xref: /dpdk/app/test-eventdev/test_perf_common.c (revision af0785a2447b307965377b62f46a5f39457a85a3)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Cavium, Inc
3  */
4 
5 #include <math.h>
6 
7 #include "test_perf_common.h"
8 
9 #define NB_CRYPTODEV_DESCRIPTORS 1024
10 #define DATA_SIZE		512
11 struct modex_test_data {
12 	enum rte_crypto_asym_xform_type xform_type;
13 	struct {
14 		uint8_t data[DATA_SIZE];
15 		uint16_t len;
16 	} base;
17 	struct {
18 		uint8_t data[DATA_SIZE];
19 		uint16_t len;
20 	} exponent;
21 	struct {
22 		uint8_t data[DATA_SIZE];
23 		uint16_t len;
24 	} modulus;
25 	struct {
26 		uint8_t data[DATA_SIZE];
27 		uint16_t len;
28 	} reminder;
29 	uint16_t result_len;
30 };
31 
32 static struct
33 modex_test_data modex_test_case = {
34 	.xform_type = RTE_CRYPTO_ASYM_XFORM_MODEX,
35 	.base = {
36 		.data = {
37 			0xF8, 0xBA, 0x1A, 0x55, 0xD0, 0x2F, 0x85,
38 			0xAE, 0x96, 0x7B, 0xB6, 0x2F, 0xB6, 0xCD,
39 			0xA8, 0xEB, 0x7E, 0x78, 0xA0, 0x50
40 		},
41 		.len = 20,
42 	},
43 	.exponent = {
44 		.data = {
45 			0x01, 0x00, 0x01
46 		},
47 		.len = 3,
48 	},
49 	.reminder = {
50 		.data = {
51 			0x2C, 0x60, 0x75, 0x45, 0x98, 0x9D, 0xE0, 0x72,
52 			0xA0, 0x9D, 0x3A, 0x9E, 0x03, 0x38, 0x73, 0x3C,
53 			0x31, 0x83, 0x04, 0xFE, 0x75, 0x43, 0xE6, 0x17,
54 			0x5C, 0x01, 0x29, 0x51, 0x69, 0x33, 0x62, 0x2D,
55 			0x78, 0xBE, 0xAE, 0xC4, 0xBC, 0xDE, 0x7E, 0x2C,
56 			0x77, 0x84, 0xF2, 0xC5, 0x14, 0xB5, 0x2F, 0xF7,
57 			0xC5, 0x94, 0xEF, 0x86, 0x75, 0x75, 0xB5, 0x11,
58 			0xE5, 0x0E, 0x0A, 0x29, 0x76, 0xE2, 0xEA, 0x32,
59 			0x0E, 0x43, 0x77, 0x7E, 0x2C, 0x27, 0xAC, 0x3B,
60 			0x86, 0xA5, 0xDB, 0xC9, 0x48, 0x40, 0xE8, 0x99,
61 			0x9A, 0x0A, 0x3D, 0xD6, 0x74, 0xFA, 0x2E, 0x2E,
62 			0x5B, 0xAF, 0x8C, 0x99, 0x44, 0x2A, 0x67, 0x38,
63 			0x27, 0x41, 0x59, 0x9D, 0xB8, 0x51, 0xC9, 0xF7,
64 			0x43, 0x61, 0x31, 0x6E, 0xF1, 0x25, 0x38, 0x7F,
65 			0xAE, 0xC6, 0xD0, 0xBB, 0x29, 0x76, 0x3F, 0x46,
66 			0x2E, 0x1B, 0xE4, 0x67, 0x71, 0xE3, 0x87, 0x5A
67 		},
68 		.len = 128,
69 	},
70 	.modulus = {
71 		.data = {
72 			0xb3, 0xa1, 0xaf, 0xb7, 0x13, 0x08, 0x00, 0x0a,
73 			0x35, 0xdc, 0x2b, 0x20, 0x8d, 0xa1, 0xb5, 0xce,
74 			0x47, 0x8a, 0xc3, 0x80, 0xf4, 0x7d, 0x4a, 0xa2,
75 			0x62, 0xfd, 0x61, 0x7f, 0xb5, 0xa8, 0xde, 0x0a,
76 			0x17, 0x97, 0xa0, 0xbf, 0xdf, 0x56, 0x5a, 0x3d,
77 			0x51, 0x56, 0x4f, 0x70, 0x70, 0x3f, 0x63, 0x6a,
78 			0x44, 0x5b, 0xad, 0x84, 0x0d, 0x3f, 0x27, 0x6e,
79 			0x3b, 0x34, 0x91, 0x60, 0x14, 0xb9, 0xaa, 0x72,
80 			0xfd, 0xa3, 0x64, 0xd2, 0x03, 0xa7, 0x53, 0x87,
81 			0x9e, 0x88, 0x0b, 0xc1, 0x14, 0x93, 0x1a, 0x62,
82 			0xff, 0xb1, 0x5d, 0x74, 0xcd, 0x59, 0x63, 0x18,
83 			0x11, 0x3d, 0x4f, 0xba, 0x75, 0xd4, 0x33, 0x4e,
84 			0x23, 0x6b, 0x7b, 0x57, 0x44, 0xe1, 0xd3, 0x03,
85 			0x13, 0xa6, 0xf0, 0x8b, 0x60, 0xb0, 0x9e, 0xee,
86 			0x75, 0x08, 0x9d, 0x71, 0x63, 0x13, 0xcb, 0xa6,
87 			0x81, 0x92, 0x14, 0x03, 0x22, 0x2d, 0xde, 0x55
88 		},
89 		.len = 128,
90 	},
91 	.result_len = 128,
92 };
93 
94 int
95 perf_test_result(struct evt_test *test, struct evt_options *opt)
96 {
97 	RTE_SET_USED(opt);
98 	int i;
99 	uint64_t total = 0;
100 	struct test_perf *t = evt_test_priv(test);
101 
102 	printf("Packet distribution across worker cores :\n");
103 	for (i = 0; i < t->nb_workers; i++)
104 		total += t->worker[i].processed_pkts;
105 	for (i = 0; i < t->nb_workers; i++)
106 		printf("Worker %d packets: "CLGRN"%"PRIx64" "CLNRM"percentage:"
107 				CLGRN" %3.2f"CLNRM"\n", i,
108 				t->worker[i].processed_pkts,
109 				(((double)t->worker[i].processed_pkts)/total)
110 				* 100);
111 
112 	return t->result;
113 }
114 
115 static inline int
116 perf_producer(void *arg)
117 {
118 	int i;
119 	struct prod_data *p  = arg;
120 	struct test_perf *t = p->t;
121 	struct evt_options *opt = t->opt;
122 	const uint8_t dev_id = p->dev_id;
123 	const uint8_t port = p->port_id;
124 	struct rte_mempool *pool = t->pool;
125 	const uint64_t nb_pkts = t->nb_pkts;
126 	const uint32_t nb_flows = t->nb_flows;
127 	uint32_t flow_counter = 0;
128 	uint64_t count = 0;
129 	struct perf_elt *m[BURST_SIZE + 1] = {NULL};
130 	struct rte_event ev;
131 
132 	if (opt->verbose_level > 1)
133 		printf("%s(): lcore %d dev_id %d port=%d queue %d\n", __func__,
134 				rte_lcore_id(), dev_id, port, p->queue_id);
135 
136 	ev.event = 0;
137 	ev.op = RTE_EVENT_OP_NEW;
138 	ev.queue_id = p->queue_id;
139 	ev.sched_type = t->opt->sched_type_list[0];
140 	ev.priority = RTE_EVENT_DEV_PRIORITY_NORMAL;
141 	ev.event_type =  RTE_EVENT_TYPE_CPU;
142 	ev.sub_event_type = 0; /* stage 0 */
143 
144 	while (count < nb_pkts && t->done == false) {
145 		if (rte_mempool_get_bulk(pool, (void **)m, BURST_SIZE) < 0)
146 			continue;
147 		for (i = 0; i < BURST_SIZE; i++) {
148 			ev.flow_id = flow_counter++ % nb_flows;
149 			ev.event_ptr = m[i];
150 			m[i]->timestamp = rte_get_timer_cycles();
151 			while (rte_event_enqueue_burst(dev_id,
152 						       port, &ev, 1) != 1) {
153 				if (t->done)
154 					break;
155 				rte_pause();
156 				m[i]->timestamp = rte_get_timer_cycles();
157 			}
158 		}
159 		count += BURST_SIZE;
160 	}
161 
162 	return 0;
163 }
164 
165 static inline int
166 perf_producer_burst(void *arg)
167 {
168 	uint32_t i;
169 	uint64_t timestamp;
170 	struct rte_event_dev_info dev_info;
171 	struct prod_data *p  = arg;
172 	struct test_perf *t = p->t;
173 	struct evt_options *opt = t->opt;
174 	const uint8_t dev_id = p->dev_id;
175 	const uint8_t port = p->port_id;
176 	struct rte_mempool *pool = t->pool;
177 	const uint64_t nb_pkts = t->nb_pkts;
178 	const uint32_t nb_flows = t->nb_flows;
179 	uint32_t flow_counter = 0;
180 	uint16_t enq = 0;
181 	uint64_t count = 0;
182 	struct perf_elt *m[MAX_PROD_ENQ_BURST_SIZE + 1];
183 	struct rte_event ev[MAX_PROD_ENQ_BURST_SIZE + 1];
184 	uint32_t burst_size = opt->prod_enq_burst_sz;
185 
186 	memset(m, 0, sizeof(*m) * (MAX_PROD_ENQ_BURST_SIZE + 1));
187 	rte_event_dev_info_get(dev_id, &dev_info);
188 	if (dev_info.max_event_port_enqueue_depth < burst_size)
189 		burst_size = dev_info.max_event_port_enqueue_depth;
190 
191 	if (opt->verbose_level > 1)
192 		printf("%s(): lcore %d dev_id %d port=%d queue %d\n", __func__,
193 				rte_lcore_id(), dev_id, port, p->queue_id);
194 
195 	for (i = 0; i < burst_size; i++) {
196 		ev[i].op = RTE_EVENT_OP_NEW;
197 		ev[i].queue_id = p->queue_id;
198 		ev[i].sched_type = t->opt->sched_type_list[0];
199 		ev[i].priority = RTE_EVENT_DEV_PRIORITY_NORMAL;
200 		ev[i].event_type =  RTE_EVENT_TYPE_CPU;
201 		ev[i].sub_event_type = 0; /* stage 0 */
202 	}
203 
204 	while (count < nb_pkts && t->done == false) {
205 		if (rte_mempool_get_bulk(pool, (void **)m, burst_size) < 0)
206 			continue;
207 		timestamp = rte_get_timer_cycles();
208 		for (i = 0; i < burst_size; i++) {
209 			ev[i].flow_id = flow_counter++ % nb_flows;
210 			ev[i].event_ptr = m[i];
211 			m[i]->timestamp = timestamp;
212 		}
213 		enq = rte_event_enqueue_burst(dev_id, port, ev, burst_size);
214 		while (enq < burst_size) {
215 			enq += rte_event_enqueue_burst(dev_id, port,
216 							ev + enq,
217 							burst_size - enq);
218 			if (t->done)
219 				break;
220 			rte_pause();
221 			timestamp = rte_get_timer_cycles();
222 			for (i = enq; i < burst_size; i++)
223 				m[i]->timestamp = timestamp;
224 		}
225 		count += burst_size;
226 	}
227 	return 0;
228 }
229 
230 static inline int
231 perf_event_timer_producer(void *arg)
232 {
233 	int i;
234 	struct prod_data *p  = arg;
235 	struct test_perf *t = p->t;
236 	struct evt_options *opt = t->opt;
237 	uint32_t flow_counter = 0;
238 	uint64_t count = 0;
239 	uint64_t arm_latency = 0;
240 	const uint8_t nb_timer_adptrs = opt->nb_timer_adptrs;
241 	const uint32_t nb_flows = t->nb_flows;
242 	const uint64_t nb_timers = opt->nb_timers;
243 	struct rte_mempool *pool = t->pool;
244 	struct perf_elt *m[BURST_SIZE + 1] = {NULL};
245 	struct rte_event_timer_adapter **adptr = t->timer_adptr;
246 	struct rte_event_timer tim;
247 	uint64_t timeout_ticks = opt->expiry_nsec / opt->timer_tick_nsec;
248 
249 	memset(&tim, 0, sizeof(struct rte_event_timer));
250 	timeout_ticks =
251 		opt->optm_timer_tick_nsec
252 			? ceil((double)(timeout_ticks * opt->timer_tick_nsec) /
253 			       opt->optm_timer_tick_nsec)
254 			: timeout_ticks;
255 	timeout_ticks += timeout_ticks ? 0 : 1;
256 	tim.ev.event_type = RTE_EVENT_TYPE_TIMER;
257 	tim.ev.op = RTE_EVENT_OP_NEW;
258 	tim.ev.sched_type = t->opt->sched_type_list[0];
259 	tim.ev.queue_id = p->queue_id;
260 	tim.ev.priority = RTE_EVENT_DEV_PRIORITY_NORMAL;
261 	tim.state = RTE_EVENT_TIMER_NOT_ARMED;
262 	tim.timeout_ticks = timeout_ticks;
263 
264 	if (opt->verbose_level > 1)
265 		printf("%s(): lcore %d\n", __func__, rte_lcore_id());
266 
267 	while (count < nb_timers && t->done == false) {
268 		if (rte_mempool_get_bulk(pool, (void **)m, BURST_SIZE) < 0)
269 			continue;
270 		for (i = 0; i < BURST_SIZE; i++) {
271 			rte_prefetch0(m[i + 1]);
272 			m[i]->tim = tim;
273 			m[i]->tim.ev.flow_id = flow_counter++ % nb_flows;
274 			m[i]->tim.ev.event_ptr = m[i];
275 			m[i]->timestamp = rte_get_timer_cycles();
276 			while (rte_event_timer_arm_burst(
277 			       adptr[flow_counter % nb_timer_adptrs],
278 			       (struct rte_event_timer **)&m[i], 1) != 1) {
279 				if (t->done)
280 					break;
281 				m[i]->timestamp = rte_get_timer_cycles();
282 			}
283 			arm_latency += rte_get_timer_cycles() - m[i]->timestamp;
284 		}
285 		count += BURST_SIZE;
286 	}
287 	fflush(stdout);
288 	rte_delay_ms(1000);
289 	printf("%s(): lcore %d Average event timer arm latency = %.3f us\n",
290 			__func__, rte_lcore_id(),
291 			count ? (float)(arm_latency / count) /
292 			(rte_get_timer_hz() / 1000000) : 0);
293 	return 0;
294 }
295 
296 static inline int
297 perf_event_timer_producer_burst(void *arg)
298 {
299 	int i;
300 	struct prod_data *p  = arg;
301 	struct test_perf *t = p->t;
302 	struct evt_options *opt = t->opt;
303 	uint32_t flow_counter = 0;
304 	uint64_t count = 0;
305 	uint64_t arm_latency = 0;
306 	const uint8_t nb_timer_adptrs = opt->nb_timer_adptrs;
307 	const uint32_t nb_flows = t->nb_flows;
308 	const uint64_t nb_timers = opt->nb_timers;
309 	struct rte_mempool *pool = t->pool;
310 	struct perf_elt *m[BURST_SIZE + 1] = {NULL};
311 	struct rte_event_timer_adapter **adptr = t->timer_adptr;
312 	struct rte_event_timer tim;
313 	uint64_t timeout_ticks = opt->expiry_nsec / opt->timer_tick_nsec;
314 
315 	memset(&tim, 0, sizeof(struct rte_event_timer));
316 	timeout_ticks =
317 		opt->optm_timer_tick_nsec
318 			? ceil((double)(timeout_ticks * opt->timer_tick_nsec) /
319 			       opt->optm_timer_tick_nsec)
320 			: timeout_ticks;
321 	timeout_ticks += timeout_ticks ? 0 : 1;
322 	tim.ev.event_type = RTE_EVENT_TYPE_TIMER;
323 	tim.ev.op = RTE_EVENT_OP_NEW;
324 	tim.ev.sched_type = t->opt->sched_type_list[0];
325 	tim.ev.queue_id = p->queue_id;
326 	tim.ev.priority = RTE_EVENT_DEV_PRIORITY_NORMAL;
327 	tim.state = RTE_EVENT_TIMER_NOT_ARMED;
328 	tim.timeout_ticks = timeout_ticks;
329 
330 	if (opt->verbose_level > 1)
331 		printf("%s(): lcore %d\n", __func__, rte_lcore_id());
332 
333 	while (count < nb_timers && t->done == false) {
334 		if (rte_mempool_get_bulk(pool, (void **)m, BURST_SIZE) < 0)
335 			continue;
336 		for (i = 0; i < BURST_SIZE; i++) {
337 			rte_prefetch0(m[i + 1]);
338 			m[i]->tim = tim;
339 			m[i]->tim.ev.flow_id = flow_counter++ % nb_flows;
340 			m[i]->tim.ev.event_ptr = m[i];
341 			m[i]->timestamp = rte_get_timer_cycles();
342 		}
343 		rte_event_timer_arm_tmo_tick_burst(
344 				adptr[flow_counter % nb_timer_adptrs],
345 				(struct rte_event_timer **)m,
346 				tim.timeout_ticks,
347 				BURST_SIZE);
348 		arm_latency += rte_get_timer_cycles() - m[i - 1]->timestamp;
349 		count += BURST_SIZE;
350 	}
351 	fflush(stdout);
352 	rte_delay_ms(1000);
353 	printf("%s(): lcore %d Average event timer arm latency = %.3f us\n",
354 			__func__, rte_lcore_id(),
355 			count ? (float)(arm_latency / count) /
356 			(rte_get_timer_hz() / 1000000) : 0);
357 	return 0;
358 }
359 
360 static inline void
361 crypto_adapter_enq_op_new(struct prod_data *p)
362 {
363 	struct test_perf *t = p->t;
364 	const uint32_t nb_flows = t->nb_flows;
365 	const uint64_t nb_pkts = t->nb_pkts;
366 	struct rte_mempool *pool = t->pool;
367 	struct evt_options *opt = t->opt;
368 	uint16_t qp_id = p->ca.cdev_qp_id;
369 	uint8_t cdev_id = p->ca.cdev_id;
370 	uint64_t alloc_failures = 0;
371 	uint32_t flow_counter = 0;
372 	struct rte_crypto_op *op;
373 	uint16_t len, offset;
374 	struct rte_mbuf *m;
375 	uint64_t count = 0;
376 
377 	if (opt->verbose_level > 1)
378 		printf("%s(): lcore %d queue %d cdev_id %u cdev_qp_id %u\n",
379 		       __func__, rte_lcore_id(), p->queue_id, p->ca.cdev_id,
380 		       p->ca.cdev_qp_id);
381 
382 	offset = sizeof(struct perf_elt);
383 	len = RTE_MAX(RTE_ETHER_MIN_LEN + offset, opt->mbuf_sz);
384 
385 	while (count < nb_pkts && t->done == false) {
386 		if (opt->crypto_op_type == RTE_CRYPTO_OP_TYPE_SYMMETRIC) {
387 			struct rte_crypto_sym_op *sym_op;
388 
389 			op = rte_crypto_op_alloc(t->ca_op_pool,
390 					 RTE_CRYPTO_OP_TYPE_SYMMETRIC);
391 			if (unlikely(op == NULL)) {
392 				alloc_failures++;
393 				continue;
394 			}
395 
396 			m = rte_pktmbuf_alloc(pool);
397 			if (unlikely(m == NULL)) {
398 				alloc_failures++;
399 				rte_crypto_op_free(op);
400 				continue;
401 			}
402 
403 			rte_pktmbuf_append(m, len);
404 			sym_op = op->sym;
405 			sym_op->m_src = m;
406 			sym_op->cipher.data.offset = offset;
407 			sym_op->cipher.data.length = len - offset;
408 			rte_crypto_op_attach_sym_session(
409 				op, p->ca.crypto_sess[flow_counter++ % nb_flows]);
410 		} else {
411 			struct rte_crypto_asym_op *asym_op;
412 			uint8_t *result;
413 
414 			if (rte_mempool_get(pool, (void **)&result)) {
415 				alloc_failures++;
416 				continue;
417 			}
418 
419 			op = rte_crypto_op_alloc(t->ca_op_pool,
420 					 RTE_CRYPTO_OP_TYPE_ASYMMETRIC);
421 			if (unlikely(op == NULL)) {
422 				alloc_failures++;
423 				rte_mempool_put(pool, result);
424 				continue;
425 			}
426 
427 			asym_op = op->asym;
428 			asym_op->modex.base.data = modex_test_case.base.data;
429 			asym_op->modex.base.length = modex_test_case.base.len;
430 			asym_op->modex.result.data = result;
431 			asym_op->modex.result.length = modex_test_case.result_len;
432 			rte_crypto_op_attach_asym_session(
433 				op, p->ca.crypto_sess[flow_counter++ % nb_flows]);
434 		}
435 		while (rte_cryptodev_enqueue_burst(cdev_id, qp_id, &op, 1) != 1 &&
436 				t->done == false)
437 			rte_pause();
438 
439 		count++;
440 	}
441 
442 	if (opt->verbose_level > 1 && alloc_failures)
443 		printf("%s(): lcore %d allocation failures: %"PRIu64"\n",
444 		       __func__, rte_lcore_id(), alloc_failures);
445 }
446 
447 static inline void
448 crypto_adapter_enq_op_fwd(struct prod_data *p)
449 {
450 	const uint8_t dev_id = p->dev_id;
451 	const uint8_t port = p->port_id;
452 	struct test_perf *t = p->t;
453 	const uint32_t nb_flows = t->nb_flows;
454 	const uint64_t nb_pkts = t->nb_pkts;
455 	struct rte_mempool *pool = t->pool;
456 	struct evt_options *opt = t->opt;
457 	uint64_t alloc_failures = 0;
458 	uint32_t flow_counter = 0;
459 	struct rte_crypto_op *op;
460 	uint16_t len, offset;
461 	struct rte_event ev;
462 	struct rte_mbuf *m;
463 	uint64_t count = 0;
464 
465 	if (opt->verbose_level > 1)
466 		printf("%s(): lcore %d port %d queue %d cdev_id %u cdev_qp_id %u\n",
467 		       __func__, rte_lcore_id(), port, p->queue_id,
468 		       p->ca.cdev_id, p->ca.cdev_qp_id);
469 
470 	ev.event = 0;
471 	ev.op = RTE_EVENT_OP_NEW;
472 	ev.queue_id = p->queue_id;
473 	ev.sched_type = RTE_SCHED_TYPE_ATOMIC;
474 	ev.event_type = RTE_EVENT_TYPE_CPU;
475 
476 	offset = sizeof(struct perf_elt);
477 	len = RTE_MAX(RTE_ETHER_MIN_LEN + offset, opt->mbuf_sz);
478 
479 	while (count < nb_pkts && t->done == false) {
480 		if (opt->crypto_op_type == RTE_CRYPTO_OP_TYPE_SYMMETRIC) {
481 			struct rte_crypto_sym_op *sym_op;
482 
483 			op = rte_crypto_op_alloc(t->ca_op_pool,
484 					 RTE_CRYPTO_OP_TYPE_SYMMETRIC);
485 			if (unlikely(op == NULL)) {
486 				alloc_failures++;
487 				continue;
488 			}
489 
490 			m = rte_pktmbuf_alloc(pool);
491 			if (unlikely(m == NULL)) {
492 				alloc_failures++;
493 				rte_crypto_op_free(op);
494 				continue;
495 			}
496 
497 			rte_pktmbuf_append(m, len);
498 			sym_op = op->sym;
499 			sym_op->m_src = m;
500 			sym_op->cipher.data.offset = offset;
501 			sym_op->cipher.data.length = len - offset;
502 			rte_crypto_op_attach_sym_session(
503 				op, p->ca.crypto_sess[flow_counter++ % nb_flows]);
504 		} else {
505 			struct rte_crypto_asym_op *asym_op;
506 			uint8_t *result;
507 
508 			if (rte_mempool_get(pool, (void **)&result)) {
509 				alloc_failures++;
510 				continue;
511 			}
512 
513 			op = rte_crypto_op_alloc(t->ca_op_pool,
514 					 RTE_CRYPTO_OP_TYPE_ASYMMETRIC);
515 			if (unlikely(op == NULL)) {
516 				alloc_failures++;
517 				rte_mempool_put(pool, result);
518 				continue;
519 			}
520 
521 			asym_op = op->asym;
522 			asym_op->modex.base.data = modex_test_case.base.data;
523 			asym_op->modex.base.length = modex_test_case.base.len;
524 			asym_op->modex.result.data = result;
525 			asym_op->modex.result.length = modex_test_case.result_len;
526 			rte_crypto_op_attach_asym_session(
527 				op, p->ca.crypto_sess[flow_counter++ % nb_flows]);
528 		}
529 		ev.event_ptr = op;
530 
531 		while (rte_event_crypto_adapter_enqueue(dev_id, port, &ev, 1) != 1 &&
532 		       t->done == false)
533 			rte_pause();
534 
535 		count++;
536 	}
537 
538 	if (opt->verbose_level > 1 && alloc_failures)
539 		printf("%s(): lcore %d allocation failures: %"PRIu64"\n",
540 		       __func__, rte_lcore_id(), alloc_failures);
541 }
542 
543 static inline int
544 perf_event_crypto_producer(void *arg)
545 {
546 	struct prod_data *p = arg;
547 	struct evt_options *opt = p->t->opt;
548 
549 	if (opt->crypto_adptr_mode == RTE_EVENT_CRYPTO_ADAPTER_OP_NEW)
550 		crypto_adapter_enq_op_new(p);
551 	else
552 		crypto_adapter_enq_op_fwd(p);
553 
554 	return 0;
555 }
556 
557 static int
558 perf_producer_wrapper(void *arg)
559 {
560 	struct prod_data *p  = arg;
561 	struct test_perf *t = p->t;
562 	bool burst = evt_has_burst_mode(p->dev_id);
563 
564 	/* In case of synthetic producer, launch perf_producer or
565 	 * perf_producer_burst depending on producer enqueue burst size
566 	 */
567 	if (t->opt->prod_type == EVT_PROD_TYPE_SYNT &&
568 			t->opt->prod_enq_burst_sz == 1)
569 		return perf_producer(arg);
570 	else if (t->opt->prod_type == EVT_PROD_TYPE_SYNT &&
571 			t->opt->prod_enq_burst_sz > 1) {
572 		if (!burst)
573 			evt_err("This event device does not support burst mode");
574 		else
575 			return perf_producer_burst(arg);
576 	}
577 	else if (t->opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR &&
578 			!t->opt->timdev_use_burst)
579 		return perf_event_timer_producer(arg);
580 	else if (t->opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR &&
581 			t->opt->timdev_use_burst)
582 		return perf_event_timer_producer_burst(arg);
583 	else if (t->opt->prod_type == EVT_PROD_TYPE_EVENT_CRYPTO_ADPTR)
584 		return perf_event_crypto_producer(arg);
585 	return 0;
586 }
587 
588 static inline uint64_t
589 processed_pkts(struct test_perf *t)
590 {
591 	uint8_t i;
592 	uint64_t total = 0;
593 
594 	for (i = 0; i < t->nb_workers; i++)
595 		total += t->worker[i].processed_pkts;
596 
597 	return total;
598 }
599 
600 static inline uint64_t
601 total_latency(struct test_perf *t)
602 {
603 	uint8_t i;
604 	uint64_t total = 0;
605 
606 	for (i = 0; i < t->nb_workers; i++)
607 		total += t->worker[i].latency;
608 
609 	return total;
610 }
611 
612 
613 int
614 perf_launch_lcores(struct evt_test *test, struct evt_options *opt,
615 		int (*worker)(void *))
616 {
617 	int ret, lcore_id;
618 	struct test_perf *t = evt_test_priv(test);
619 
620 	int port_idx = 0;
621 	/* launch workers */
622 	RTE_LCORE_FOREACH_WORKER(lcore_id) {
623 		if (!(opt->wlcores[lcore_id]))
624 			continue;
625 
626 		ret = rte_eal_remote_launch(worker,
627 				 &t->worker[port_idx], lcore_id);
628 		if (ret) {
629 			evt_err("failed to launch worker %d", lcore_id);
630 			return ret;
631 		}
632 		port_idx++;
633 	}
634 
635 	/* launch producers */
636 	RTE_LCORE_FOREACH_WORKER(lcore_id) {
637 		if (!(opt->plcores[lcore_id]))
638 			continue;
639 
640 		ret = rte_eal_remote_launch(perf_producer_wrapper,
641 				&t->prod[port_idx], lcore_id);
642 		if (ret) {
643 			evt_err("failed to launch perf_producer %d", lcore_id);
644 			return ret;
645 		}
646 		port_idx++;
647 	}
648 
649 	const uint64_t total_pkts = t->outstand_pkts;
650 
651 	uint64_t dead_lock_cycles = rte_get_timer_cycles();
652 	int64_t dead_lock_remaining  =  total_pkts;
653 	const uint64_t dead_lock_sample = rte_get_timer_hz() * 5;
654 
655 	uint64_t perf_cycles = rte_get_timer_cycles();
656 	int64_t perf_remaining  = total_pkts;
657 	const uint64_t perf_sample = rte_get_timer_hz();
658 
659 	static float total_mpps;
660 	static uint64_t samples;
661 
662 	const uint64_t freq_mhz = rte_get_timer_hz() / 1000000;
663 	int64_t remaining = t->outstand_pkts - processed_pkts(t);
664 
665 	while (t->done == false) {
666 		const uint64_t new_cycles = rte_get_timer_cycles();
667 
668 		if ((new_cycles - perf_cycles) > perf_sample) {
669 			const uint64_t latency = total_latency(t);
670 			const uint64_t pkts = processed_pkts(t);
671 
672 			remaining = t->outstand_pkts - pkts;
673 			float mpps = (float)(perf_remaining-remaining)/1000000;
674 
675 			perf_remaining = remaining;
676 			perf_cycles = new_cycles;
677 			total_mpps += mpps;
678 			++samples;
679 			if (opt->fwd_latency && pkts > 0) {
680 				printf(CLGRN"\r%.3f mpps avg %.3f mpps [avg fwd latency %.3f us] "CLNRM,
681 					mpps, total_mpps/samples,
682 					(float)(latency/pkts)/freq_mhz);
683 			} else {
684 				printf(CLGRN"\r%.3f mpps avg %.3f mpps"CLNRM,
685 					mpps, total_mpps/samples);
686 			}
687 			fflush(stdout);
688 
689 			if (remaining <= 0) {
690 				t->result = EVT_TEST_SUCCESS;
691 				if (opt->prod_type == EVT_PROD_TYPE_SYNT ||
692 				    opt->prod_type ==
693 					    EVT_PROD_TYPE_EVENT_TIMER_ADPTR ||
694 				    opt->prod_type ==
695 					    EVT_PROD_TYPE_EVENT_CRYPTO_ADPTR) {
696 					t->done = true;
697 					break;
698 				}
699 			}
700 		}
701 
702 		if (new_cycles - dead_lock_cycles > dead_lock_sample &&
703 		    (opt->prod_type == EVT_PROD_TYPE_SYNT ||
704 		     opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR ||
705 		     opt->prod_type == EVT_PROD_TYPE_EVENT_CRYPTO_ADPTR)) {
706 			remaining = t->outstand_pkts - processed_pkts(t);
707 			if (dead_lock_remaining == remaining) {
708 				rte_event_dev_dump(opt->dev_id, stdout);
709 				evt_err("No schedules for seconds, deadlock");
710 				t->done = true;
711 				break;
712 			}
713 			dead_lock_remaining = remaining;
714 			dead_lock_cycles = new_cycles;
715 		}
716 	}
717 	printf("\n");
718 	return 0;
719 }
720 
721 static int
722 perf_event_rx_adapter_setup(struct evt_options *opt, uint8_t stride,
723 		struct rte_event_port_conf prod_conf)
724 {
725 	int ret = 0;
726 	uint16_t prod;
727 	struct rte_event_eth_rx_adapter_queue_conf queue_conf;
728 
729 	memset(&queue_conf, 0,
730 			sizeof(struct rte_event_eth_rx_adapter_queue_conf));
731 	queue_conf.ev.sched_type = opt->sched_type_list[0];
732 	RTE_ETH_FOREACH_DEV(prod) {
733 		uint32_t cap;
734 
735 		ret = rte_event_eth_rx_adapter_caps_get(opt->dev_id,
736 				prod, &cap);
737 		if (ret) {
738 			evt_err("failed to get event rx adapter[%d]"
739 					" capabilities",
740 					opt->dev_id);
741 			return ret;
742 		}
743 		queue_conf.ev.queue_id = prod * stride;
744 		ret = rte_event_eth_rx_adapter_create(prod, opt->dev_id,
745 				&prod_conf);
746 		if (ret) {
747 			evt_err("failed to create rx adapter[%d]", prod);
748 			return ret;
749 		}
750 		ret = rte_event_eth_rx_adapter_queue_add(prod, prod, -1,
751 				&queue_conf);
752 		if (ret) {
753 			evt_err("failed to add rx queues to adapter[%d]", prod);
754 			return ret;
755 		}
756 
757 		if (!(cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT)) {
758 			uint32_t service_id;
759 
760 			rte_event_eth_rx_adapter_service_id_get(prod,
761 					&service_id);
762 			ret = evt_service_setup(service_id);
763 			if (ret) {
764 				evt_err("Failed to setup service core"
765 						" for Rx adapter\n");
766 				return ret;
767 			}
768 		}
769 	}
770 
771 	return ret;
772 }
773 
774 static int
775 perf_event_timer_adapter_setup(struct test_perf *t)
776 {
777 	int i;
778 	int ret;
779 	struct rte_event_timer_adapter_info adapter_info;
780 	struct rte_event_timer_adapter *wl;
781 	uint8_t nb_producers = evt_nr_active_lcores(t->opt->plcores);
782 	uint8_t flags = RTE_EVENT_TIMER_ADAPTER_F_ADJUST_RES;
783 
784 	if (nb_producers == 1)
785 		flags |= RTE_EVENT_TIMER_ADAPTER_F_SP_PUT;
786 
787 	for (i = 0; i < t->opt->nb_timer_adptrs; i++) {
788 		struct rte_event_timer_adapter_conf config = {
789 			.event_dev_id = t->opt->dev_id,
790 			.timer_adapter_id = i,
791 			.timer_tick_ns = t->opt->timer_tick_nsec,
792 			.max_tmo_ns = t->opt->max_tmo_nsec,
793 			.nb_timers = t->opt->pool_sz,
794 			.flags = flags,
795 		};
796 
797 		wl = rte_event_timer_adapter_create(&config);
798 		if (wl == NULL) {
799 			evt_err("failed to create event timer ring %d", i);
800 			return rte_errno;
801 		}
802 
803 		memset(&adapter_info, 0,
804 				sizeof(struct rte_event_timer_adapter_info));
805 		rte_event_timer_adapter_get_info(wl, &adapter_info);
806 		t->opt->optm_timer_tick_nsec = adapter_info.min_resolution_ns;
807 
808 		if (!(adapter_info.caps &
809 				RTE_EVENT_TIMER_ADAPTER_CAP_INTERNAL_PORT)) {
810 			uint32_t service_id = -1U;
811 
812 			rte_event_timer_adapter_service_id_get(wl,
813 					&service_id);
814 			ret = evt_service_setup(service_id);
815 			if (ret) {
816 				evt_err("Failed to setup service core"
817 						" for timer adapter\n");
818 				return ret;
819 			}
820 			rte_service_runstate_set(service_id, 1);
821 		}
822 		t->timer_adptr[i] = wl;
823 	}
824 	return 0;
825 }
826 
827 static int
828 perf_event_crypto_adapter_setup(struct test_perf *t, struct prod_data *p)
829 {
830 	struct evt_options *opt = t->opt;
831 	uint32_t cap;
832 	int ret;
833 
834 	ret = rte_event_crypto_adapter_caps_get(p->dev_id, p->ca.cdev_id, &cap);
835 	if (ret) {
836 		evt_err("Failed to get crypto adapter capabilities");
837 		return ret;
838 	}
839 
840 	if (((opt->crypto_adptr_mode == RTE_EVENT_CRYPTO_ADAPTER_OP_NEW) &&
841 	     !(cap & RTE_EVENT_CRYPTO_ADAPTER_CAP_INTERNAL_PORT_OP_NEW)) ||
842 	    ((opt->crypto_adptr_mode == RTE_EVENT_CRYPTO_ADAPTER_OP_FORWARD) &&
843 	     !(cap & RTE_EVENT_CRYPTO_ADAPTER_CAP_INTERNAL_PORT_OP_FWD))) {
844 		evt_err("crypto adapter %s mode unsupported\n",
845 			opt->crypto_adptr_mode ? "OP_FORWARD" : "OP_NEW");
846 		return -ENOTSUP;
847 	} else if (!(cap & RTE_EVENT_CRYPTO_ADAPTER_CAP_SESSION_PRIVATE_DATA)) {
848 		evt_err("Storing crypto session not supported");
849 		return -ENOTSUP;
850 	}
851 
852 	if (cap & RTE_EVENT_CRYPTO_ADAPTER_CAP_INTERNAL_PORT_QP_EV_BIND) {
853 		struct rte_event_crypto_adapter_queue_conf conf;
854 
855 		memset(&conf, 0, sizeof(conf));
856 		conf.ev.sched_type = RTE_SCHED_TYPE_ATOMIC;
857 		conf.ev.queue_id = p->queue_id;
858 		ret = rte_event_crypto_adapter_queue_pair_add(
859 			TEST_PERF_CA_ID, p->ca.cdev_id, p->ca.cdev_qp_id, &conf);
860 	} else {
861 		ret = rte_event_crypto_adapter_queue_pair_add(
862 			TEST_PERF_CA_ID, p->ca.cdev_id, p->ca.cdev_qp_id, NULL);
863 	}
864 
865 	return ret;
866 }
867 
868 static void *
869 cryptodev_sym_sess_create(struct prod_data *p, struct test_perf *t)
870 {
871 	struct rte_crypto_sym_xform cipher_xform;
872 	void *sess;
873 
874 	cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
875 	cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_NULL;
876 	cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
877 	cipher_xform.next = NULL;
878 
879 	sess = rte_cryptodev_sym_session_create(p->ca.cdev_id, &cipher_xform,
880 			t->ca_sess_pool);
881 	if (sess == NULL) {
882 		evt_err("Failed to create sym session");
883 		return NULL;
884 	}
885 
886 	return sess;
887 }
888 
889 static void *
890 cryptodev_asym_sess_create(struct prod_data *p, struct test_perf *t)
891 {
892 	const struct rte_cryptodev_asymmetric_xform_capability *capability;
893 	struct rte_cryptodev_asym_capability_idx cap_idx;
894 	struct rte_crypto_asym_xform xform;
895 	void *sess;
896 
897 	xform.next = NULL;
898 	xform.xform_type = RTE_CRYPTO_ASYM_XFORM_MODEX;
899 	cap_idx.type = xform.xform_type;
900 	capability = rte_cryptodev_asym_capability_get(p->ca.cdev_id, &cap_idx);
901 	if (capability == NULL) {
902 		evt_err("Device doesn't support MODEX. Test Skipped\n");
903 		return NULL;
904 	}
905 
906 	xform.modex.modulus.data = modex_test_case.modulus.data;
907 	xform.modex.modulus.length = modex_test_case.modulus.len;
908 	xform.modex.exponent.data = modex_test_case.exponent.data;
909 	xform.modex.exponent.length = modex_test_case.exponent.len;
910 
911 	if (rte_cryptodev_asym_session_create(p->ca.cdev_id, &xform,
912 			t->ca_asym_sess_pool, &sess)) {
913 		evt_err("Failed to create asym session");
914 		return NULL;
915 	}
916 
917 	return sess;
918 }
919 
920 int
921 perf_event_dev_port_setup(struct evt_test *test, struct evt_options *opt,
922 				uint8_t stride, uint8_t nb_queues,
923 				const struct rte_event_port_conf *port_conf)
924 {
925 	struct test_perf *t = evt_test_priv(test);
926 	uint16_t port, prod;
927 	int ret = -1;
928 
929 	/* setup one port per worker, linking to all queues */
930 	for (port = 0; port < evt_nr_active_lcores(opt->wlcores);
931 				port++) {
932 		struct worker_data *w = &t->worker[port];
933 
934 		w->dev_id = opt->dev_id;
935 		w->port_id = port;
936 		w->t = t;
937 		w->processed_pkts = 0;
938 		w->latency = 0;
939 
940 		struct rte_event_port_conf conf = *port_conf;
941 		conf.event_port_cfg |= RTE_EVENT_PORT_CFG_HINT_WORKER;
942 
943 		ret = rte_event_port_setup(opt->dev_id, port, &conf);
944 		if (ret) {
945 			evt_err("failed to setup port %d", port);
946 			return ret;
947 		}
948 
949 		ret = rte_event_port_link(opt->dev_id, port, NULL, NULL, 0);
950 		if (ret != nb_queues) {
951 			evt_err("failed to link all queues to port %d", port);
952 			return -EINVAL;
953 		}
954 	}
955 
956 	/* port for producers, no links */
957 	if (opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR) {
958 		for ( ; port < perf_nb_event_ports(opt); port++) {
959 			struct prod_data *p = &t->prod[port];
960 			p->t = t;
961 		}
962 
963 		struct rte_event_port_conf conf = *port_conf;
964 		conf.event_port_cfg |= RTE_EVENT_PORT_CFG_HINT_PRODUCER;
965 
966 		ret = perf_event_rx_adapter_setup(opt, stride, conf);
967 		if (ret)
968 			return ret;
969 	} else if (opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) {
970 		prod = 0;
971 		for ( ; port < perf_nb_event_ports(opt); port++) {
972 			struct prod_data *p = &t->prod[port];
973 			p->queue_id = prod * stride;
974 			p->t = t;
975 			prod++;
976 		}
977 
978 		ret = perf_event_timer_adapter_setup(t);
979 		if (ret)
980 			return ret;
981 	} else if (opt->prod_type == EVT_PROD_TYPE_EVENT_CRYPTO_ADPTR) {
982 		struct rte_event_port_conf conf = *port_conf;
983 		uint8_t cdev_id = 0;
984 		uint16_t qp_id = 0;
985 
986 		ret = rte_event_crypto_adapter_create(TEST_PERF_CA_ID,
987 						      opt->dev_id, &conf, 0);
988 		if (ret) {
989 			evt_err("Failed to create crypto adapter");
990 			return ret;
991 		}
992 
993 		prod = 0;
994 		for (; port < perf_nb_event_ports(opt); port++) {
995 			union rte_event_crypto_metadata m_data;
996 			struct prod_data *p = &t->prod[port];
997 			uint32_t flow_id;
998 
999 			if (qp_id == rte_cryptodev_queue_pair_count(cdev_id)) {
1000 				cdev_id++;
1001 				qp_id = 0;
1002 			}
1003 
1004 			p->dev_id = opt->dev_id;
1005 			p->port_id = port;
1006 			p->queue_id = prod * stride;
1007 			p->ca.cdev_id = cdev_id;
1008 			p->ca.cdev_qp_id = qp_id;
1009 			p->ca.crypto_sess = rte_zmalloc_socket(
1010 				NULL, sizeof(void *) * t->nb_flows,
1011 				RTE_CACHE_LINE_SIZE, opt->socket_id);
1012 			p->t = t;
1013 
1014 			ret = perf_event_crypto_adapter_setup(t, p);
1015 			if (ret)
1016 				return ret;
1017 
1018 			m_data.request_info.cdev_id = p->ca.cdev_id;
1019 			m_data.request_info.queue_pair_id = p->ca.cdev_qp_id;
1020 			m_data.response_info.sched_type = RTE_SCHED_TYPE_ATOMIC;
1021 			m_data.response_info.queue_id = p->queue_id;
1022 
1023 			for (flow_id = 0; flow_id < t->nb_flows; flow_id++) {
1024 				m_data.response_info.flow_id = flow_id;
1025 				if (opt->crypto_op_type ==
1026 						RTE_CRYPTO_OP_TYPE_SYMMETRIC) {
1027 					void *sess;
1028 
1029 					sess = cryptodev_sym_sess_create(p, t);
1030 					if (sess == NULL)
1031 						return -ENOMEM;
1032 
1033 					ret = rte_cryptodev_session_event_mdata_set(
1034 						cdev_id,
1035 						sess,
1036 						RTE_CRYPTO_OP_TYPE_SYMMETRIC,
1037 						RTE_CRYPTO_OP_WITH_SESSION,
1038 						&m_data, sizeof(m_data));
1039 					if (ret)
1040 						return ret;
1041 					p->ca.crypto_sess[flow_id] = sess;
1042 				} else {
1043 					void *sess;
1044 
1045 					sess = cryptodev_asym_sess_create(p, t);
1046 					if (sess == NULL)
1047 						return -ENOMEM;
1048 					ret = rte_cryptodev_session_event_mdata_set(
1049 						cdev_id,
1050 						sess,
1051 						RTE_CRYPTO_OP_TYPE_ASYMMETRIC,
1052 						RTE_CRYPTO_OP_WITH_SESSION,
1053 						&m_data, sizeof(m_data));
1054 					if (ret)
1055 						return ret;
1056 					p->ca.crypto_sess[flow_id] = sess;
1057 				}
1058 			}
1059 
1060 			conf.event_port_cfg |=
1061 				RTE_EVENT_PORT_CFG_HINT_PRODUCER |
1062 				RTE_EVENT_PORT_CFG_HINT_CONSUMER;
1063 
1064 			ret = rte_event_port_setup(opt->dev_id, port, &conf);
1065 			if (ret) {
1066 				evt_err("failed to setup port %d", port);
1067 				return ret;
1068 			}
1069 
1070 			qp_id++;
1071 			prod++;
1072 		}
1073 	} else {
1074 		prod = 0;
1075 		for ( ; port < perf_nb_event_ports(opt); port++) {
1076 			struct prod_data *p = &t->prod[port];
1077 
1078 			p->dev_id = opt->dev_id;
1079 			p->port_id = port;
1080 			p->queue_id = prod * stride;
1081 			p->t = t;
1082 
1083 			struct rte_event_port_conf conf = *port_conf;
1084 			conf.event_port_cfg |=
1085 				RTE_EVENT_PORT_CFG_HINT_PRODUCER |
1086 				RTE_EVENT_PORT_CFG_HINT_CONSUMER;
1087 
1088 			ret = rte_event_port_setup(opt->dev_id, port, &conf);
1089 			if (ret) {
1090 				evt_err("failed to setup port %d", port);
1091 				return ret;
1092 			}
1093 			prod++;
1094 		}
1095 	}
1096 
1097 	return ret;
1098 }
1099 
1100 int
1101 perf_opt_check(struct evt_options *opt, uint64_t nb_queues)
1102 {
1103 	unsigned int lcores;
1104 
1105 	/* N producer + N worker + main when producer cores are used
1106 	 * Else N worker + main when Rx adapter is used
1107 	 */
1108 	lcores = opt->prod_type == EVT_PROD_TYPE_SYNT ? 3 : 2;
1109 
1110 	if (rte_lcore_count() < lcores) {
1111 		evt_err("test need minimum %d lcores", lcores);
1112 		return -1;
1113 	}
1114 
1115 	/* Validate worker lcores */
1116 	if (evt_lcores_has_overlap(opt->wlcores, rte_get_main_lcore())) {
1117 		evt_err("worker lcores overlaps with main lcore");
1118 		return -1;
1119 	}
1120 	if (evt_lcores_has_overlap_multi(opt->wlcores, opt->plcores)) {
1121 		evt_err("worker lcores overlaps producer lcores");
1122 		return -1;
1123 	}
1124 	if (evt_has_disabled_lcore(opt->wlcores)) {
1125 		evt_err("one or more workers lcores are not enabled");
1126 		return -1;
1127 	}
1128 	if (!evt_has_active_lcore(opt->wlcores)) {
1129 		evt_err("minimum one worker is required");
1130 		return -1;
1131 	}
1132 
1133 	if (opt->prod_type == EVT_PROD_TYPE_SYNT ||
1134 	    opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR ||
1135 	    opt->prod_type == EVT_PROD_TYPE_EVENT_CRYPTO_ADPTR) {
1136 		/* Validate producer lcores */
1137 		if (evt_lcores_has_overlap(opt->plcores,
1138 					rte_get_main_lcore())) {
1139 			evt_err("producer lcores overlaps with main lcore");
1140 			return -1;
1141 		}
1142 		if (evt_has_disabled_lcore(opt->plcores)) {
1143 			evt_err("one or more producer lcores are not enabled");
1144 			return -1;
1145 		}
1146 		if (!evt_has_active_lcore(opt->plcores)) {
1147 			evt_err("minimum one producer is required");
1148 			return -1;
1149 		}
1150 	}
1151 
1152 	if (evt_has_invalid_stage(opt))
1153 		return -1;
1154 
1155 	if (evt_has_invalid_sched_type(opt))
1156 		return -1;
1157 
1158 	if (nb_queues > EVT_MAX_QUEUES) {
1159 		evt_err("number of queues exceeds %d", EVT_MAX_QUEUES);
1160 		return -1;
1161 	}
1162 	if (perf_nb_event_ports(opt) > EVT_MAX_PORTS) {
1163 		evt_err("number of ports exceeds %d", EVT_MAX_PORTS);
1164 		return -1;
1165 	}
1166 
1167 	/* Fixups */
1168 	if ((opt->nb_stages == 1 &&
1169 			opt->prod_type != EVT_PROD_TYPE_EVENT_TIMER_ADPTR) &&
1170 			opt->fwd_latency) {
1171 		evt_info("fwd_latency is valid when nb_stages > 1, disabling");
1172 		opt->fwd_latency = 0;
1173 	}
1174 
1175 	if (opt->fwd_latency && !opt->q_priority) {
1176 		evt_info("enabled queue priority for latency measurement");
1177 		opt->q_priority = 1;
1178 	}
1179 	if (opt->nb_pkts == 0)
1180 		opt->nb_pkts = INT64_MAX/evt_nr_active_lcores(opt->plcores);
1181 
1182 	return 0;
1183 }
1184 
1185 void
1186 perf_opt_dump(struct evt_options *opt, uint8_t nb_queues)
1187 {
1188 	evt_dump("nb_prod_lcores", "%d", evt_nr_active_lcores(opt->plcores));
1189 	evt_dump_producer_lcores(opt);
1190 	evt_dump("nb_worker_lcores", "%d", evt_nr_active_lcores(opt->wlcores));
1191 	evt_dump_worker_lcores(opt);
1192 	evt_dump_nb_stages(opt);
1193 	evt_dump("nb_evdev_ports", "%d", perf_nb_event_ports(opt));
1194 	evt_dump("nb_evdev_queues", "%d", nb_queues);
1195 	evt_dump_queue_priority(opt);
1196 	evt_dump_sched_type_list(opt);
1197 	evt_dump_producer_type(opt);
1198 	evt_dump("prod_enq_burst_sz", "%d", opt->prod_enq_burst_sz);
1199 }
1200 
1201 static void
1202 perf_event_port_flush(uint8_t dev_id __rte_unused, struct rte_event ev,
1203 		      void *args)
1204 {
1205 	rte_mempool_put(args, ev.event_ptr);
1206 }
1207 
1208 void
1209 perf_worker_cleanup(struct rte_mempool *const pool, uint8_t dev_id,
1210 		    uint8_t port_id, struct rte_event events[], uint16_t nb_enq,
1211 		    uint16_t nb_deq)
1212 {
1213 	int i;
1214 
1215 	if (nb_deq) {
1216 		for (i = nb_enq; i < nb_deq; i++)
1217 			rte_mempool_put(pool, events[i].event_ptr);
1218 
1219 		for (i = 0; i < nb_deq; i++)
1220 			events[i].op = RTE_EVENT_OP_RELEASE;
1221 		rte_event_enqueue_burst(dev_id, port_id, events, nb_deq);
1222 	}
1223 	rte_event_port_quiesce(dev_id, port_id, perf_event_port_flush, pool);
1224 }
1225 
1226 void
1227 perf_eventdev_destroy(struct evt_test *test, struct evt_options *opt)
1228 {
1229 	int i;
1230 	struct test_perf *t = evt_test_priv(test);
1231 
1232 	if (opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) {
1233 		for (i = 0; i < opt->nb_timer_adptrs; i++)
1234 			rte_event_timer_adapter_stop(t->timer_adptr[i]);
1235 	}
1236 	rte_event_dev_stop(opt->dev_id);
1237 	rte_event_dev_close(opt->dev_id);
1238 }
1239 
1240 static inline void
1241 perf_elt_init(struct rte_mempool *mp, void *arg __rte_unused,
1242 	    void *obj, unsigned i __rte_unused)
1243 {
1244 	memset(obj, 0, mp->elt_size);
1245 }
1246 
1247 #define NB_RX_DESC			128
1248 #define NB_TX_DESC			512
1249 int
1250 perf_ethdev_setup(struct evt_test *test, struct evt_options *opt)
1251 {
1252 	uint16_t i;
1253 	int ret;
1254 	struct test_perf *t = evt_test_priv(test);
1255 	struct rte_eth_conf port_conf = {
1256 		.rxmode = {
1257 			.mq_mode = RTE_ETH_MQ_RX_RSS,
1258 		},
1259 		.rx_adv_conf = {
1260 			.rss_conf = {
1261 				.rss_key = NULL,
1262 				.rss_hf = RTE_ETH_RSS_IP,
1263 			},
1264 		},
1265 	};
1266 
1267 	if (opt->prod_type != EVT_PROD_TYPE_ETH_RX_ADPTR)
1268 		return 0;
1269 
1270 	if (!rte_eth_dev_count_avail()) {
1271 		evt_err("No ethernet ports found.");
1272 		return -ENODEV;
1273 	}
1274 
1275 	RTE_ETH_FOREACH_DEV(i) {
1276 		struct rte_eth_dev_info dev_info;
1277 		struct rte_eth_conf local_port_conf = port_conf;
1278 
1279 		ret = rte_eth_dev_info_get(i, &dev_info);
1280 		if (ret != 0) {
1281 			evt_err("Error during getting device (port %u) info: %s\n",
1282 					i, strerror(-ret));
1283 			return ret;
1284 		}
1285 
1286 		local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
1287 			dev_info.flow_type_rss_offloads;
1288 		if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
1289 				port_conf.rx_adv_conf.rss_conf.rss_hf) {
1290 			evt_info("Port %u modified RSS hash function based on hardware support,"
1291 				"requested:%#"PRIx64" configured:%#"PRIx64"\n",
1292 				i,
1293 				port_conf.rx_adv_conf.rss_conf.rss_hf,
1294 				local_port_conf.rx_adv_conf.rss_conf.rss_hf);
1295 		}
1296 
1297 		if (rte_eth_dev_configure(i, 1, 1, &local_port_conf) < 0) {
1298 			evt_err("Failed to configure eth port [%d]", i);
1299 			return -EINVAL;
1300 		}
1301 
1302 		if (rte_eth_rx_queue_setup(i, 0, NB_RX_DESC,
1303 				rte_socket_id(), NULL, t->pool) < 0) {
1304 			evt_err("Failed to setup eth port [%d] rx_queue: %d.",
1305 					i, 0);
1306 			return -EINVAL;
1307 		}
1308 
1309 		if (rte_eth_tx_queue_setup(i, 0, NB_TX_DESC,
1310 					rte_socket_id(), NULL) < 0) {
1311 			evt_err("Failed to setup eth port [%d] tx_queue: %d.",
1312 					i, 0);
1313 			return -EINVAL;
1314 		}
1315 
1316 		ret = rte_eth_promiscuous_enable(i);
1317 		if (ret != 0) {
1318 			evt_err("Failed to enable promiscuous mode for eth port [%d]: %s",
1319 				i, rte_strerror(-ret));
1320 			return ret;
1321 		}
1322 	}
1323 
1324 	return 0;
1325 }
1326 
1327 void
1328 perf_ethdev_rx_stop(struct evt_test *test, struct evt_options *opt)
1329 {
1330 	uint16_t i;
1331 	RTE_SET_USED(test);
1332 
1333 	if (opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR) {
1334 		RTE_ETH_FOREACH_DEV(i) {
1335 			rte_event_eth_rx_adapter_stop(i);
1336 			rte_event_eth_rx_adapter_queue_del(i, i, -1);
1337 			rte_eth_dev_rx_queue_stop(i, 0);
1338 		}
1339 	}
1340 }
1341 
1342 void
1343 perf_ethdev_destroy(struct evt_test *test, struct evt_options *opt)
1344 {
1345 	uint16_t i;
1346 	RTE_SET_USED(test);
1347 
1348 	if (opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR) {
1349 		RTE_ETH_FOREACH_DEV(i) {
1350 			rte_event_eth_tx_adapter_stop(i);
1351 			rte_event_eth_tx_adapter_queue_del(i, i, -1);
1352 			rte_eth_dev_tx_queue_stop(i, 0);
1353 			rte_eth_dev_stop(i);
1354 		}
1355 	}
1356 }
1357 
1358 int
1359 perf_cryptodev_setup(struct evt_test *test, struct evt_options *opt)
1360 {
1361 	uint8_t cdev_count, cdev_id, nb_plcores, nb_qps;
1362 	struct test_perf *t = evt_test_priv(test);
1363 	unsigned int max_session_size;
1364 	uint32_t nb_sessions;
1365 	int ret;
1366 
1367 	if (opt->prod_type != EVT_PROD_TYPE_EVENT_CRYPTO_ADPTR)
1368 		return 0;
1369 
1370 	cdev_count = rte_cryptodev_count();
1371 	if (cdev_count == 0) {
1372 		evt_err("No crypto devices available\n");
1373 		return -ENODEV;
1374 	}
1375 
1376 	t->ca_op_pool = rte_crypto_op_pool_create(
1377 		"crypto_op_pool", opt->crypto_op_type, opt->pool_sz,
1378 		128, sizeof(union rte_event_crypto_metadata),
1379 		rte_socket_id());
1380 	if (t->ca_op_pool == NULL) {
1381 		evt_err("Failed to create crypto op pool");
1382 		return -ENOMEM;
1383 	}
1384 
1385 	nb_sessions = evt_nr_active_lcores(opt->plcores) * t->nb_flows;
1386 	t->ca_asym_sess_pool = rte_cryptodev_asym_session_pool_create(
1387 		"ca_asym_sess_pool", nb_sessions, 0,
1388 		sizeof(union rte_event_crypto_metadata), SOCKET_ID_ANY);
1389 	if (t->ca_asym_sess_pool == NULL) {
1390 		evt_err("Failed to create sym session pool");
1391 		ret = -ENOMEM;
1392 		goto err;
1393 	}
1394 
1395 	max_session_size = 0;
1396 	for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) {
1397 		unsigned int session_size;
1398 
1399 		session_size =
1400 			rte_cryptodev_sym_get_private_session_size(cdev_id);
1401 		if (session_size > max_session_size)
1402 			max_session_size = session_size;
1403 	}
1404 
1405 	t->ca_sess_pool = rte_cryptodev_sym_session_pool_create(
1406 		"ca_sess_pool", nb_sessions, max_session_size, 0,
1407 		sizeof(union rte_event_crypto_metadata), SOCKET_ID_ANY);
1408 	if (t->ca_sess_pool == NULL) {
1409 		evt_err("Failed to create sym session pool");
1410 		ret = -ENOMEM;
1411 		goto err;
1412 	}
1413 
1414 	/*
1415 	 * Calculate number of needed queue pairs, based on the amount of
1416 	 * available number of logical cores and crypto devices. For instance,
1417 	 * if there are 4 cores and 2 crypto devices, 2 queue pairs will be set
1418 	 * up per device.
1419 	 */
1420 	nb_plcores = evt_nr_active_lcores(opt->plcores);
1421 	nb_qps = (nb_plcores % cdev_count) ? (nb_plcores / cdev_count) + 1 :
1422 					     nb_plcores / cdev_count;
1423 	for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) {
1424 		struct rte_cryptodev_qp_conf qp_conf;
1425 		struct rte_cryptodev_config conf;
1426 		struct rte_cryptodev_info info;
1427 		int qp_id;
1428 
1429 		rte_cryptodev_info_get(cdev_id, &info);
1430 		if (nb_qps > info.max_nb_queue_pairs) {
1431 			evt_err("Not enough queue pairs per cryptodev (%u)",
1432 				nb_qps);
1433 			ret = -EINVAL;
1434 			goto err;
1435 		}
1436 
1437 		conf.nb_queue_pairs = nb_qps;
1438 		conf.socket_id = SOCKET_ID_ANY;
1439 		conf.ff_disable = RTE_CRYPTODEV_FF_SECURITY;
1440 
1441 		ret = rte_cryptodev_configure(cdev_id, &conf);
1442 		if (ret) {
1443 			evt_err("Failed to configure cryptodev (%u)", cdev_id);
1444 			goto err;
1445 		}
1446 
1447 		qp_conf.nb_descriptors = NB_CRYPTODEV_DESCRIPTORS;
1448 		qp_conf.mp_session = t->ca_sess_pool;
1449 
1450 		for (qp_id = 0; qp_id < conf.nb_queue_pairs; qp_id++) {
1451 			ret = rte_cryptodev_queue_pair_setup(
1452 				cdev_id, qp_id, &qp_conf,
1453 				rte_cryptodev_socket_id(cdev_id));
1454 			if (ret) {
1455 				evt_err("Failed to setup queue pairs on cryptodev %u\n",
1456 					cdev_id);
1457 				goto err;
1458 			}
1459 		}
1460 	}
1461 
1462 	return 0;
1463 err:
1464 	for (cdev_id = 0; cdev_id < cdev_count; cdev_id++)
1465 		rte_cryptodev_close(cdev_id);
1466 
1467 	rte_mempool_free(t->ca_op_pool);
1468 	rte_mempool_free(t->ca_sess_pool);
1469 	rte_mempool_free(t->ca_asym_sess_pool);
1470 
1471 	return ret;
1472 }
1473 
1474 void
1475 perf_cryptodev_destroy(struct evt_test *test, struct evt_options *opt)
1476 {
1477 	uint8_t cdev_id, cdev_count = rte_cryptodev_count();
1478 	struct test_perf *t = evt_test_priv(test);
1479 	uint16_t port;
1480 
1481 	if (opt->prod_type != EVT_PROD_TYPE_EVENT_CRYPTO_ADPTR)
1482 		return;
1483 
1484 	for (port = t->nb_workers; port < perf_nb_event_ports(opt); port++) {
1485 		void *sess;
1486 		struct prod_data *p = &t->prod[port];
1487 		uint32_t flow_id;
1488 		uint8_t cdev_id;
1489 
1490 		for (flow_id = 0; flow_id < t->nb_flows; flow_id++) {
1491 			sess = p->ca.crypto_sess[flow_id];
1492 			cdev_id = p->ca.cdev_id;
1493 			rte_cryptodev_sym_session_free(cdev_id, sess);
1494 		}
1495 
1496 		rte_event_crypto_adapter_queue_pair_del(
1497 			TEST_PERF_CA_ID, p->ca.cdev_id, p->ca.cdev_qp_id);
1498 	}
1499 
1500 	rte_event_crypto_adapter_free(TEST_PERF_CA_ID);
1501 
1502 	for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) {
1503 		rte_cryptodev_stop(cdev_id);
1504 		rte_cryptodev_close(cdev_id);
1505 	}
1506 
1507 	rte_mempool_free(t->ca_op_pool);
1508 	rte_mempool_free(t->ca_sess_pool);
1509 	rte_mempool_free(t->ca_asym_sess_pool);
1510 }
1511 
1512 int
1513 perf_mempool_setup(struct evt_test *test, struct evt_options *opt)
1514 {
1515 	struct test_perf *t = evt_test_priv(test);
1516 
1517 	if (opt->prod_type == EVT_PROD_TYPE_SYNT ||
1518 			opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) {
1519 		t->pool = rte_mempool_create(test->name, /* mempool name */
1520 				opt->pool_sz, /* number of elements*/
1521 				sizeof(struct perf_elt), /* element size*/
1522 				512, /* cache size*/
1523 				0, NULL, NULL,
1524 				perf_elt_init, /* obj constructor */
1525 				NULL, opt->socket_id, 0); /* flags */
1526 	} else if (opt->prod_type == EVT_PROD_TYPE_EVENT_CRYPTO_ADPTR &&
1527 			opt->crypto_op_type == RTE_CRYPTO_OP_TYPE_ASYMMETRIC)  {
1528 		t->pool = rte_mempool_create(test->name, /* mempool name */
1529 				opt->pool_sz, /* number of elements*/
1530 				sizeof(struct perf_elt) + modex_test_case.result_len,
1531 				/* element size*/
1532 				512, /* cache size*/
1533 				0, NULL, NULL,
1534 				NULL, /* obj constructor */
1535 				NULL, opt->socket_id, 0); /* flags */
1536 	} else {
1537 		t->pool = rte_pktmbuf_pool_create(test->name, /* mempool name */
1538 				opt->pool_sz, /* number of elements*/
1539 				512, /* cache size*/
1540 				0,
1541 				RTE_MBUF_DEFAULT_BUF_SIZE,
1542 				opt->socket_id); /* flags */
1543 
1544 	}
1545 
1546 	if (t->pool == NULL) {
1547 		evt_err("failed to create mempool");
1548 		return -ENOMEM;
1549 	}
1550 
1551 	return 0;
1552 }
1553 
1554 void
1555 perf_mempool_destroy(struct evt_test *test, struct evt_options *opt)
1556 {
1557 	RTE_SET_USED(opt);
1558 	struct test_perf *t = evt_test_priv(test);
1559 
1560 	rte_mempool_free(t->pool);
1561 }
1562 
1563 int
1564 perf_test_setup(struct evt_test *test, struct evt_options *opt)
1565 {
1566 	void *test_perf;
1567 
1568 	test_perf = rte_zmalloc_socket(test->name, sizeof(struct test_perf),
1569 				RTE_CACHE_LINE_SIZE, opt->socket_id);
1570 	if (test_perf  == NULL) {
1571 		evt_err("failed to allocate test_perf memory");
1572 		goto nomem;
1573 	}
1574 	test->test_priv = test_perf;
1575 
1576 	struct test_perf *t = evt_test_priv(test);
1577 
1578 	if (opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) {
1579 		t->outstand_pkts = opt->nb_timers *
1580 			evt_nr_active_lcores(opt->plcores);
1581 		t->nb_pkts = opt->nb_timers;
1582 	} else {
1583 		t->outstand_pkts = opt->nb_pkts *
1584 			evt_nr_active_lcores(opt->plcores);
1585 		t->nb_pkts = opt->nb_pkts;
1586 	}
1587 
1588 	t->nb_workers = evt_nr_active_lcores(opt->wlcores);
1589 	t->done = false;
1590 	t->nb_flows = opt->nb_flows;
1591 	t->result = EVT_TEST_FAILED;
1592 	t->opt = opt;
1593 	memcpy(t->sched_type_list, opt->sched_type_list,
1594 			sizeof(opt->sched_type_list));
1595 	return 0;
1596 nomem:
1597 	return -ENOMEM;
1598 }
1599 
1600 void
1601 perf_test_destroy(struct evt_test *test, struct evt_options *opt)
1602 {
1603 	RTE_SET_USED(opt);
1604 
1605 	rte_free(test->test_priv);
1606 }
1607