xref: /dpdk/app/test-eventdev/test_perf_common.c (revision c5a3860f36902e1701817b0961bf99a5c96ede3a)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Cavium, Inc
3  */
4 
5 #include <math.h>
6 
7 #include "test_perf_common.h"
8 
9 int
10 perf_test_result(struct evt_test *test, struct evt_options *opt)
11 {
12 	RTE_SET_USED(opt);
13 	int i;
14 	uint64_t total = 0;
15 	struct test_perf *t = evt_test_priv(test);
16 
17 	printf("Packet distribution across worker cores :\n");
18 	for (i = 0; i < t->nb_workers; i++)
19 		total += t->worker[i].processed_pkts;
20 	for (i = 0; i < t->nb_workers; i++)
21 		printf("Worker %d packets: "CLGRN"%"PRIx64" "CLNRM"percentage:"
22 				CLGRN" %3.2f\n"CLNRM, i,
23 				t->worker[i].processed_pkts,
24 				(((double)t->worker[i].processed_pkts)/total)
25 				* 100);
26 
27 	return t->result;
28 }
29 
30 static inline int
31 perf_producer(void *arg)
32 {
33 	int i;
34 	struct prod_data *p  = arg;
35 	struct test_perf *t = p->t;
36 	struct evt_options *opt = t->opt;
37 	const uint8_t dev_id = p->dev_id;
38 	const uint8_t port = p->port_id;
39 	struct rte_mempool *pool = t->pool;
40 	const uint64_t nb_pkts = t->nb_pkts;
41 	const uint32_t nb_flows = t->nb_flows;
42 	uint32_t flow_counter = 0;
43 	uint64_t count = 0;
44 	struct perf_elt *m[BURST_SIZE + 1] = {NULL};
45 	struct rte_event ev;
46 
47 	if (opt->verbose_level > 1)
48 		printf("%s(): lcore %d dev_id %d port=%d queue %d\n", __func__,
49 				rte_lcore_id(), dev_id, port, p->queue_id);
50 
51 	ev.event = 0;
52 	ev.op = RTE_EVENT_OP_NEW;
53 	ev.queue_id = p->queue_id;
54 	ev.sched_type = t->opt->sched_type_list[0];
55 	ev.priority = RTE_EVENT_DEV_PRIORITY_NORMAL;
56 	ev.event_type =  RTE_EVENT_TYPE_CPU;
57 	ev.sub_event_type = 0; /* stage 0 */
58 
59 	while (count < nb_pkts && t->done == false) {
60 		if (rte_mempool_get_bulk(pool, (void **)m, BURST_SIZE) < 0)
61 			continue;
62 		for (i = 0; i < BURST_SIZE; i++) {
63 			ev.flow_id = flow_counter++ % nb_flows;
64 			ev.event_ptr = m[i];
65 			m[i]->timestamp = rte_get_timer_cycles();
66 			while (rte_event_enqueue_burst(dev_id,
67 						       port, &ev, 1) != 1) {
68 				if (t->done)
69 					break;
70 				rte_pause();
71 				m[i]->timestamp = rte_get_timer_cycles();
72 			}
73 		}
74 		count += BURST_SIZE;
75 	}
76 
77 	return 0;
78 }
79 
80 static inline int
81 perf_event_timer_producer(void *arg)
82 {
83 	int i;
84 	struct prod_data *p  = arg;
85 	struct test_perf *t = p->t;
86 	struct evt_options *opt = t->opt;
87 	uint32_t flow_counter = 0;
88 	uint64_t count = 0;
89 	uint64_t arm_latency = 0;
90 	const uint8_t nb_timer_adptrs = opt->nb_timer_adptrs;
91 	const uint32_t nb_flows = t->nb_flows;
92 	const uint64_t nb_timers = opt->nb_timers;
93 	struct rte_mempool *pool = t->pool;
94 	struct perf_elt *m[BURST_SIZE + 1] = {NULL};
95 	struct rte_event_timer_adapter **adptr = t->timer_adptr;
96 	struct rte_event_timer tim;
97 	uint64_t timeout_ticks = opt->expiry_nsec / opt->timer_tick_nsec;
98 
99 	memset(&tim, 0, sizeof(struct rte_event_timer));
100 	timeout_ticks =
101 		opt->optm_timer_tick_nsec
102 			? ceil((double)(timeout_ticks * opt->timer_tick_nsec) /
103 			       opt->optm_timer_tick_nsec)
104 			: timeout_ticks;
105 	timeout_ticks += timeout_ticks ? 0 : 1;
106 	tim.ev.event_type = RTE_EVENT_TYPE_TIMER;
107 	tim.ev.op = RTE_EVENT_OP_NEW;
108 	tim.ev.sched_type = t->opt->sched_type_list[0];
109 	tim.ev.queue_id = p->queue_id;
110 	tim.ev.priority = RTE_EVENT_DEV_PRIORITY_NORMAL;
111 	tim.state = RTE_EVENT_TIMER_NOT_ARMED;
112 	tim.timeout_ticks = timeout_ticks;
113 
114 	if (opt->verbose_level > 1)
115 		printf("%s(): lcore %d\n", __func__, rte_lcore_id());
116 
117 	while (count < nb_timers && t->done == false) {
118 		if (rte_mempool_get_bulk(pool, (void **)m, BURST_SIZE) < 0)
119 			continue;
120 		for (i = 0; i < BURST_SIZE; i++) {
121 			rte_prefetch0(m[i + 1]);
122 			m[i]->tim = tim;
123 			m[i]->tim.ev.flow_id = flow_counter++ % nb_flows;
124 			m[i]->tim.ev.event_ptr = m[i];
125 			m[i]->timestamp = rte_get_timer_cycles();
126 			while (rte_event_timer_arm_burst(
127 			       adptr[flow_counter % nb_timer_adptrs],
128 			       (struct rte_event_timer **)&m[i], 1) != 1) {
129 				if (t->done)
130 					break;
131 				m[i]->timestamp = rte_get_timer_cycles();
132 			}
133 			arm_latency += rte_get_timer_cycles() - m[i]->timestamp;
134 		}
135 		count += BURST_SIZE;
136 	}
137 	fflush(stdout);
138 	rte_delay_ms(1000);
139 	printf("%s(): lcore %d Average event timer arm latency = %.3f us\n",
140 			__func__, rte_lcore_id(),
141 			count ? (float)(arm_latency / count) /
142 			(rte_get_timer_hz() / 1000000) : 0);
143 	return 0;
144 }
145 
146 static inline int
147 perf_event_timer_producer_burst(void *arg)
148 {
149 	int i;
150 	struct prod_data *p  = arg;
151 	struct test_perf *t = p->t;
152 	struct evt_options *opt = t->opt;
153 	uint32_t flow_counter = 0;
154 	uint64_t count = 0;
155 	uint64_t arm_latency = 0;
156 	const uint8_t nb_timer_adptrs = opt->nb_timer_adptrs;
157 	const uint32_t nb_flows = t->nb_flows;
158 	const uint64_t nb_timers = opt->nb_timers;
159 	struct rte_mempool *pool = t->pool;
160 	struct perf_elt *m[BURST_SIZE + 1] = {NULL};
161 	struct rte_event_timer_adapter **adptr = t->timer_adptr;
162 	struct rte_event_timer tim;
163 	uint64_t timeout_ticks = opt->expiry_nsec / opt->timer_tick_nsec;
164 
165 	memset(&tim, 0, sizeof(struct rte_event_timer));
166 	timeout_ticks =
167 		opt->optm_timer_tick_nsec
168 			? ceil((double)(timeout_ticks * opt->timer_tick_nsec) /
169 			       opt->optm_timer_tick_nsec)
170 			: timeout_ticks;
171 	timeout_ticks += timeout_ticks ? 0 : 1;
172 	tim.ev.event_type = RTE_EVENT_TYPE_TIMER;
173 	tim.ev.op = RTE_EVENT_OP_NEW;
174 	tim.ev.sched_type = t->opt->sched_type_list[0];
175 	tim.ev.queue_id = p->queue_id;
176 	tim.ev.priority = RTE_EVENT_DEV_PRIORITY_NORMAL;
177 	tim.state = RTE_EVENT_TIMER_NOT_ARMED;
178 	tim.timeout_ticks = timeout_ticks;
179 
180 	if (opt->verbose_level > 1)
181 		printf("%s(): lcore %d\n", __func__, rte_lcore_id());
182 
183 	while (count < nb_timers && t->done == false) {
184 		if (rte_mempool_get_bulk(pool, (void **)m, BURST_SIZE) < 0)
185 			continue;
186 		for (i = 0; i < BURST_SIZE; i++) {
187 			rte_prefetch0(m[i + 1]);
188 			m[i]->tim = tim;
189 			m[i]->tim.ev.flow_id = flow_counter++ % nb_flows;
190 			m[i]->tim.ev.event_ptr = m[i];
191 			m[i]->timestamp = rte_get_timer_cycles();
192 		}
193 		rte_event_timer_arm_tmo_tick_burst(
194 				adptr[flow_counter % nb_timer_adptrs],
195 				(struct rte_event_timer **)m,
196 				tim.timeout_ticks,
197 				BURST_SIZE);
198 		arm_latency += rte_get_timer_cycles() - m[i - 1]->timestamp;
199 		count += BURST_SIZE;
200 	}
201 	fflush(stdout);
202 	rte_delay_ms(1000);
203 	printf("%s(): lcore %d Average event timer arm latency = %.3f us\n",
204 			__func__, rte_lcore_id(),
205 			count ? (float)(arm_latency / count) /
206 			(rte_get_timer_hz() / 1000000) : 0);
207 	return 0;
208 }
209 
210 static int
211 perf_producer_wrapper(void *arg)
212 {
213 	struct prod_data *p  = arg;
214 	struct test_perf *t = p->t;
215 	/* Launch the producer function only in case of synthetic producer. */
216 	if (t->opt->prod_type == EVT_PROD_TYPE_SYNT)
217 		return perf_producer(arg);
218 	else if (t->opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR &&
219 			!t->opt->timdev_use_burst)
220 		return perf_event_timer_producer(arg);
221 	else if (t->opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR &&
222 			t->opt->timdev_use_burst)
223 		return perf_event_timer_producer_burst(arg);
224 	return 0;
225 }
226 
227 static inline uint64_t
228 processed_pkts(struct test_perf *t)
229 {
230 	uint8_t i;
231 	uint64_t total = 0;
232 
233 	for (i = 0; i < t->nb_workers; i++)
234 		total += t->worker[i].processed_pkts;
235 
236 	return total;
237 }
238 
239 static inline uint64_t
240 total_latency(struct test_perf *t)
241 {
242 	uint8_t i;
243 	uint64_t total = 0;
244 
245 	for (i = 0; i < t->nb_workers; i++)
246 		total += t->worker[i].latency;
247 
248 	return total;
249 }
250 
251 
252 int
253 perf_launch_lcores(struct evt_test *test, struct evt_options *opt,
254 		int (*worker)(void *))
255 {
256 	int ret, lcore_id;
257 	struct test_perf *t = evt_test_priv(test);
258 
259 	int port_idx = 0;
260 	/* launch workers */
261 	RTE_LCORE_FOREACH_WORKER(lcore_id) {
262 		if (!(opt->wlcores[lcore_id]))
263 			continue;
264 
265 		ret = rte_eal_remote_launch(worker,
266 				 &t->worker[port_idx], lcore_id);
267 		if (ret) {
268 			evt_err("failed to launch worker %d", lcore_id);
269 			return ret;
270 		}
271 		port_idx++;
272 	}
273 
274 	/* launch producers */
275 	RTE_LCORE_FOREACH_WORKER(lcore_id) {
276 		if (!(opt->plcores[lcore_id]))
277 			continue;
278 
279 		ret = rte_eal_remote_launch(perf_producer_wrapper,
280 				&t->prod[port_idx], lcore_id);
281 		if (ret) {
282 			evt_err("failed to launch perf_producer %d", lcore_id);
283 			return ret;
284 		}
285 		port_idx++;
286 	}
287 
288 	const uint64_t total_pkts = t->outstand_pkts;
289 
290 	uint64_t dead_lock_cycles = rte_get_timer_cycles();
291 	int64_t dead_lock_remaining  =  total_pkts;
292 	const uint64_t dead_lock_sample = rte_get_timer_hz() * 5;
293 
294 	uint64_t perf_cycles = rte_get_timer_cycles();
295 	int64_t perf_remaining  = total_pkts;
296 	const uint64_t perf_sample = rte_get_timer_hz();
297 
298 	static float total_mpps;
299 	static uint64_t samples;
300 
301 	const uint64_t freq_mhz = rte_get_timer_hz() / 1000000;
302 	int64_t remaining = t->outstand_pkts - processed_pkts(t);
303 
304 	while (t->done == false) {
305 		const uint64_t new_cycles = rte_get_timer_cycles();
306 
307 		if ((new_cycles - perf_cycles) > perf_sample) {
308 			const uint64_t latency = total_latency(t);
309 			const uint64_t pkts = processed_pkts(t);
310 
311 			remaining = t->outstand_pkts - pkts;
312 			float mpps = (float)(perf_remaining-remaining)/1000000;
313 
314 			perf_remaining = remaining;
315 			perf_cycles = new_cycles;
316 			total_mpps += mpps;
317 			++samples;
318 			if (opt->fwd_latency && pkts > 0) {
319 				printf(CLGRN"\r%.3f mpps avg %.3f mpps [avg fwd latency %.3f us] "CLNRM,
320 					mpps, total_mpps/samples,
321 					(float)(latency/pkts)/freq_mhz);
322 			} else {
323 				printf(CLGRN"\r%.3f mpps avg %.3f mpps"CLNRM,
324 					mpps, total_mpps/samples);
325 			}
326 			fflush(stdout);
327 
328 			if (remaining <= 0) {
329 				t->result = EVT_TEST_SUCCESS;
330 				if (opt->prod_type == EVT_PROD_TYPE_SYNT ||
331 					opt->prod_type ==
332 					EVT_PROD_TYPE_EVENT_TIMER_ADPTR) {
333 					t->done = true;
334 					break;
335 				}
336 			}
337 		}
338 
339 		if (new_cycles - dead_lock_cycles > dead_lock_sample &&
340 		    (opt->prod_type == EVT_PROD_TYPE_SYNT ||
341 		     opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR)) {
342 			remaining = t->outstand_pkts - processed_pkts(t);
343 			if (dead_lock_remaining == remaining) {
344 				rte_event_dev_dump(opt->dev_id, stdout);
345 				evt_err("No schedules for seconds, deadlock");
346 				t->done = true;
347 				break;
348 			}
349 			dead_lock_remaining = remaining;
350 			dead_lock_cycles = new_cycles;
351 		}
352 	}
353 	printf("\n");
354 	return 0;
355 }
356 
357 static int
358 perf_event_rx_adapter_setup(struct evt_options *opt, uint8_t stride,
359 		struct rte_event_port_conf prod_conf)
360 {
361 	int ret = 0;
362 	uint16_t prod;
363 	struct rte_event_eth_rx_adapter_queue_conf queue_conf;
364 
365 	memset(&queue_conf, 0,
366 			sizeof(struct rte_event_eth_rx_adapter_queue_conf));
367 	queue_conf.ev.sched_type = opt->sched_type_list[0];
368 	RTE_ETH_FOREACH_DEV(prod) {
369 		uint32_t cap;
370 
371 		ret = rte_event_eth_rx_adapter_caps_get(opt->dev_id,
372 				prod, &cap);
373 		if (ret) {
374 			evt_err("failed to get event rx adapter[%d]"
375 					" capabilities",
376 					opt->dev_id);
377 			return ret;
378 		}
379 		queue_conf.ev.queue_id = prod * stride;
380 		ret = rte_event_eth_rx_adapter_create(prod, opt->dev_id,
381 				&prod_conf);
382 		if (ret) {
383 			evt_err("failed to create rx adapter[%d]", prod);
384 			return ret;
385 		}
386 		ret = rte_event_eth_rx_adapter_queue_add(prod, prod, -1,
387 				&queue_conf);
388 		if (ret) {
389 			evt_err("failed to add rx queues to adapter[%d]", prod);
390 			return ret;
391 		}
392 
393 		if (!(cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT)) {
394 			uint32_t service_id;
395 
396 			rte_event_eth_rx_adapter_service_id_get(prod,
397 					&service_id);
398 			ret = evt_service_setup(service_id);
399 			if (ret) {
400 				evt_err("Failed to setup service core"
401 						" for Rx adapter\n");
402 				return ret;
403 			}
404 		}
405 	}
406 
407 	return ret;
408 }
409 
410 static int
411 perf_event_timer_adapter_setup(struct test_perf *t)
412 {
413 	int i;
414 	int ret;
415 	struct rte_event_timer_adapter_info adapter_info;
416 	struct rte_event_timer_adapter *wl;
417 	uint8_t nb_producers = evt_nr_active_lcores(t->opt->plcores);
418 	uint8_t flags = RTE_EVENT_TIMER_ADAPTER_F_ADJUST_RES;
419 
420 	if (nb_producers == 1)
421 		flags |= RTE_EVENT_TIMER_ADAPTER_F_SP_PUT;
422 
423 	for (i = 0; i < t->opt->nb_timer_adptrs; i++) {
424 		struct rte_event_timer_adapter_conf config = {
425 			.event_dev_id = t->opt->dev_id,
426 			.timer_adapter_id = i,
427 			.timer_tick_ns = t->opt->timer_tick_nsec,
428 			.max_tmo_ns = t->opt->max_tmo_nsec,
429 			.nb_timers = t->opt->pool_sz,
430 			.flags = flags,
431 		};
432 
433 		wl = rte_event_timer_adapter_create(&config);
434 		if (wl == NULL) {
435 			evt_err("failed to create event timer ring %d", i);
436 			return rte_errno;
437 		}
438 
439 		memset(&adapter_info, 0,
440 				sizeof(struct rte_event_timer_adapter_info));
441 		rte_event_timer_adapter_get_info(wl, &adapter_info);
442 		t->opt->optm_timer_tick_nsec = adapter_info.min_resolution_ns;
443 
444 		if (!(adapter_info.caps &
445 				RTE_EVENT_TIMER_ADAPTER_CAP_INTERNAL_PORT)) {
446 			uint32_t service_id = -1U;
447 
448 			rte_event_timer_adapter_service_id_get(wl,
449 					&service_id);
450 			ret = evt_service_setup(service_id);
451 			if (ret) {
452 				evt_err("Failed to setup service core"
453 						" for timer adapter\n");
454 				return ret;
455 			}
456 			rte_service_runstate_set(service_id, 1);
457 		}
458 		t->timer_adptr[i] = wl;
459 	}
460 	return 0;
461 }
462 
463 int
464 perf_event_dev_port_setup(struct evt_test *test, struct evt_options *opt,
465 				uint8_t stride, uint8_t nb_queues,
466 				const struct rte_event_port_conf *port_conf)
467 {
468 	struct test_perf *t = evt_test_priv(test);
469 	uint16_t port, prod;
470 	int ret = -1;
471 
472 	/* setup one port per worker, linking to all queues */
473 	for (port = 0; port < evt_nr_active_lcores(opt->wlcores);
474 				port++) {
475 		struct worker_data *w = &t->worker[port];
476 
477 		w->dev_id = opt->dev_id;
478 		w->port_id = port;
479 		w->t = t;
480 		w->processed_pkts = 0;
481 		w->latency = 0;
482 
483 		ret = rte_event_port_setup(opt->dev_id, port, port_conf);
484 		if (ret) {
485 			evt_err("failed to setup port %d", port);
486 			return ret;
487 		}
488 
489 		ret = rte_event_port_link(opt->dev_id, port, NULL, NULL, 0);
490 		if (ret != nb_queues) {
491 			evt_err("failed to link all queues to port %d", port);
492 			return -EINVAL;
493 		}
494 	}
495 
496 	/* port for producers, no links */
497 	if (opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR) {
498 		for ( ; port < perf_nb_event_ports(opt); port++) {
499 			struct prod_data *p = &t->prod[port];
500 			p->t = t;
501 		}
502 
503 		ret = perf_event_rx_adapter_setup(opt, stride, *port_conf);
504 		if (ret)
505 			return ret;
506 	} else if (opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) {
507 		prod = 0;
508 		for ( ; port < perf_nb_event_ports(opt); port++) {
509 			struct prod_data *p = &t->prod[port];
510 			p->queue_id = prod * stride;
511 			p->t = t;
512 			prod++;
513 		}
514 
515 		ret = perf_event_timer_adapter_setup(t);
516 		if (ret)
517 			return ret;
518 	} else {
519 		prod = 0;
520 		for ( ; port < perf_nb_event_ports(opt); port++) {
521 			struct prod_data *p = &t->prod[port];
522 
523 			p->dev_id = opt->dev_id;
524 			p->port_id = port;
525 			p->queue_id = prod * stride;
526 			p->t = t;
527 
528 			ret = rte_event_port_setup(opt->dev_id, port,
529 					port_conf);
530 			if (ret) {
531 				evt_err("failed to setup port %d", port);
532 				return ret;
533 			}
534 			prod++;
535 		}
536 	}
537 
538 	return ret;
539 }
540 
541 int
542 perf_opt_check(struct evt_options *opt, uint64_t nb_queues)
543 {
544 	unsigned int lcores;
545 
546 	/* N producer + N worker + main when producer cores are used
547 	 * Else N worker + main when Rx adapter is used
548 	 */
549 	lcores = opt->prod_type == EVT_PROD_TYPE_SYNT ? 3 : 2;
550 
551 	if (rte_lcore_count() < lcores) {
552 		evt_err("test need minimum %d lcores", lcores);
553 		return -1;
554 	}
555 
556 	/* Validate worker lcores */
557 	if (evt_lcores_has_overlap(opt->wlcores, rte_get_main_lcore())) {
558 		evt_err("worker lcores overlaps with main lcore");
559 		return -1;
560 	}
561 	if (evt_lcores_has_overlap_multi(opt->wlcores, opt->plcores)) {
562 		evt_err("worker lcores overlaps producer lcores");
563 		return -1;
564 	}
565 	if (evt_has_disabled_lcore(opt->wlcores)) {
566 		evt_err("one or more workers lcores are not enabled");
567 		return -1;
568 	}
569 	if (!evt_has_active_lcore(opt->wlcores)) {
570 		evt_err("minimum one worker is required");
571 		return -1;
572 	}
573 
574 	if (opt->prod_type == EVT_PROD_TYPE_SYNT ||
575 			opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) {
576 		/* Validate producer lcores */
577 		if (evt_lcores_has_overlap(opt->plcores,
578 					rte_get_main_lcore())) {
579 			evt_err("producer lcores overlaps with main lcore");
580 			return -1;
581 		}
582 		if (evt_has_disabled_lcore(opt->plcores)) {
583 			evt_err("one or more producer lcores are not enabled");
584 			return -1;
585 		}
586 		if (!evt_has_active_lcore(opt->plcores)) {
587 			evt_err("minimum one producer is required");
588 			return -1;
589 		}
590 	}
591 
592 	if (evt_has_invalid_stage(opt))
593 		return -1;
594 
595 	if (evt_has_invalid_sched_type(opt))
596 		return -1;
597 
598 	if (nb_queues > EVT_MAX_QUEUES) {
599 		evt_err("number of queues exceeds %d", EVT_MAX_QUEUES);
600 		return -1;
601 	}
602 	if (perf_nb_event_ports(opt) > EVT_MAX_PORTS) {
603 		evt_err("number of ports exceeds %d", EVT_MAX_PORTS);
604 		return -1;
605 	}
606 
607 	/* Fixups */
608 	if ((opt->nb_stages == 1 &&
609 			opt->prod_type != EVT_PROD_TYPE_EVENT_TIMER_ADPTR) &&
610 			opt->fwd_latency) {
611 		evt_info("fwd_latency is valid when nb_stages > 1, disabling");
612 		opt->fwd_latency = 0;
613 	}
614 
615 	if (opt->fwd_latency && !opt->q_priority) {
616 		evt_info("enabled queue priority for latency measurement");
617 		opt->q_priority = 1;
618 	}
619 	if (opt->nb_pkts == 0)
620 		opt->nb_pkts = INT64_MAX/evt_nr_active_lcores(opt->plcores);
621 
622 	return 0;
623 }
624 
625 void
626 perf_opt_dump(struct evt_options *opt, uint8_t nb_queues)
627 {
628 	evt_dump("nb_prod_lcores", "%d", evt_nr_active_lcores(opt->plcores));
629 	evt_dump_producer_lcores(opt);
630 	evt_dump("nb_worker_lcores", "%d", evt_nr_active_lcores(opt->wlcores));
631 	evt_dump_worker_lcores(opt);
632 	evt_dump_nb_stages(opt);
633 	evt_dump("nb_evdev_ports", "%d", perf_nb_event_ports(opt));
634 	evt_dump("nb_evdev_queues", "%d", nb_queues);
635 	evt_dump_queue_priority(opt);
636 	evt_dump_sched_type_list(opt);
637 	evt_dump_producer_type(opt);
638 }
639 
640 void
641 perf_eventdev_destroy(struct evt_test *test, struct evt_options *opt)
642 {
643 	int i;
644 	struct test_perf *t = evt_test_priv(test);
645 
646 	if (opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) {
647 		for (i = 0; i < opt->nb_timer_adptrs; i++)
648 			rte_event_timer_adapter_stop(t->timer_adptr[i]);
649 	}
650 	rte_event_dev_stop(opt->dev_id);
651 	rte_event_dev_close(opt->dev_id);
652 }
653 
654 static inline void
655 perf_elt_init(struct rte_mempool *mp, void *arg __rte_unused,
656 	    void *obj, unsigned i __rte_unused)
657 {
658 	memset(obj, 0, mp->elt_size);
659 }
660 
661 #define NB_RX_DESC			128
662 #define NB_TX_DESC			512
663 int
664 perf_ethdev_setup(struct evt_test *test, struct evt_options *opt)
665 {
666 	uint16_t i;
667 	int ret;
668 	struct test_perf *t = evt_test_priv(test);
669 	struct rte_eth_conf port_conf = {
670 		.rxmode = {
671 			.mq_mode = ETH_MQ_RX_RSS,
672 			.max_rx_pkt_len = RTE_ETHER_MAX_LEN,
673 			.split_hdr_size = 0,
674 		},
675 		.rx_adv_conf = {
676 			.rss_conf = {
677 				.rss_key = NULL,
678 				.rss_hf = ETH_RSS_IP,
679 			},
680 		},
681 	};
682 
683 	if (opt->prod_type == EVT_PROD_TYPE_SYNT ||
684 			opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR)
685 		return 0;
686 
687 	if (!rte_eth_dev_count_avail()) {
688 		evt_err("No ethernet ports found.");
689 		return -ENODEV;
690 	}
691 
692 	RTE_ETH_FOREACH_DEV(i) {
693 		struct rte_eth_dev_info dev_info;
694 		struct rte_eth_conf local_port_conf = port_conf;
695 
696 		ret = rte_eth_dev_info_get(i, &dev_info);
697 		if (ret != 0) {
698 			evt_err("Error during getting device (port %u) info: %s\n",
699 					i, strerror(-ret));
700 			return ret;
701 		}
702 
703 		local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
704 			dev_info.flow_type_rss_offloads;
705 		if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
706 				port_conf.rx_adv_conf.rss_conf.rss_hf) {
707 			evt_info("Port %u modified RSS hash function based on hardware support,"
708 				"requested:%#"PRIx64" configured:%#"PRIx64"\n",
709 				i,
710 				port_conf.rx_adv_conf.rss_conf.rss_hf,
711 				local_port_conf.rx_adv_conf.rss_conf.rss_hf);
712 		}
713 
714 		if (rte_eth_dev_configure(i, 1, 1, &local_port_conf) < 0) {
715 			evt_err("Failed to configure eth port [%d]", i);
716 			return -EINVAL;
717 		}
718 
719 		if (rte_eth_rx_queue_setup(i, 0, NB_RX_DESC,
720 				rte_socket_id(), NULL, t->pool) < 0) {
721 			evt_err("Failed to setup eth port [%d] rx_queue: %d.",
722 					i, 0);
723 			return -EINVAL;
724 		}
725 
726 		if (rte_eth_tx_queue_setup(i, 0, NB_TX_DESC,
727 					rte_socket_id(), NULL) < 0) {
728 			evt_err("Failed to setup eth port [%d] tx_queue: %d.",
729 					i, 0);
730 			return -EINVAL;
731 		}
732 
733 		ret = rte_eth_promiscuous_enable(i);
734 		if (ret != 0) {
735 			evt_err("Failed to enable promiscuous mode for eth port [%d]: %s",
736 				i, rte_strerror(-ret));
737 			return ret;
738 		}
739 	}
740 
741 	return 0;
742 }
743 
744 void perf_ethdev_destroy(struct evt_test *test, struct evt_options *opt)
745 {
746 	uint16_t i;
747 	RTE_SET_USED(test);
748 
749 	if (opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR) {
750 		RTE_ETH_FOREACH_DEV(i) {
751 			rte_event_eth_rx_adapter_stop(i);
752 			rte_eth_dev_stop(i);
753 		}
754 	}
755 }
756 
757 int
758 perf_mempool_setup(struct evt_test *test, struct evt_options *opt)
759 {
760 	struct test_perf *t = evt_test_priv(test);
761 
762 	if (opt->prod_type == EVT_PROD_TYPE_SYNT ||
763 			opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) {
764 		t->pool = rte_mempool_create(test->name, /* mempool name */
765 				opt->pool_sz, /* number of elements*/
766 				sizeof(struct perf_elt), /* element size*/
767 				512, /* cache size*/
768 				0, NULL, NULL,
769 				perf_elt_init, /* obj constructor */
770 				NULL, opt->socket_id, 0); /* flags */
771 	} else {
772 		t->pool = rte_pktmbuf_pool_create(test->name, /* mempool name */
773 				opt->pool_sz, /* number of elements*/
774 				512, /* cache size*/
775 				0,
776 				RTE_MBUF_DEFAULT_BUF_SIZE,
777 				opt->socket_id); /* flags */
778 
779 	}
780 
781 	if (t->pool == NULL) {
782 		evt_err("failed to create mempool");
783 		return -ENOMEM;
784 	}
785 
786 	return 0;
787 }
788 
789 void
790 perf_mempool_destroy(struct evt_test *test, struct evt_options *opt)
791 {
792 	RTE_SET_USED(opt);
793 	struct test_perf *t = evt_test_priv(test);
794 
795 	rte_mempool_free(t->pool);
796 }
797 
798 int
799 perf_test_setup(struct evt_test *test, struct evt_options *opt)
800 {
801 	void *test_perf;
802 
803 	test_perf = rte_zmalloc_socket(test->name, sizeof(struct test_perf),
804 				RTE_CACHE_LINE_SIZE, opt->socket_id);
805 	if (test_perf  == NULL) {
806 		evt_err("failed to allocate test_perf memory");
807 		goto nomem;
808 	}
809 	test->test_priv = test_perf;
810 
811 	struct test_perf *t = evt_test_priv(test);
812 
813 	if (opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) {
814 		t->outstand_pkts = opt->nb_timers *
815 			evt_nr_active_lcores(opt->plcores);
816 		t->nb_pkts = opt->nb_timers;
817 	} else {
818 		t->outstand_pkts = opt->nb_pkts *
819 			evt_nr_active_lcores(opt->plcores);
820 		t->nb_pkts = opt->nb_pkts;
821 	}
822 
823 	t->nb_workers = evt_nr_active_lcores(opt->wlcores);
824 	t->done = false;
825 	t->nb_flows = opt->nb_flows;
826 	t->result = EVT_TEST_FAILED;
827 	t->opt = opt;
828 	memcpy(t->sched_type_list, opt->sched_type_list,
829 			sizeof(opt->sched_type_list));
830 	return 0;
831 nomem:
832 	return -ENOMEM;
833 }
834 
835 void
836 perf_test_destroy(struct evt_test *test, struct evt_options *opt)
837 {
838 	RTE_SET_USED(opt);
839 
840 	rte_free(test->test_priv);
841 }
842