get_timer_cycles();
350 		}
351 		rte_event_timer_arm_tmo_tick_burst(
352 				adptr[flow_counter % nb_timer_adptrs],
353 				(struct rte_event_timer **)m,
354 				tim.timeout_ticks,
355 				BURST_SIZE);
356 		arm_latency += rte_get_timer_cycles() - m[i - 1]->timestamp;
357 		count += BURST_SIZE;
358 	}
359 	fflush(stdout);
360 	rte_delay_ms(1000);
361 	printf("%s(): lcore %d Average event timer arm latency = %.3f us\n",
362 			__func__, rte_lcore_id(),
363 			count ? (float)(arm_latency / count) /
364 			(rte_get_timer_hz() / 1000000) : 0);
365 	return 0;
366 }
367 
368 static inline void
369 crypto_adapter_enq_op_new(struct prod_data *p)
370 {
371 	struct test_perf *t = p->t;
372 	const uint32_t nb_flows = t->nb_flows;
373 	const uint64_t nb_pkts = t->nb_pkts;
374 	struct rte_mempool *pool = t->pool;
375 	uint16_t data_length, data_offset;
376 	struct evt_options *opt = t->opt;
377 	uint16_t qp_id = p->ca.cdev_qp_id;
378 	uint8_t cdev_id = p->ca.cdev_id;
379 	uint64_t alloc_failures = 0;
380 	uint32_t flow_counter = 0;
381 	struct rte_crypto_op *op;
382 	uint16_t len, offset;
383 	struct rte_mbuf *m;
384 	uint64_t count = 0;
385 
386 	if (opt->verbose_level > 1)
387 		printf("%s(): lcore %d queue %d cdev_id %u cdev_qp_id %u\n",
388 		       __func__, rte_lcore_id(), p->queue_id, p->ca.cdev_id,
389 		       p->ca.cdev_qp_id);
390 
391 	offset = sizeof(struct perf_elt);
392 	len = RTE_MAX(RTE_ETHER_MIN_LEN + offset, opt->mbuf_sz);
393 
394 	if (opt->crypto_cipher_bit_mode) {
395 		data_offset = offset << 3;
396 		data_length = (len - offset) << 3;
397 	} else {
398 		data_offset = offset;
399 		data_length = len - offset;
400 	}
401 
402 	while (count < nb_pkts && t->done == false) {
403 		if (opt->crypto_op_type == RTE_CRYPTO_OP_TYPE_SYMMETRIC) {
404 			struct rte_crypto_sym_op *sym_op;
405 
406 			op = rte_crypto_op_alloc(t->ca_op_pool,
407 					 RTE_CRYPTO_OP_TYPE_SYMMETRIC);
408 			if (unlikely(op == NULL)) {
409 				alloc_failures++;
410 				continue;
411 			}
412 
413 			m = rte_pktmbuf_alloc(pool);
414 			if (unlikely(m == NULL)) {
415 				alloc_failures++;
416 				rte_crypto_op_free(op);
417 				continue;
418 			}
419 
420 			rte_pktmbuf_append(m, len);
421 			sym_op = op->sym;
422 			sym_op->m_src = m;
423 
424 			sym_op->cipher.data.offset = data_offset;
425 			sym_op->cipher.data.length = data_length;
426 
427 			rte_crypto_op_attach_sym_session(
428 				op, p->ca.crypto_sess[flow_counter++ % nb_flows]);
429 		} else {
430 			struct rte_crypto_asym_op *asym_op;
431 			uint8_t *result;
432 
433 			if (rte_mempool_get(pool, (void **)&result)) {
434 				alloc_failures++;
435 				continue;
436 			}
437 
438 			op = rte_crypto_op_alloc(t->ca_op_pool,
439 					 RTE_CRYPTO_OP_TYPE_ASYMMETRIC);
440 			if (unlikely(op == NULL)) {
441 				alloc_failures++;
442 				rte_mempool_put(pool, result);
443 				continue;
444 			}
445 
446 			asym_op = op->asym;
447 			asym_op->modex.base.data = modex_test_case.base.data;
448 			asym_op->modex.base.length = modex_test_case.base.len;
449 			asym_op->modex.result.data = result;
450 			asym_op->modex.result.length = modex_test_case.result_len;
451 			rte_crypto_op_attach_asym_session(
452 				op, p->ca.crypto_sess[flow_counter++ % nb_flows]);
453 		}
454 		while (rte_cryptodev_enqueue_burst(cdev_id, qp_id, &op, 1) != 1 &&
455 				t->done == false)
456 			rte_pause();
457 
458 		count++;
459 	}
460 
461 	if (opt->verbose_level > 1 && alloc_failures)
462 		printf("%s(): lcore %d allocation failures: %"PRIu64"\n",
463 		       __func__, rte_lcore_id(), alloc_failures);
464 }
465 
466 static inline void
467 crypto_adapter_enq_op_fwd(struct prod_data *p)
468 {
469 	const uint8_t dev_id = p->dev_id;
470 	const uint8_t port = p->port_id;
471 	struct test_perf *t = p->t;
472 	const uint32_t nb_flows = t->nb_flows;
473 	const uint64_t nb_pkts = t->nb_pkts;
474 	struct rte_mempool *pool = t->pool;
475 	struct evt_options *opt = t->opt;
476 	uint64_t alloc_failures = 0;
477 	uint32_t flow_counter = 0;
478 	struct rte_crypto_op *op;
479 	uint16_t len, offset;
480 	struct rte_event ev;
481 	struct rte_mbuf *m;
482 	uint64_t count = 0;
483 
484 	if (opt->verbose_level > 1)
485 		printf("%s(): lcore %d port %d queue %d cdev_id %u cdev_qp_id %u\n",
486 		       __func__, rte_lcore_id(), port, p->queue_id,
487 		       p->ca.cdev_id, p->ca.cdev_qp_id);
488 
489 	ev.event = 0;
490 	ev.op = RTE_EVENT_OP_NEW;
491 	ev.queue_id = p->queue_id;
492 	ev.sched_type = RTE_SCHED_TYPE_ATOMIC;
493 	ev.event_type = RTE_EVENT_TYPE_CPU;
494 
495 	offset = sizeof(struct perf_elt);
496 	len = RTE_MAX(RTE_ETHER_MIN_LEN + offset, opt->mbuf_sz);
497 
498 	while (count < nb_pkts && t->done == false) {
499 		if (opt->crypto_op_type == RTE_CRYPTO_OP_TYPE_SYMMETRIC) {
500 			struct rte_crypto_sym_op *sym_op;
501 
502 			op = rte_crypto_op_alloc(t->ca_op_pool,
503 					 RTE_CRYPTO_OP_TYPE_SYMMETRIC);
504 			if (unlikely(op == NULL)) {
505 				alloc_failures++;
506 				continue;
507 			}
508 
509 			m = rte_pktmbuf_alloc(pool);
510 			if (unlikely(m == NULL)) {
511 				alloc_failures++;
512 				rte_crypto_op_free(op);
513 				continue;
514 			}
515 
516 			rte_pktmbuf_append(m, len);
517 			sym_op = op->sym;
518 			sym_op->m_src = m;
519 			sym_op->cipher.data.offset = offset;
520 			sym_op->cipher.data.length = len - offset;
521 			rte_crypto_op_attach_sym_session(
522 				op, p->ca.crypto_sess[flow_counter++ % nb_flows]);
523 		} else {
524 			struct rte_crypto_asym_op *asym_op;
525 			uint8_t *result;
526 
527 			if (rte_mempool_get(pool, (void **)&result)) {
528 				alloc_failures++;
529 				continue;
530 			}
531 
532 			op = rte_crypto_op_alloc(t->ca_op_pool,
533 					 RTE_CRYPTO_OP_TYPE_ASYMMETRIC);
534 			if (unlikely(op == NULL)) {
535 				alloc_failures++;
536 				rte_mempool_put(pool, result);
537 				continue;
538 			}
539 
540 			asym_op = op->asym;
541 			asym_op->modex.base.data = modex_test_case.base.data;
542 			asym_op->modex.base.length = modex_test_case.base.len;
543 			asym_op->modex.result.data = result;
544 			asym_op->modex.result.length = modex_test_case.result_len;
545 			rte_crypto_op_attach_asym_session(
546 				op, p->ca.crypto_sess[flow_counter++ % nb_flows]);
547 		}
548 		ev.event_ptr = op;
549 
550 		while (rte_event_crypto_adapter_enqueue(dev_id, port, &ev, 1) != 1 &&
551 		       t->done == false)
552 			rte_pause();
553 
554 		count++;
555 	}
556 
557 	if (opt->verbose_level > 1 && alloc_failures)
558 		printf("%s(): lcore %d allocation failures: %"PRIu64"\n",
559 		       __func__, rte_lcore_id(), alloc_failures);
560 }
561 
562 static inline void
563 dma_adapter_enq_op_fwd(struct prod_data *p)
564 {
565 	struct rte_event_dma_adapter_op *ops[BURST_SIZE] = {NULL};
566 	struct test_perf *t = p->t;
567 	const uint32_t nb_flows = t->nb_flows;
568 	const uint64_t nb_pkts = t->nb_pkts;
569 	struct rte_event_dma_adapter_op op;
570 	struct rte_event evts[BURST_SIZE];
571 	const uint8_t dev_id = p->dev_id;
572 	struct evt_options *opt = t->opt;
573 	const uint8_t port = p->port_id;
574 	uint32_t flow_counter = 0;
575 	struct rte_mempool *pool;
576 	struct rte_event ev;
577 	uint8_t *src, *dst;
578 	uint64_t count = 0;
579 	uint32_t flow;
580 	int i;
581 
582 	pool = t->pool;
583 	if (opt->verbose_level > 1)
584 		printf("%s(): lcore %d port %d queue %d dma_dev_id %u dma_dev_vchan_id %u\n",
585 		       __func__, rte_lcore_id(), port, p->queue_id,
586 		       p->da.dma_dev_id, p->da.vchan_id);
587 
588 	src = rte_zmalloc(NULL, nb_flows * RTE_CACHE_LINE_SIZE, RTE_CACHE_LINE_SIZE);
589 	dst = rte_zmalloc(NULL, nb_flows * RTE_CACHE_LINE_SIZE, RTE_CACHE_LINE_SIZE);
590 	if (!src || !dst) {
591 		rte_free(src);
592 		rte_free(dst);
593 		evt_err("Failed to alloc memory for src/dst");
594 		return;
595 	}
596 
597 	ev.event = 0;
598 	ev.op = RTE_EVENT_OP_NEW;
599 	ev.queue_id = p->queue_id;
600 	ev.sched_type = RTE_SCHED_TYPE_ATOMIC;
601 	ev.event_type = RTE_EVENT_TYPE_CPU;
602 
603 	op.dma_dev_id = p->da.dma_dev_id;
604 	op.vchan = p->da.vchan_id;
605 	op.op_mp = pool;
606 	op.flags = RTE_DMA_OP_FLAG_SUBMIT;
607 	op.nb_src = 1;
608 	op.nb_dst = 1;
609 
610 	while (count < nb_pkts && t->done == false) {
611 		if (rte_mempool_get_bulk(pool, (void **)ops, BURST_SIZE) < 0)
612 			continue;
613 		for (i = 0; i < BURST_SIZE; i++) {
614 			flow = flow_counter++ % nb_flows;
615 			*ops[i] = op;
616 			ops[i]->src_dst_seg[0].addr = (rte_iova_t)&src[flow * RTE_CACHE_LINE_SIZE];
617 			ops[i]->src_dst_seg[1].addr = (rte_iova_t)&dst[flow * RTE_CACHE_LINE_SIZE];
618 			ops[i]->src_dst_seg[0].length = RTE_CACHE_LINE_SIZE;
619 			ops[i]->src_dst_seg[1].length = RTE_CACHE_LINE_SIZE;
620 
621 			evts[i].event = ev.event;
622 			evts[i].flow_id = flow;
623 			evts[i].event_ptr = ops[i];
624 		}
625 
626 		i = rte_event_dma_adapter_enqueue(dev_id, port, evts, BURST_SIZE);
627 		while (i < BURST_SIZE) {
628 			i += rte_event_dma_adapter_enqueue(dev_id, port, evts + i, BURST_SIZE - i);
629 			if (t->done)
630 				break;
631 			rte_pause();
632 		}
633 
634 		count += BURST_SIZE;
635 	}
636 }
637 
638 static inline int
639 perf_event_dma_producer(void *arg)
640 {
641 	struct prod_data *p = arg;
642 
643 	/* Only fwd mode is supported. */
644 	dma_adapter_enq_op_fwd(p);
645 
646 	return 0;
647 }
648 
649 static inline int
650 perf_event_crypto_producer(void *arg)
651 {
652 	struct prod_data *p = arg;
653 	struct evt_options *opt = p->t->opt;
654 
655 	if (opt->crypto_adptr_mode == RTE_EVENT_CRYPTO_ADAPTER_OP_NEW)
656 		crypto_adapter_enq_op_new(p);
657 	else
658 		crypto_adapter_enq_op_fwd(p);
659 
660 	return 0;
661 }
662 
663 static void
664 crypto_adapter_enq_op_new_burst(struct prod_data *p)
665 {
666 	const struct test_perf *t = p->t;
667 	const struct evt_options *opt = t->opt;
668 
669 	struct rte_mbuf *m, *pkts_burst[MAX_PROD_ENQ_BURST_SIZE];
670 	struct rte_crypto_op *ops_burst[MAX_PROD_ENQ_BURST_SIZE];
671 	const uint32_t burst_size = opt->prod_enq_burst_sz;
672 	uint8_t *result[MAX_PROD_ENQ_BURST_SIZE];
673 	const uint32_t nb_flows = t->nb_flows;
674 	const uint64_t nb_pkts = t->nb_pkts;
675 	uint16_t len, enq, nb_alloc, offset;
676 	struct rte_mempool *pool = t->pool;
677 	uint16_t qp_id = p->ca.cdev_qp_id;
678 	uint8_t cdev_id = p->ca.cdev_id;
679 	uint64_t alloc_failures = 0;
680 	uint32_t flow_counter = 0;
681 	uint64_t count = 0;
682 	uint32_t  i;
683 
684 	if (opt->verbose_level > 1)
685 		printf("%s(): lcore %d queue %d cdev_id %u cdev_qp_id %u\n",
686 		       __func__, rte_lcore_id(), p->queue_id, p->ca.cdev_id,
687 		       p->ca.cdev_qp_id);
688 
689 	offset = sizeof(struct perf_elt);
690 	len = RTE_MAX(RTE_ETHER_MIN_LEN + offset, opt->mbuf_sz);
691 
692 	while (count < nb_pkts && t->done == false) {
693 		if (opt->crypto_op_type == RTE_CRYPTO_OP_TYPE_SYMMETRIC) {
694 			struct rte_crypto_sym_op *sym_op;
695 			int ret;
696 
697 			nb_alloc = rte_crypto_op_bulk_alloc(t->ca_op_pool,
698 					RTE_CRYPTO_OP_TYPE_SYMMETRIC, ops_burst, burst_size);
699 			if (unlikely(nb_alloc != burst_size)) {
700 				alloc_failures++;
701 				continue;
702 			}
703 
704 			ret = rte_pktmbuf_alloc_bulk(pool, pkts_burst, burst_size);
705 			if (unlikely(ret != 0)) {
706 				alloc_failures++;
707 				rte_mempool_put_bulk(t->ca_op_pool, (void **)ops_burst, burst_size);
708 				continue;
709 			}
710 
711 			for (i = 0; i < burst_size; i++) {
712 				m = pkts_burst[i];
713 				rte_pktmbuf_append(m, len);
714 				sym_op = ops_burst[i]->sym;
715 				sym_op->m_src = m;
716 				sym_op->cipher.data.offset = offset;
717 				sym_op->cipher.data.length = len - offset;
718 				rte_crypto_op_attach_sym_session(ops_burst[i],
719 						p->ca.crypto_sess[flow_counter++ % nb_flows]);
720 			}
721 		} else {
722 			struct rte_crypto_asym_op *asym_op;
723 
724 			nb_alloc = rte_crypto_op_bulk_alloc(t->ca_op_pool,
725 					RTE_CRYPTO_OP_TYPE_ASYMMETRIC, ops_burst, burst_size);
726 			if (unlikely(nb_alloc != burst_size)) {
727 				alloc_failures++;
728 				continue;
729 			}
730 
731 			if (rte_mempool_get_bulk(pool, (void **)result, burst_size)) {
732 				alloc_failures++;
733 				rte_mempool_put_bulk(t->ca_op_pool, (void **)ops_burst, burst_size);
734 				continue;
735 			}
736 
737 			for (i = 0; i < burst_size; i++) {
738 				asym_op = ops_burst[i]->asym;
739 				asym_op->modex.base.data = modex_test_case.base.data;
740 				asym_op->modex.base.length = modex_test_case.base.len;
741 				asym_op->modex.result.data = result[i];
742 				asym_op->modex.result.length = modex_test_case.result_len;
743 				rte_crypto_op_attach_asym_session(ops_burst[i],
744 						p->ca.crypto_sess[flow_counter++ % nb_flows]);
745 			}
746 		}
747 
748 		enq = 0;
749 		while (!t->done) {
750 			enq += rte_cryptodev_enqueue_burst(cdev_id, qp_id, ops_burst + enq,
751 					burst_size - enq);
752 			if (enq == burst_size)
753 				break;
754 		}
755 
756 		count += burst_size;
757 	}
758 
759 	if (opt->verbose_level > 1 && alloc_failures)
760 		printf("%s(): lcore %d allocation failures: %"PRIu64"\n",
761 		       __func__, rte_lcore_id(), alloc_failures);
762 }
763 
764 static void
765 crypto_adapter_enq_op_fwd_burst(struct prod_data *p)
766 {
767 	const struct test_perf *t = p->t;
768 	const struct evt_options *opt = t->opt;
769 
770 	struct rte_mbuf *m, *pkts_burst[MAX_PROD_ENQ_BURST_SIZE];
771 	struct rte_crypto_op *ops_burst[MAX_PROD_ENQ_BURST_SIZE];
772 	const uint32_t burst_size = opt->prod_enq_burst_sz;
773 	struct rte_event ev[MAX_PROD_ENQ_BURST_SIZE];
774 	uint8_t *result[MAX_PROD_ENQ_BURST_SIZE];
775 	const uint32_t nb_flows = t->nb_flows;
776 	const uint64_t nb_pkts = t->nb_pkts;
777 	uint16_t len, enq, nb_alloc, offset;
778 	struct rte_mempool *pool = t->pool;
779 	const uint8_t dev_id = p->dev_id;
780 	const uint8_t port = p->port_id;
781 	uint64_t alloc_failures = 0;
782 	uint32_t flow_counter = 0;
783 	uint64_t count = 0;
784 	uint32_t  i;
785 
786 	if (opt->verbose_level > 1)
787 		printf("%s(): lcore %d port %d queue %d cdev_id %u cdev_qp_id %u\n",
788 		       __func__, rte_lcore_id(), port, p->queue_id,
789 		       p->ca.cdev_id, p->ca.cdev_qp_id);
790 
791 	offset = sizeof(struct perf_elt);
792 	len = RTE_MAX(RTE_ETHER_MIN_LEN + offset, opt->mbuf_sz);
793 
794 	for (i = 0; i < burst_size; i++) {
795 		ev[i].event = 0;
796 		ev[i].op = RTE_EVENT_OP_NEW;
797 		ev[i].queue_id = p->queue_id;
798 		ev[i].sched_type = RTE_SCHED_TYPE_ATOMIC;
799 		ev[i].event_type = RTE_EVENT_TYPE_CPU;
800 	}
801 
802 	while (count < nb_pkts && t->done == false) {
803 		if (opt->crypto_op_type == RTE_CRYPTO_OP_TYPE_SYMMETRIC) {
804 			struct rte_crypto_sym_op *sym_op;
805 			int ret;
806 
807 			nb_alloc = rte_crypto_op_bulk_alloc(t->ca_op_pool,
808 					RTE_CRYPTO_OP_TYPE_SYMMETRIC, ops_burst, burst_size);
809 			if (unlikely(nb_alloc != burst_size)) {
810 				alloc_failures++;
811 				continue;
812 			}
813 
814 			ret = rte_pktmbuf_alloc_bulk(pool, pkts_burst, burst_size);
815 			if (unlikely(ret != 0)) {
816 				alloc_failures++;
817 				rte_mempool_put_bulk(t->ca_op_pool, (void **)ops_burst, burst_size);
818 				continue;
819 			}
820 
821 			for (i = 0; i < burst_size; i++) {
822 				m = pkts_burst[i];
823 				rte_pktmbuf_append(m, len);
824 				sym_op = ops_burst[i]->sym;
825 				sym_op->m_src = m;
826 				sym_op->cipher.data.offset = offset;
827 				sym_op->cipher.data.length = len - offset;
828 				rte_crypto_op_attach_sym_session(ops_burst[i],
829 						p->ca.crypto_sess[flow_counter++ % nb_flows]);
830 				ev[i].event_ptr = ops_burst[i];
831 			}
832 		} else {
833 			struct rte_crypto_asym_op *asym_op;
834 
835 			nb_alloc = rte_crypto_op_bulk_alloc(t->ca_op_pool,
836 					RTE_CRYPTO_OP_TYPE_ASYMMETRIC, ops_burst, burst_size);
837 			if (unlikely(nb_alloc != burst_size)) {
838 				alloc_failures++;
839 				continue;
840 			}
841 
842 			if (rte_mempool_get_bulk(pool, (void **)result, burst_size)) {
843 				alloc_failures++;
844 				rte_mempool_put_bulk(t->ca_op_pool, (void **)ops_burst, burst_size);
845 				continue;
846 			}
847 
848 			for (i = 0; i < burst_size; i++) {
849 				asym_op = ops_burst[i]->asym;
850 				asym_op->modex.base.data = modex_test_case.base.data;
851 				asym_op->modex.base.length = modex_test_case.base.len;
852 				asym_op->modex.result.data = result[i];
853 				asym_op->modex.result.length = modex_test_case.result_len;
854 				rte_crypto_op_attach_asym_session(ops_burst[i],
855 						p->ca.crypto_sess[flow_counter++ % nb_flows]);
856 				ev[i].event_ptr = ops_burst[i];
857 			}
858 		}
859 
860 		enq = 0;
861 		while (!t->done) {
862 			enq += rte_event_crypto_adapter_enqueue(dev_id, port, ev + enq,
863 					burst_size - enq);
864 			if (enq == burst_size)
865 				break;
866 		}
867 
868 		count += burst_size;
869 	}
870 
871 	if (opt->verbose_level > 1 && alloc_failures)
872 		printf("%s(): lcore %d allocation failures: %"PRIu64"\n",
873 		       __func__, rte_lcore_id(), alloc_failures);
874 }
875 
876 static inline int
877 perf_event_crypto_producer_burst(void *arg)
878 {
879 	struct prod_data *p = arg;
880 	struct evt_options *opt = p->t->opt;
881 
882 	if (opt->crypto_adptr_mode == RTE_EVENT_CRYPTO_ADAPTER_OP_NEW)
883 		crypto_adapter_enq_op_new_burst(p);
884 	else
885 		crypto_adapter_enq_op_fwd_burst(p);
886 
887 	return 0;
888 }
889 
890 static int
891 perf_producer_wrapper(void *arg)
892 {
893 	struct rte_event_dev_info dev_info;
894 	struct prod_data *p  = arg;
895 	struct test_perf *t = p->t;
896 
897 	rte_event_dev_info_get(p->dev_id, &dev_info);
898 	if (!t->opt->prod_enq_burst_sz) {
899 		t->opt->prod_enq_burst_sz = MAX_PROD_ENQ_BURST_SIZE;
900 		if (dev_info.max_event_port_enqueue_depth > 0 &&
901 		    (uint32_t)dev_info.max_event_port_enqueue_depth <
902 			    t->opt->prod_enq_burst_sz)
903 			t->opt->prod_enq_burst_sz =
904 				dev_info.max_event_port_enqueue_depth;
905 	}
906 
907 	/* In case of synthetic producer, launch perf_producer or
908 	 * perf_producer_burst depending on producer enqueue burst size
909 	 */
910 	if (t->opt->prod_type == EVT_PROD_TYPE_SYNT &&
911 			t->opt->prod_enq_burst_sz == 1)
912 		return perf_producer(arg);
913 	else if (t->opt->prod_type == EVT_PROD_TYPE_SYNT &&
914 			t->opt->prod_enq_burst_sz > 1) {
915 		if (dev_info.max_event_port_enqueue_depth == 1)
916 			evt_err("This event device does not support burst mode");
917 		else
918 			return perf_producer_burst(arg);
919 	}
920 	else if (t->opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR &&
921 			!t->opt->timdev_use_burst)
922 		return perf_event_timer_producer(arg);
923 	else if (t->opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR &&
924 			t->opt->timdev_use_burst)
925 		return perf_event_timer_producer_burst(arg);
926 	else if (t->opt->prod_type == EVT_PROD_TYPE_EVENT_CRYPTO_ADPTR) {
927 		if (t->opt->prod_enq_burst_sz > 1)
928 			return perf_event_crypto_producer_burst(arg);
929 		else
930 			return perf_event_crypto_producer(arg);
931 	} else if (t->opt->prod_type == EVT_PROD_TYPE_EVENT_DMA_ADPTR)
932 		return perf_event_dma_producer(arg);
933 
934 	return 0;
935 }
936 
937 static inline uint64_t
938 processed_pkts(struct test_perf *t)
939 {
940 	uint8_t i;
941 	uint64_t total = 0;
942 
943 	for (i = 0; i < t->nb_workers; i++)
944 		total += t->worker[i].processed_pkts;
945 
946 	return total;
947 }
948 
949 static inline uint64_t
950 total_latency(struct test_perf *t)
951 {
952 	uint8_t i;
953 	uint64_t total = 0;
954 
955 	for (i = 0; i < t->nb_workers; i++)
956 		total += t->worker[i].latency;
957 
958 	return total;
959 }
960 
961 
962 int
963 perf_launch_lcores(struct evt_test *test, struct evt_options *opt,
964 		int (*worker)(void *))
965 {
966 	int ret, lcore_id;
967 	struct test_perf *t = evt_test_priv(test);
968 
969 	int port_idx = 0;
970 	/* launch workers */
971 	RTE_LCORE_FOREACH_WORKER(lcore_id) {
972 		if (!(opt->wlcores[lcore_id]))
973 			continue;
974 
975 		ret = rte_eal_remote_launch(worker,
976 				 &t->worker[port_idx], lcore_id);
977 		if (ret) {
978 			evt_err("failed to launch worker %d", lcore_id);
979 			return ret;
980 		}
981 		port_idx++;
982 	}
983 
984 	/* launch producers */
985 	RTE_LCORE_FOREACH_WORKER(lcore_id) {
986 		if (!(opt->plcores[lcore_id]))
987 			continue;
988 
989 		ret = rte_eal_remote_launch(perf_producer_wrapper,
990 				&t->prod[port_idx], lcore_id);
991 		if (ret) {
992 			evt_err("failed to launch perf_producer %d", lcore_id);
993 			return ret;
994 		}
995 		port_idx++;
996 	}
997 
998 	const uint64_t total_pkts = t->outstand_pkts;
999 
1000 	uint64_t dead_lock_cycles = rte_get_timer_cycles();
1001 	int64_t dead_lock_remaining  =  total_pkts;
1002 	const uint64_t dead_lock_sample = rte_get_timer_hz() * 5;
1003 
1004 	uint64_t perf_cycles = rte_get_timer_cycles();
1005 	int64_t perf_remaining  = total_pkts;
1006 	const uint64_t perf_sample = rte_get_timer_hz();
1007 
1008 	static float total_mpps;
1009 	static uint64_t samples;
1010 
1011 	const uint64_t freq_mhz = rte_get_timer_hz() / 1000000;
1012 	int64_t remaining = t->outstand_pkts - processed_pkts(t);
1013 
1014 	while (t->done == false) {
1015 		const uint64_t new_cycles = rte_get_timer_cycles();
1016 
1017 		if ((new_cycles - perf_cycles) > perf_sample) {
1018 			const uint64_t latency = total_latency(t);
1019 			const uint64_t pkts = processed_pkts(t);
1020 
1021 			remaining = t->outstand_pkts - pkts;
1022 			float mpps = (float)(perf_remaining-remaining)/1000000;
1023 
1024 			perf_remaining = remaining;
1025 			perf_cycles = new_cycles;
1026 			total_mpps += mpps;
1027 			++samples;
1028 			if (opt->fwd_latency && pkts > 0) {
1029 				printf(CLGRN"\r%.3f mpps avg %.3f mpps [avg fwd latency %.3f us] "CLNRM,
1030 					mpps, total_mpps/samples,
1031 					(float)(latency/pkts)/freq_mhz);
1032 			} else {
1033 				printf(CLGRN"\r%.3f mpps avg %.3f mpps"CLNRM,
1034 					mpps, total_mpps/samples);
1035 			}
1036 			fflush(stdout);
1037 
1038 			if (remaining <= 0) {
1039 				t->result = EVT_TEST_SUCCESS;
1040 				if (opt->prod_type == EVT_PROD_TYPE_SYNT ||
1041 				    opt->prod_type ==
1042 					    EVT_PROD_TYPE_EVENT_TIMER_ADPTR ||
1043 				    opt->prod_type ==
1044 					    EVT_PROD_TYPE_EVENT_CRYPTO_ADPTR ||
1045 				    opt->prod_type ==
1046 					    EVT_PROD_TYPE_EVENT_DMA_ADPTR) {
1047 					t->done = true;
1048 					break;
1049 				}
1050 			}
1051 		}
1052 
1053 		if (new_cycles - dead_lock_cycles > dead_lock_sample &&
1054 		    (opt->prod_type == EVT_PROD_TYPE_SYNT ||
1055 		     opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR ||
1056 		     opt->prod_type == EVT_PROD_TYPE_EVENT_CRYPTO_ADPTR ||
1057 		     opt->prod_type == EVT_PROD_TYPE_EVENT_DMA_ADPTR)) {
1058 			remaining = t->outstand_pkts - processed_pkts(t);
1059 			if (dead_lock_remaining == remaining) {
1060 				rte_event_dev_dump(opt->dev_id, stdout);
1061 				evt_err("No schedules for seconds, deadlock");
1062 				t->done = true;
1063 				break;
1064 			}
1065 			dead_lock_remaining = remaining;
1066 			dead_lock_cycles = new_cycles;
1067 		}
1068 	}
1069 	printf("\n");
1070 	return 0;
1071 }
1072 
1073 static int
1074 perf_event_rx_adapter_setup(struct evt_options *opt, uint8_t stride,
1075 		struct rte_event_port_conf prod_conf)
1076 {
1077 	int ret = 0;
1078 	uint16_t prod;
1079 	struct rte_event_eth_rx_adapter_queue_conf queue_conf;
1080 
1081 	memset(&queue_conf, 0,
1082 			sizeof(struct rte_event_eth_rx_adapter_queue_conf));
1083 	queue_conf.ev.sched_type = opt->sched_type_list[0];
1084 	RTE_ETH_FOREACH_DEV(prod) {
1085 		uint32_t cap;
1086 
1087 		ret = rte_event_eth_rx_adapter_caps_get(opt->dev_id,
1088 				prod, &cap);
1089 		if (ret) {
1090 			evt_err("failed to get event rx adapter[%d]"
1091 					" capabilities",
1092 					opt->dev_id);
1093 			return ret;
1094 		}
1095 		queue_conf.ev.queue_id = prod * stride;
1096 		ret = rte_event_eth_rx_adapter_create(prod, opt->dev_id,
1097 				&prod_conf);
1098 		if (ret) {
1099 			evt_err("failed to create rx adapter[%d]", prod);
1100 			return ret;
1101 		}
1102 		ret = rte_event_eth_rx_adapter_queue_add(prod, prod, -1,
1103 				&queue_conf);
1104 		if (ret) {
1105 			evt_err("failed to add rx queues to adapter[%d]", prod);
1106 			return ret;
1107 		}
1108 
1109 		if (!(cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT)) {
1110 			uint32_t service_id;
1111 
1112 			rte_event_eth_rx_adapter_service_id_get(prod,
1113 					&service_id);
1114 			ret = evt_service_setup(service_id);
1115 			if (ret) {
1116 				evt_err("Failed to setup service core"
1117 						" for Rx adapter\n");
1118 				return ret;
1119 			}
1120 		}
1121 	}
1122 
1123 	return ret;
1124 }
1125 
1126 static int
1127 perf_event_timer_adapter_setup(struct test_perf *t)
1128 {
1129 	int i;
1130 	int ret;
1131 	struct rte_event_timer_adapter_info adapter_info;
1132 	struct rte_event_timer_adapter *wl;
1133 	uint8_t nb_producers = evt_nr_active_lcores(t->opt->plcores);
1134 	uint8_t flags = RTE_EVENT_TIMER_ADAPTER_F_ADJUST_RES;
1135 
1136 	if (nb_producers == 1)
1137 		flags |= RTE_EVENT_TIMER_ADAPTER_F_SP_PUT;
1138 
1139 	for (i = 0; i < t->opt->nb_timer_adptrs; i++) {
1140 		struct rte_event_timer_adapter_conf config = {
1141 			.event_dev_id = t->opt->dev_id,
1142 			.timer_adapter_id = i,
1143 			.timer_tick_ns = t->opt->timer_tick_nsec,
1144 			.max_tmo_ns = t->opt->max_tmo_nsec,
1145 			.nb_timers = t->opt->pool_sz,
1146 			.flags = flags,
1147 		};
1148 
1149 		wl = rte_event_timer_adapter_create(&config);
1150 		if (wl == NULL) {
1151 			evt_err("failed to create event timer ring %d", i);
1152 			return rte_errno;
1153 		}
1154 
1155 		memset(&adapter_info, 0,
1156 				sizeof(struct rte_event_timer_adapter_info));
1157 		rte_event_timer_adapter_get_info(wl, &adapter_info);
1158 		t->opt->optm_timer_tick_nsec = adapter_info.min_resolution_ns;
1159 
1160 		if (!(adapter_info.caps &
1161 				RTE_EVENT_TIMER_ADAPTER_CAP_INTERNAL_PORT)) {
1162 			uint32_t service_id = -1U;
1163 
1164 			rte_event_timer_adapter_service_id_get(wl,
1165 					&service_id);
1166 			ret = evt_service_setup(service_id);
1167 			if (ret) {
1168 				evt_err("Failed to setup service core"
1169 						" for timer adapter\n");
1170 				return ret;
1171 			}
1172 			rte_service_runstate_set(service_id, 1);
1173 		}
1174 		t->timer_adptr[i] = wl;
1175 	}
1176 	return 0;
1177 }
1178 
1179 static int
1180 perf_event_crypto_adapter_setup(struct test_perf *t, struct prod_data *p)
1181 {
1182 	struct rte_event_crypto_adapter_queue_conf conf;
1183 	struct evt_options *opt = t->opt;
1184 	uint32_t cap;
1185 	int ret;
1186 
1187 	memset(&conf, 0, sizeof(conf));
1188 
1189 	ret = rte_event_crypto_adapter_caps_get(p->dev_id, p->ca.cdev_id, &cap);
1190 	if (ret) {
1191 		evt_err("Failed to get crypto adapter capabilities");
1192 		return ret;
1193 	}
1194 
1195 	if (((opt->crypto_adptr_mode == RTE_EVENT_CRYPTO_ADAPTER_OP_NEW) &&
1196 	     !(cap & RTE_EVENT_CRYPTO_ADAPTER_CAP_INTERNAL_PORT_OP_NEW)) ||
1197 	    ((opt->crypto_adptr_mode == RTE_EVENT_CRYPTO_ADAPTER_OP_FORWARD) &&
1198 	     !(cap & RTE_EVENT_CRYPTO_ADAPTER_CAP_INTERNAL_PORT_OP_FWD))) {
1199 		evt_err("crypto adapter %s mode unsupported\n",
1200 			opt->crypto_adptr_mode ? "OP_FORWARD" : "OP_NEW");
1201 		return -ENOTSUP;
1202 	} else if (!(cap & RTE_EVENT_CRYPTO_ADAPTER_CAP_SESSION_PRIVATE_DATA)) {
1203 		evt_err("Storing crypto session not supported");
1204 		return -ENOTSUP;
1205 	}
1206 
1207 	if (opt->ena_vector) {
1208 		struct rte_event_crypto_adapter_vector_limits limits;
1209 
1210 		if (!(cap & RTE_EVENT_CRYPTO_ADAPTER_CAP_EVENT_VECTOR)) {
1211 			evt_err("Crypto adapter doesn't support event vector");
1212 			return -EINVAL;
1213 		}
1214 
1215 		ret = rte_event_crypto_adapter_vector_limits_get(p->dev_id, p->ca.cdev_id, &limits);
1216 		if (ret) {
1217 			evt_err("Failed to get crypto adapter's vector limits");
1218 			return ret;
1219 		}
1220 
1221 		if (opt->vector_size < limits.min_sz || opt->vector_size > limits.max_sz) {
1222 			evt_err("Vector size [%d] not within limits max[%d] min[%d]",
1223 				opt->vector_size, limits.max_sz, limits.min_sz);
1224 			return -EINVAL;
1225 		}
1226 
1227 		if (limits.log2_sz && !rte_is_power_of_2(opt->vector_size)) {
1228 			evt_err("Vector size [%d] not power of 2", opt->vector_size);
1229 			return -EINVAL;
1230 		}
1231 
1232 		if (opt->vector_tmo_nsec > limits.max_timeout_ns ||
1233 			opt->vector_tmo_nsec < limits.min_timeout_ns) {
1234 			evt_err("Vector timeout [%" PRIu64 "] not within limits "
1235 				"max[%" PRIu64 "] min[%" PRIu64 "]",
1236 				opt->vector_tmo_nsec, limits.max_timeout_ns, limits.min_timeout_ns);
1237 			return -EINVAL;
1238 		}
1239 
1240 		conf.vector_mp = t->ca_vector_pool;
1241 		conf.vector_sz = opt->vector_size;
1242 		conf.vector_timeout_ns = opt->vector_tmo_nsec;
1243 		conf.flags |= RTE_EVENT_CRYPTO_ADAPTER_EVENT_VECTOR;
1244 	}
1245 
1246 	if (cap & RTE_EVENT_CRYPTO_ADAPTER_CAP_INTERNAL_PORT_QP_EV_BIND) {
1247 		conf.ev.sched_type = RTE_SCHED_TYPE_ATOMIC;
1248 		conf.ev.queue_id = p->queue_id;
1249 	}
1250 
1251 	ret = rte_event_crypto_adapter_queue_pair_add(
1252 		TEST_PERF_CA_ID, p->ca.cdev_id, p->ca.cdev_qp_id, &conf);
1253 
1254 	return ret;
1255 }
1256 
1257 static int
1258 perf_event_dma_adapter_setup(struct test_perf *t, struct prod_data *p)
1259 {
1260 	struct evt_options *opt = t->opt;
1261 	struct rte_event event;
1262 	uint32_t cap;
1263 	int ret;
1264 
1265 	ret = rte_event_dma_adapter_caps_get(p->dev_id, p->da.dma_dev_id, &cap);
1266 	if (ret) {
1267 		evt_err("Failed to get dma adapter capabilities");
1268 		return ret;
1269 	}
1270 
1271 	if (((opt->dma_adptr_mode == RTE_EVENT_DMA_ADAPTER_OP_NEW) &&
1272 	     !(cap & RTE_EVENT_DMA_ADAPTER_CAP_INTERNAL_PORT_OP_NEW)) ||
1273 	    ((opt->dma_adptr_mode == RTE_EVENT_DMA_ADAPTER_OP_FORWARD) &&
1274 	     !(cap & RTE_EVENT_DMA_ADAPTER_CAP_INTERNAL_PORT_OP_FWD))) {
1275 		evt_err("dma adapter %s mode unsupported\n",
1276 			opt->dma_adptr_mode ? "OP_FORWARD" : "OP_NEW");
1277 		return -ENOTSUP;
1278 	}
1279 
1280 	if (cap & RTE_EVENT_DMA_ADAPTER_CAP_INTERNAL_PORT_VCHAN_EV_BIND)
1281 		ret = rte_event_dma_adapter_vchan_add(TEST_PERF_DA_ID, p->da.dma_dev_id,
1282 						      p->da.vchan_id, &event);
1283 	else
1284 		ret = rte_event_dma_adapter_vchan_add(TEST_PERF_DA_ID, p->da.dma_dev_id,
1285 						      p->da.vchan_id, NULL);
1286 
1287 	return ret;
1288 }
1289 
1290 static void *
1291 cryptodev_sym_sess_create(struct prod_data *p, struct test_perf *t)
1292 {
1293 	const struct rte_cryptodev_symmetric_capability *cap;
1294 	struct rte_cryptodev_sym_capability_idx cap_idx;
1295 	enum rte_crypto_cipher_algorithm cipher_algo;
1296 	struct rte_crypto_sym_xform cipher_xform;
1297 	struct evt_options *opt = t->opt;
1298 	uint16_t key_size;
1299 	uint16_t iv_size;
1300 	void *sess;
1301 
1302 	cipher_algo = opt->crypto_cipher_alg;
1303 	key_size = opt->crypto_cipher_key_sz;
1304 	iv_size = opt->crypto_cipher_iv_sz;
1305 
1306 	/* Check if device supports the algorithm */
1307 	cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
1308 	cap_idx.algo.cipher = cipher_algo;
1309 
1310 	cap = rte_cryptodev_sym_capability_get(p->ca.cdev_id, &cap_idx);
1311 	if (cap == NULL) {
1312 		evt_err("Device doesn't support cipher algorithm [%s]. Test Skipped\n",
1313 			rte_cryptodev_get_cipher_algo_string(cipher_algo));
1314 		return NULL;
1315 	}
1316 
1317 	/* Check if device supports key size and IV size */
1318 	if (rte_cryptodev_sym_capability_check_cipher(cap, key_size,
1319 			iv_size) < 0) {
1320 		evt_err("Device doesn't support cipher configuration:\n"
1321 			"cipher algo [%s], key sz [%d], iv sz [%d]. Test Skipped\n",
1322 			rte_cryptodev_get_cipher_algo_string(cipher_algo), key_size, iv_size);
1323 		return NULL;
1324 	}
1325 
1326 	cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
1327 	cipher_xform.cipher.algo = cipher_algo;
1328 	cipher_xform.cipher.key.data = opt->crypto_cipher_key;
1329 	cipher_xform.cipher.key.length = key_size;
1330 	cipher_xform.cipher.iv.length = iv_size;
1331 	cipher_xform.cipher.iv.offset = IV_OFFSET;
1332 	cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
1333 	cipher_xform.next = NULL;
1334 
1335 	sess = rte_cryptodev_sym_session_create(p->ca.cdev_id, &cipher_xform,
1336 			t->ca_sess_pool);
1337 	if (sess == NULL) {
1338 		evt_err("Failed to create sym session");
1339 		return NULL;
1340 	}
1341 
1342 	return sess;
1343 }
1344 
1345 static void *
1346 cryptodev_asym_sess_create(struct prod_data *p, struct test_perf *t)
1347 {
1348 	const struct rte_cryptodev_asymmetric_xform_capability *capability;
1349 	struct rte_cryptodev_asym_capability_idx cap_idx;
1350 	struct rte_crypto_asym_xform xform;
1351 	void *sess;
1352 
1353 	xform.next = NULL;
1354 	xform.xform_type = RTE_CRYPTO_ASYM_XFORM_MODEX;
1355 	cap_idx.type = xform.xform_type;
1356 	capability = rte_cryptodev_asym_capability_get(p->ca.cdev_id, &cap_idx);
1357 	if (capability == NULL) {
1358 		evt_err("Device doesn't support MODEX. Test Skipped\n");
1359 		return NULL;
1360 	}
1361 
1362 	xform.modex.modulus.data = modex_test_case.modulus.data;
1363 	xform.modex.modulus.length = modex_test_case.modulus.len;
1364 	xform.modex.exponent.data = modex_test_case.exponent.data;
1365 	xform.modex.exponent.length = modex_test_case.exponent.len;
1366 
1367 	if (rte_cryptodev_asym_session_create(p->ca.cdev_id, &xform,
1368 			t->ca_asym_sess_pool, &sess)) {
1369 		evt_err("Failed to create asym session");
1370 		return NULL;
1371 	}
1372 
1373 	return sess;
1374 }
1375 
1376 int
1377 perf_event_dev_port_setup(struct evt_test *test, struct evt_options *opt,
1378 				uint8_t stride, uint8_t nb_queues,
1379 				const struct rte_event_port_conf *port_conf)
1380 {
1381 	struct test_perf *t = evt_test_priv(test);
1382 	uint16_t port, prod;
1383 	int ret = -1;
1384 
1385 	/* setup one port per worker, linking to all queues */
1386 	for (port = 0; port < evt_nr_active_lcores(opt->wlcores);
1387 				port++) {
1388 		struct worker_data *w = &t->worker[port];
1389 
1390 		w->dev_id = opt->dev_id;
1391 		w->port_id = port;
1392 		w->t = t;
1393 		w->processed_pkts = 0;
1394 		w->latency = 0;
1395 
1396 		struct rte_event_port_conf conf = *port_conf;
1397 		conf.event_port_cfg |= RTE_EVENT_PORT_CFG_HINT_WORKER;
1398 
1399 		ret = rte_event_port_setup(opt->dev_id, port, &conf);
1400 		if (ret) {
1401 			evt_err("failed to setup port %d", port);
1402 			return ret;
1403 		}
1404 
1405 		ret = rte_event_port_link(opt->dev_id, port, NULL, NULL, 0);
1406 		if (ret != nb_queues) {
1407 			evt_err("failed to link all queues to port %d", port);
1408 			return -EINVAL;
1409 		}
1410 	}
1411 
1412 	/* port for producers, no links */
1413 	if (opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR) {
1414 		for ( ; port < perf_nb_event_ports(opt); port++) {
1415 			struct prod_data *p = &t->prod[port];
1416 			p->t = t;
1417 		}
1418 
1419 		struct rte_event_port_conf conf = *port_conf;
1420 		conf.event_port_cfg |= RTE_EVENT_PORT_CFG_HINT_PRODUCER;
1421 
1422 		ret = perf_event_rx_adapter_setup(opt, stride, conf);
1423 		if (ret)
1424 			return ret;
1425 	} else if (opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) {
1426 		prod = 0;
1427 		for ( ; port < perf_nb_event_ports(opt); port++) {
1428 			struct prod_data *p = &t->prod[port];
1429 			p->queue_id = prod * stride;
1430 			p->t = t;
1431 			prod++;
1432 		}
1433 
1434 		ret = perf_event_timer_adapter_setup(t);
1435 		if (ret)
1436 			return ret;
1437 	} else if (opt->prod_type == EVT_PROD_TYPE_EVENT_CRYPTO_ADPTR) {
1438 		struct rte_event_port_conf conf = *port_conf;
1439 		uint8_t cdev_id = 0;
1440 		uint16_t qp_id = 0;
1441 
1442 		ret = rte_event_crypto_adapter_create(TEST_PERF_CA_ID,
1443 						      opt->dev_id, &conf, 0);
1444 		if (ret) {
1445 			evt_err("Failed to create crypto adapter");
1446 			return ret;
1447 		}
1448 
1449 		prod = 0;
1450 		for (; port < perf_nb_event_ports(opt); port++) {
1451 			union rte_event_crypto_metadata m_data;
1452 			struct prod_data *p = &t->prod[port];
1453 			uint32_t flow_id;
1454 
1455 			if (qp_id == rte_cryptodev_queue_pair_count(cdev_id)) {
1456 				cdev_id++;
1457 				qp_id = 0;
1458 			}
1459 
1460 			p->dev_id = opt->dev_id;
1461 			p->port_id = port;
1462 			p->queue_id = prod * stride;
1463 			p->ca.cdev_id = cdev_id;
1464 			p->ca.cdev_qp_id = qp_id;
1465 			p->ca.crypto_sess = rte_zmalloc_socket(
1466 				NULL, sizeof(void *) * t->nb_flows,
1467 				RTE_CACHE_LINE_SIZE, opt->socket_id);
1468 			p->t = t;
1469 
1470 			ret = perf_event_crypto_adapter_setup(t, p);
1471 			if (ret)
1472 				return ret;
1473 
1474 			m_data.request_info.cdev_id = p->ca.cdev_id;
1475 			m_data.request_info.queue_pair_id = p->ca.cdev_qp_id;
1476 			m_data.response_info.sched_type = RTE_SCHED_TYPE_ATOMIC;
1477 			m_data.response_info.queue_id = p->queue_id;
1478 
1479 			for (flow_id = 0; flow_id < t->nb_flows; flow_id++) {
1480 				m_data.response_info.flow_id = flow_id;
1481 				if (opt->crypto_op_type ==
1482 						RTE_CRYPTO_OP_TYPE_SYMMETRIC) {
1483 					void *sess;
1484 
1485 					sess = cryptodev_sym_sess_create(p, t);
1486 					if (sess == NULL)
1487 						return -ENOMEM;
1488 
1489 					ret = rte_cryptodev_session_event_mdata_set(
1490 						cdev_id,
1491 						sess,
1492 						RTE_CRYPTO_OP_TYPE_SYMMETRIC,
1493 						RTE_CRYPTO_OP_WITH_SESSION,
1494 						&m_data, sizeof(m_data));
1495 					if (ret)
1496 						return ret;
1497 					p->ca.crypto_sess[flow_id] = sess;
1498 				} else {
1499 					void *sess;
1500 
1501 					sess = cryptodev_asym_sess_create(p, t);
1502 					if (sess == NULL)
1503 						return -ENOMEM;
1504 					ret = rte_cryptodev_session_event_mdata_set(
1505 						cdev_id,
1506 						sess,
1507 						RTE_CRYPTO_OP_TYPE_ASYMMETRIC,
1508 						RTE_CRYPTO_OP_WITH_SESSION,
1509 						&m_data, sizeof(m_data));
1510 					if (ret)
1511 						return ret;
1512 					p->ca.crypto_sess[flow_id] = sess;
1513 				}
1514 			}
1515 
1516 			conf.event_port_cfg |=
1517 				RTE_EVENT_PORT_CFG_HINT_PRODUCER |
1518 				RTE_EVENT_PORT_CFG_HINT_CONSUMER;
1519 
1520 			ret = rte_event_port_setup(opt->dev_id, port, &conf);
1521 			if (ret) {
1522 				evt_err("failed to setup port %d", port);
1523 				return ret;
1524 			}
1525 
1526 			qp_id++;
1527 			prod++;
1528 		}
1529 	}  else if (opt->prod_type == EVT_PROD_TYPE_EVENT_DMA_ADPTR) {
1530 		struct rte_event_port_conf conf = *port_conf;
1531 		uint8_t dma_dev_id = 0;
1532 		uint16_t vchan_id = 0;
1533 
1534 		ret = rte_event_dma_adapter_create(TEST_PERF_DA_ID, opt->dev_id, &conf, 0);
1535 		if (ret) {
1536 			evt_err("Failed to create dma adapter");
1537 			return ret;
1538 		}
1539 
1540 		prod = 0;
1541 		for (; port < perf_nb_event_ports(opt); port++) {
1542 			struct prod_data *p = &t->prod[port];
1543 
1544 			p->dev_id = opt->dev_id;
1545 			p->port_id = port;
1546 			p->queue_id = prod * stride;
1547 			p->da.dma_dev_id = dma_dev_id;
1548 			p->da.vchan_id = vchan_id;
1549 			p->t = t;
1550 
1551 			ret = perf_event_dma_adapter_setup(t, p);
1552 			if (ret)
1553 				return ret;
1554 
1555 			conf.event_port_cfg |=
1556 				RTE_EVENT_PORT_CFG_HINT_PRODUCER |
1557 				RTE_EVENT_PORT_CFG_HINT_CONSUMER;
1558 
1559 			ret = rte_event_port_setup(opt->dev_id, port, &conf);
1560 			if (ret) {
1561 				evt_err("failed to setup port %d", port);
1562 				return ret;
1563 			}
1564 
1565 			prod++;
1566 		}
1567 	} else {
1568 		prod = 0;
1569 		for ( ; port < perf_nb_event_ports(opt); port++) {
1570 			struct prod_data *p = &t->prod[port];
1571 
1572 			p->dev_id = opt->dev_id;
1573 			p->port_id = port;
1574 			p->queue_id = prod * stride;
1575 			p->t = t;
1576 
1577 			struct rte_event_port_conf conf = *port_conf;
1578 			conf.event_port_cfg |=
1579 				RTE_EVENT_PORT_CFG_HINT_PRODUCER |
1580 				RTE_EVENT_PORT_CFG_HINT_CONSUMER;
1581 
1582 			ret = rte_event_port_setup(opt->dev_id, port, &conf);
1583 			if (ret) {
1584 				evt_err("failed to setup port %d", port);
1585 				return ret;
1586 			}
1587 			prod++;
1588 		}
1589 	}
1590 
1591 	return ret;
1592 }
1593 
1594 int
1595 perf_opt_check(struct evt_options *opt, uint64_t nb_queues)
1596 {
1597 	unsigned int lcores;
1598 
1599 	/* N producer + N worker + main when producer cores are used
1600 	 * Else N worker + main when Rx adapter is used
1601 	 */
1602 	lcores = opt->prod_type == EVT_PROD_TYPE_SYNT ? 3 : 2;
1603 
1604 	if (rte_lcore_count() < lcores) {
1605 		evt_err("test need minimum %d lcores", lcores);
1606 		return -1;
1607 	}
1608 
1609 	/* Validate worker lcores */
1610 	if (evt_lcores_has_overlap(opt->wlcores, rte_get_main_lcore())) {
1611 		evt_err("worker lcores overlaps with main lcore");
1612 		return -1;
1613 	}
1614 	if (evt_lcores_has_overlap_multi(opt->wlcores, opt->plcores)) {
1615 		evt_err("worker lcores overlaps producer lcores");
1616 		return -1;
1617 	}
1618 	if (evt_has_disabled_lcore(opt->wlcores)) {
1619 		evt_err("one or more workers lcores are not enabled");
1620 		return -1;
1621 	}
1622 	if (!evt_has_active_lcore(opt->wlcores)) {
1623 		evt_err("minimum one worker is required");
1624 		return -1;
1625 	}
1626 
1627 	if (opt->prod_type == EVT_PROD_TYPE_SYNT ||
1628 	    opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR ||
1629 	    opt->prod_type == EVT_PROD_TYPE_EVENT_CRYPTO_ADPTR ||
1630 	    opt->prod_type == EVT_PROD_TYPE_EVENT_DMA_ADPTR) {
1631 		/* Validate producer lcores */
1632 		if (evt_lcores_has_overlap(opt->plcores,
1633 					rte_get_main_lcore())) {
1634 			evt_err("producer lcores overlaps with main lcore");
1635 			return -1;
1636 		}
1637 		if (evt_has_disabled_lcore(opt->plcores)) {
1638 			evt_err("one or more producer lcores are not enabled");
1639 			return -1;
1640 		}
1641 		if (!evt_has_active_lcore(opt->plcores)) {
1642 			evt_err("minimum one producer is required");
1643 			return -1;
1644 		}
1645 	}
1646 
1647 	if (evt_has_invalid_stage(opt))
1648 		return -1;
1649 
1650 	if (evt_has_invalid_sched_type(opt))
1651 		return -1;
1652 
1653 	if (nb_queues > EVT_MAX_QUEUES) {
1654 		evt_err("number of queues exceeds %d", EVT_MAX_QUEUES);
1655 		return -1;
1656 	}
1657 	if (perf_nb_event_ports(opt) > EVT_MAX_PORTS) {
1658 		evt_err("number of ports exceeds %d", EVT_MAX_PORTS);
1659 		return -1;
1660 	}
1661 
1662 	/* Fixups */
1663 	if ((opt->nb_stages == 1 &&
1664 			opt->prod_type != EVT_PROD_TYPE_EVENT_TIMER_ADPTR) &&
1665 			opt->fwd_latency) {
1666 		evt_info("fwd_latency is valid when nb_stages > 1, disabling");
1667 		opt->fwd_latency = 0;
1668 	}
1669 
1670 	if (opt->fwd_latency && !opt->q_priority) {
1671 		evt_info("enabled queue priority for latency measurement");
1672 		opt->q_priority = 1;
1673 	}
1674 	if (opt->nb_pkts == 0)
1675 		opt->nb_pkts = INT64_MAX/evt_nr_active_lcores(opt->plcores);
1676 
1677 	return 0;
1678 }
1679 
1680 void
1681 perf_opt_dump(struct evt_options *opt, uint8_t nb_queues)
1682 {
1683 	evt_dump("nb_prod_lcores", "%d", evt_nr_active_lcores(opt->plcores));
1684 	evt_dump_producer_lcores(opt);
1685 	evt_dump("nb_worker_lcores", "%d", evt_nr_active_lcores(opt->wlcores));
1686 	evt_dump_worker_lcores(opt);
1687 	evt_dump_nb_stages(opt);
1688 	evt_dump("nb_evdev_ports", "%d", perf_nb_event_ports(opt));
1689 	evt_dump("nb_evdev_queues", "%d", nb_queues);
1690 	evt_dump_queue_priority(opt);
1691 	evt_dump_sched_type_list(opt);
1692 	evt_dump_producer_type(opt);
1693 	evt_dump("prod_enq_burst_sz", "%d", opt->prod_enq_burst_sz);
1694 }
1695 
1696 static void
1697 perf_event_port_flush(uint8_t dev_id __rte_unused, struct rte_event ev,
1698 		      void *args)
1699 {
1700 	rte_mempool_put(args, ev.event_ptr);
1701 }
1702 
1703 void
1704 perf_worker_cleanup(struct rte_mempool *const pool, uint8_t dev_id,
1705 		    uint8_t port_id, struct rte_event events[], uint16_t nb_enq,
1706 		    uint16_t nb_deq)
1707 {
1708 	int i;
1709 
1710 	if (nb_deq) {
1711 		for (i = nb_enq; i < nb_deq; i++)
1712 			rte_mempool_put(pool, events[i].event_ptr);
1713 
1714 		for (i = 0; i < nb_deq; i++)
1715 			events[i].op = RTE_EVENT_OP_RELEASE;
1716 		rte_event_enqueue_burst(dev_id, port_id, events, nb_deq);
1717 	}
1718 	rte_event_port_quiesce(dev_id, port_id, perf_event_port_flush, pool);
1719 }
1720 
1721 void
1722 perf_eventdev_destroy(struct evt_test *test, struct evt_options *opt)
1723 {
1724 	int i;
1725 	struct test_perf *t = evt_test_priv(test);
1726 
1727 	if (opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) {
1728 		for (i = 0; i < opt->nb_timer_adptrs; i++)
1729 			rte_event_timer_adapter_stop(t->timer_adptr[i]);
1730 	}
1731 	rte_event_dev_stop(opt->dev_id);
1732 	rte_event_dev_close(opt->dev_id);
1733 }
1734 
1735 static inline void
1736 perf_elt_init(struct rte_mempool *mp, void *arg __rte_unused,
1737 	    void *obj, unsigned i __rte_unused)
1738 {
1739 	memset(obj, 0, mp->elt_size);
1740 }
1741 
1742 #define NB_RX_DESC			128
1743 #define NB_TX_DESC			512
1744 int
1745 perf_ethdev_setup(struct evt_test *test, struct evt_options *opt)
1746 {
1747 	uint16_t i;
1748 	int ret;
1749 	struct test_perf *t = evt_test_priv(test);
1750 	struct rte_eth_conf port_conf = {
1751 		.rxmode = {
1752 			.mq_mode = RTE_ETH_MQ_RX_RSS,
1753 		},
1754 		.rx_adv_conf = {
1755 			.rss_conf = {
1756 				.rss_key = NULL,
1757 				.rss_hf = RTE_ETH_RSS_IP,
1758 			},
1759 		},
1760 	};
1761 
1762 	if (opt->prod_type != EVT_PROD_TYPE_ETH_RX_ADPTR)
1763 		return 0;
1764 
1765 	if (!rte_eth_dev_count_avail()) {
1766 		evt_err("No ethernet ports found.");
1767 		return -ENODEV;
1768 	}
1769 
1770 	RTE_ETH_FOREACH_DEV(i) {
1771 		struct rte_eth_dev_info dev_info;
1772 		struct rte_eth_conf local_port_conf = port_conf;
1773 
1774 		ret = rte_eth_dev_info_get(i, &dev_info);
1775 		if (ret != 0) {
1776 			evt_err("Error during getting device (port %u) info: %s\n",
1777 					i, strerror(-ret));
1778 			return ret;
1779 		}
1780 
1781 		local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
1782 			dev_info.flow_type_rss_offloads;
1783 		if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
1784 				port_conf.rx_adv_conf.rss_conf.rss_hf) {
1785 			evt_info("Port %u modified RSS hash function based on hardware support,"
1786 				"requested:%#"PRIx64" configured:%#"PRIx64"\n",
1787 				i,
1788 				port_conf.rx_adv_conf.rss_conf.rss_hf,
1789 				local_port_conf.rx_adv_conf.rss_conf.rss_hf);
1790 		}
1791 
1792 		if (rte_eth_dev_configure(i, 1, 1, &local_port_conf) < 0) {
1793 			evt_err("Failed to configure eth port [%d]", i);
1794 			return -EINVAL;
1795 		}
1796 
1797 		if (rte_eth_rx_queue_setup(i, 0, NB_RX_DESC,
1798 				rte_socket_id(), NULL, t->pool) < 0) {
1799 			evt_err("Failed to setup eth port [%d] rx_queue: %d.",
1800 					i, 0);
1801 			return -EINVAL;
1802 		}
1803 
1804 		if (rte_eth_tx_queue_setup(i, 0, NB_TX_DESC,
1805 					rte_socket_id(), NULL) < 0) {
1806 			evt_err("Failed to setup eth port [%d] tx_queue: %d.",
1807 					i, 0);
1808 			return -EINVAL;
1809 		}
1810 
1811 		ret = rte_eth_promiscuous_enable(i);
1812 		if (ret != 0) {
1813 			evt_err("Failed to enable promiscuous mode for eth port [%d]: %s",
1814 				i, rte_strerror(-ret));
1815 			return ret;
1816 		}
1817 	}
1818 
1819 	return 0;
1820 }
1821 
1822 void
1823 perf_ethdev_rx_stop(struct evt_test *test, struct evt_options *opt)
1824 {
1825 	uint16_t i;
1826 	RTE_SET_USED(test);
1827 
1828 	if (opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR) {
1829 		RTE_ETH_FOREACH_DEV(i) {
1830 			rte_event_eth_rx_adapter_stop(i);
1831 			rte_event_eth_rx_adapter_queue_del(i, i, -1);
1832 			rte_eth_dev_rx_queue_stop(i, 0);
1833 		}
1834 	}
1835 }
1836 
1837 void
1838 perf_ethdev_destroy(struct evt_test *test, struct evt_options *opt)
1839 {
1840 	uint16_t i;
1841 	RTE_SET_USED(test);
1842 
1843 	if (opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR) {
1844 		RTE_ETH_FOREACH_DEV(i) {
1845 			rte_event_eth_tx_adapter_stop(i);
1846 			rte_event_eth_tx_adapter_queue_del(i, i, -1);
1847 			rte_eth_dev_tx_queue_stop(i, 0);
1848 			rte_eth_dev_stop(i);
1849 		}
1850 	}
1851 }
1852 
1853 int
1854 perf_cryptodev_setup(struct evt_test *test, struct evt_options *opt)
1855 {
1856 	uint8_t cdev_count, cdev_id, nb_plcores, nb_qps;
1857 	struct test_perf *t = evt_test_priv(test);
1858 	unsigned int max_session_size;
1859 	uint32_t nb_sessions;
1860 	int ret;
1861 
1862 	if (opt->prod_type != EVT_PROD_TYPE_EVENT_CRYPTO_ADPTR)
1863 		return 0;
1864 
1865 	cdev_count = rte_cryptodev_count();
1866 	if (cdev_count == 0) {
1867 		evt_err("No crypto devices available\n");
1868 		return -ENODEV;
1869 	}
1870 
1871 	t->ca_op_pool = rte_crypto_op_pool_create(
1872 		"crypto_op_pool", opt->crypto_op_type, opt->pool_sz,
1873 		128, sizeof(union rte_event_crypto_metadata) + EVT_CRYPTO_MAX_IV_SIZE,
1874 		rte_socket_id());
1875 	if (t->ca_op_pool == NULL) {
1876 		evt_err("Failed to create crypto op pool");
1877 		return -ENOMEM;
1878 	}
1879 
1880 	nb_sessions = evt_nr_active_lcores(opt->plcores) * t->nb_flows;
1881 	t->ca_asym_sess_pool = rte_cryptodev_asym_session_pool_create(
1882 		"ca_asym_sess_pool", nb_sessions, 0,
1883 		sizeof(union rte_event_crypto_metadata), SOCKET_ID_ANY);
1884 	if (t->ca_asym_sess_pool == NULL) {
1885 		evt_err("Failed to create sym session pool");
1886 		ret = -ENOMEM;
1887 		goto err;
1888 	}
1889 
1890 	max_session_size = 0;
1891 	for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) {
1892 		unsigned int session_size;
1893 
1894 		session_size =
1895 			rte_cryptodev_sym_get_private_session_size(cdev_id);
1896 		if (session_size > max_session_size)
1897 			max_session_size = session_size;
1898 	}
1899 
1900 	t->ca_sess_pool = rte_cryptodev_sym_session_pool_create(
1901 		"ca_sess_pool", nb_sessions, max_session_size, 0,
1902 		sizeof(union rte_event_crypto_metadata), SOCKET_ID_ANY);
1903 	if (t->ca_sess_pool == NULL) {
1904 		evt_err("Failed to create sym session pool");
1905 		ret = -ENOMEM;
1906 		goto err;
1907 	}
1908 
1909 	if (opt->ena_vector) {
1910 		unsigned int nb_elem = (opt->pool_sz / opt->vector_size) * 2;
1911 		nb_elem = RTE_MAX(512U, nb_elem);
1912 		nb_elem += evt_nr_active_lcores(opt->wlcores) * 32;
1913 		t->ca_vector_pool = rte_event_vector_pool_create("vector_pool", nb_elem, 32,
1914 				opt->vector_size, opt->socket_id);
1915 		if (t->ca_vector_pool == NULL) {
1916 			evt_err("Failed to create event vector pool");
1917 			ret = -ENOMEM;
1918 			goto err;
1919 		}
1920 	}
1921 
1922 	/*
1923 	 * Calculate number of needed queue pairs, based on the amount of
1924 	 * available number of logical cores and crypto devices. For instance,
1925 	 * if there are 4 cores and 2 crypto devices, 2 queue pairs will be set
1926 	 * up per device.
1927 	 */
1928 	nb_plcores = evt_nr_active_lcores(opt->plcores);
1929 	nb_qps = (nb_plcores % cdev_count) ? (nb_plcores / cdev_count) + 1 :
1930 					     nb_plcores / cdev_count;
1931 	for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) {
1932 		struct rte_cryptodev_qp_conf qp_conf;
1933 		struct rte_cryptodev_config conf;
1934 		struct rte_cryptodev_info info;
1935 		int qp_id;
1936 
1937 		rte_cryptodev_info_get(cdev_id, &info);
1938 		if (nb_qps > info.max_nb_queue_pairs) {
1939 			evt_err("Not enough queue pairs per cryptodev (%u)",
1940 				nb_qps);
1941 			ret = -EINVAL;
1942 			goto err;
1943 		}
1944 
1945 		conf.nb_queue_pairs = nb_qps;
1946 		conf.socket_id = SOCKET_ID_ANY;
1947 		conf.ff_disable = RTE_CRYPTODEV_FF_SECURITY;
1948 
1949 		ret = rte_cryptodev_configure(cdev_id, &conf);
1950 		if (ret) {
1951 			evt_err("Failed to configure cryptodev (%u)", cdev_id);
1952 			goto err;
1953 		}
1954 
1955 		qp_conf.nb_descriptors = NB_CRYPTODEV_DESCRIPTORS;
1956 		qp_conf.mp_session = t->ca_sess_pool;
1957 
1958 		for (qp_id = 0; qp_id < conf.nb_queue_pairs; qp_id++) {
1959 			ret = rte_cryptodev_queue_pair_setup(
1960 				cdev_id, qp_id, &qp_conf,
1961 				rte_cryptodev_socket_id(cdev_id));
1962 			if (ret) {
1963 				evt_err("Failed to setup queue pairs on cryptodev %u\n",
1964 					cdev_id);
1965 				goto err;
1966 			}
1967 		}
1968 	}
1969 
1970 	return 0;
1971 err:
1972 	for (cdev_id = 0; cdev_id < cdev_count; cdev_id++)
1973 		rte_cryptodev_close(cdev_id);
1974 
1975 	rte_mempool_free(t->ca_op_pool);
1976 	rte_mempool_free(t->ca_sess_pool);
1977 	rte_mempool_free(t->ca_asym_sess_pool);
1978 	rte_mempool_free(t->ca_vector_pool);
1979 
1980 	return ret;
1981 }
1982 
1983 void
1984 perf_cryptodev_destroy(struct evt_test *test, struct evt_options *opt)
1985 {
1986 	uint8_t cdev_id, cdev_count = rte_cryptodev_count();
1987 	struct test_perf *t = evt_test_priv(test);
1988 	uint16_t port;
1989 
1990 	if (opt->prod_type != EVT_PROD_TYPE_EVENT_CRYPTO_ADPTR)
1991 		return;
1992 
1993 	for (port = t->nb_workers; port < perf_nb_event_ports(opt); port++) {
1994 		void *sess;
1995 		struct prod_data *p = &t->prod[port];
1996 		uint32_t flow_id;
1997 		uint8_t cdev_id;
1998 
1999 		for (flow_id = 0; flow_id < t->nb_flows; flow_id++) {
2000 			sess = p->ca.crypto_sess[flow_id];
2001 			cdev_id = p->ca.cdev_id;
2002 			rte_cryptodev_sym_session_free(cdev_id, sess);
2003 		}
2004 
2005 		rte_event_crypto_adapter_queue_pair_del(
2006 			TEST_PERF_CA_ID, p->ca.cdev_id, p->ca.cdev_qp_id);
2007 	}
2008 
2009 	rte_event_crypto_adapter_free(TEST_PERF_CA_ID);
2010 
2011 	for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) {
2012 		rte_cryptodev_stop(cdev_id);
2013 		rte_cryptodev_close(cdev_id);
2014 	}
2015 
2016 	rte_mempool_free(t->ca_op_pool);
2017 	rte_mempool_free(t->ca_sess_pool);
2018 	rte_mempool_free(t->ca_asym_sess_pool);
2019 	rte_mempool_free(t->ca_vector_pool);
2020 }
2021 
2022 int
2023 perf_dmadev_setup(struct evt_test *test, struct evt_options *opt)
2024 {
2025 	const struct rte_dma_conf conf = { .nb_vchans = 1};
2026 	const struct rte_dma_vchan_conf qconf = {
2027 			.direction = RTE_DMA_DIR_MEM_TO_MEM,
2028 			.nb_desc = 1024,
2029 	};
2030 	uint8_t dma_dev_count, dma_dev_id = 0;
2031 	int vchan_id;
2032 	int ret;
2033 
2034 	RTE_SET_USED(test);
2035 	if (opt->prod_type != EVT_PROD_TYPE_EVENT_DMA_ADPTR)
2036 		return 0;
2037 
2038 	dma_dev_count = rte_dma_count_avail();
2039 	if (dma_dev_count == 0) {
2040 		evt_err("No dma devices available\n");
2041 		return -ENODEV;
2042 	}
2043 
2044 	ret = rte_dma_configure(dma_dev_id, &conf);
2045 	if (ret) {
2046 		evt_err("Failed to configure dma dev (%u)", dma_dev_id);
2047 		goto err;
2048 	}
2049 
2050 	for (vchan_id = 0; vchan_id < conf.nb_vchans; vchan_id++) {
2051 		ret = rte_dma_vchan_setup(dma_dev_id, vchan_id, &qconf);
2052 		if (ret) {
2053 			evt_err("Failed to setup vchan on dma dev %u\n",
2054 				dma_dev_id);
2055 			goto err;
2056 		}
2057 	}
2058 
2059 	return 0;
2060 err:
2061 	rte_dma_close(dma_dev_id);
2062 
2063 	return ret;
2064 }
2065 
2066 void
2067 perf_dmadev_destroy(struct evt_test *test, struct evt_options *opt)
2068 {
2069 	uint8_t dma_dev_id = 0;
2070 	struct test_perf *t = evt_test_priv(test);
2071 	uint16_t port;
2072 
2073 	if (opt->prod_type != EVT_PROD_TYPE_EVENT_DMA_ADPTR)
2074 		return;
2075 
2076 	for (port = t->nb_workers; port < perf_nb_event_ports(opt); port++) {
2077 		struct prod_data *p = &t->prod[port];
2078 
2079 		rte_event_dma_adapter_vchan_del(TEST_PERF_DA_ID, p->da.dma_dev_id, p->da.vchan_id);
2080 	}
2081 
2082 	rte_event_dma_adapter_free(TEST_PERF_DA_ID);
2083 
2084 	rte_dma_stop(dma_dev_id);
2085 	rte_dma_close(dma_dev_id);
2086 }
2087 
2088 int
2089 perf_mempool_setup(struct evt_test *test, struct evt_options *opt)
2090 {
2091 	struct test_perf *t = evt_test_priv(test);
2092 	unsigned int cache_sz;
2093 
2094 	cache_sz = RTE_MIN(RTE_MEMPOOL_CACHE_MAX_SIZE, (opt->pool_sz / 1.5) / t->nb_workers);
2095 	if (opt->prod_type == EVT_PROD_TYPE_SYNT ||
2096 			opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) {
2097 		t->pool = rte_mempool_create(test->name, /* mempool name */
2098 				opt->pool_sz, /* number of elements*/
2099 				sizeof(struct perf_elt), /* element size*/
2100 				cache_sz, /* cache size*/
2101 				0, NULL, NULL,
2102 				perf_elt_init, /* obj constructor */
2103 				NULL, opt->socket_id, 0); /* flags */
2104 	} else if (opt->prod_type == EVT_PROD_TYPE_EVENT_CRYPTO_ADPTR &&
2105 		   opt->crypto_op_type == RTE_CRYPTO_OP_TYPE_ASYMMETRIC) {
2106 		t->pool = rte_mempool_create(test->name, /* mempool name */
2107 				opt->pool_sz, /* number of elements*/
2108 				sizeof(struct perf_elt) + modex_test_case.result_len,
2109 				/* element size*/
2110 				cache_sz, /* cache size*/
2111 				0, NULL, NULL,
2112 				NULL, /* obj constructor */
2113 				NULL, opt->socket_id, 0); /* flags */
2114 	} else if (opt->prod_type == EVT_PROD_TYPE_EVENT_DMA_ADPTR) {
2115 		t->pool = rte_mempool_create(test->name,   /* mempool name */
2116 					     opt->pool_sz, /* number of elements*/
2117 					     sizeof(struct rte_event_dma_adapter_op) +
2118 						     (sizeof(struct rte_dma_sge) * 2),
2119 					     cache_sz,		       /* cache size*/
2120 					     0, NULL, NULL, NULL,      /* obj constructor */
2121 					     NULL, opt->socket_id, 0); /* flags */
2122 	} else {
2123 		t->pool = rte_pktmbuf_pool_create(test->name, /* mempool name */
2124 				opt->pool_sz, /* number of elements*/
2125 				cache_sz, /* cache size*/
2126 				0,
2127 				RTE_MBUF_DEFAULT_BUF_SIZE,
2128 				opt->socket_id); /* flags */
2129 	}
2130 
2131 	if (t->pool == NULL) {
2132 		evt_err("failed to create mempool");
2133 		return -ENOMEM;
2134 	}
2135 
2136 	return 0;
2137 }
2138 
2139 void
2140 perf_mempool_destroy(struct evt_test *test, struct evt_options *opt)
2141 {
2142 	RTE_SET_USED(opt);
2143 	struct test_perf *t = evt_test_priv(test);
2144 
2145 	rte_mempool_free(t->pool);
2146 }
2147 
2148 int
2149 perf_test_setup(struct evt_test *test, struct evt_options *opt)
2150 {
2151 	void *test_perf;
2152 
2153 	test_perf = rte_zmalloc_socket(test->name, sizeof(struct test_perf),
2154 				RTE_CACHE_LINE_SIZE, opt->socket_id);
2155 	if (test_perf  == NULL) {
2156 		evt_err("failed to allocate test_perf memory");
2157 		goto nomem;
2158 	}
2159 	test->test_priv = test_perf;
2160 
2161 	struct test_perf *t = evt_test_priv(test);
2162 
2163 	if (opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) {
2164 		t->outstand_pkts = opt->nb_timers *
2165 			evt_nr_active_lcores(opt->plcores);
2166 		t->nb_pkts = opt->nb_timers;
2167 	} else {
2168 		t->outstand_pkts = opt->nb_pkts *
2169 			evt_nr_active_lcores(opt->plcores);
2170 		t->nb_pkts = opt->nb_pkts;
2171 	}
2172 
2173 	t->nb_workers = evt_nr_active_lcores(opt->wlcores);
2174 	t->done = false;
2175 	t->nb_flows = opt->nb_flows;
2176 	t->result = EVT_TEST_FAILED;
2177 	t->opt = opt;
2178 	memcpy(t->sched_type_list, opt->sched_type_list,
2179 			sizeof(opt->sched_type_list));
2180 	return 0;
2181 nomem:
2182 	return -ENOMEM;
2183 }
2184 
2185 void
2186 perf_test_destroy(struct evt_test *test, struct evt_options *opt)
2187 {
2188 	RTE_SET_USED(opt);
2189 
2190 	rte_free(test->test_priv);
2191 }
2192