xref: /dpdk/app/test-eventdev/test_perf_common.c (revision 68a03efeed657e6e05f281479b33b51102797e15)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Cavium, Inc
3  */
4 
5 #include "test_perf_common.h"
6 
7 int
8 perf_test_result(struct evt_test *test, struct evt_options *opt)
9 {
10 	RTE_SET_USED(opt);
11 	int i;
12 	uint64_t total = 0;
13 	struct test_perf *t = evt_test_priv(test);
14 
15 	printf("Packet distribution across worker cores :\n");
16 	for (i = 0; i < t->nb_workers; i++)
17 		total += t->worker[i].processed_pkts;
18 	for (i = 0; i < t->nb_workers; i++)
19 		printf("Worker %d packets: "CLGRN"%"PRIx64" "CLNRM"percentage:"
20 				CLGRN" %3.2f\n"CLNRM, i,
21 				t->worker[i].processed_pkts,
22 				(((double)t->worker[i].processed_pkts)/total)
23 				* 100);
24 
25 	return t->result;
26 }
27 
28 static inline int
29 perf_producer(void *arg)
30 {
31 	int i;
32 	struct prod_data *p  = arg;
33 	struct test_perf *t = p->t;
34 	struct evt_options *opt = t->opt;
35 	const uint8_t dev_id = p->dev_id;
36 	const uint8_t port = p->port_id;
37 	struct rte_mempool *pool = t->pool;
38 	const uint64_t nb_pkts = t->nb_pkts;
39 	const uint32_t nb_flows = t->nb_flows;
40 	uint32_t flow_counter = 0;
41 	uint64_t count = 0;
42 	struct perf_elt *m[BURST_SIZE + 1] = {NULL};
43 	struct rte_event ev;
44 
45 	if (opt->verbose_level > 1)
46 		printf("%s(): lcore %d dev_id %d port=%d queue %d\n", __func__,
47 				rte_lcore_id(), dev_id, port, p->queue_id);
48 
49 	ev.event = 0;
50 	ev.op = RTE_EVENT_OP_NEW;
51 	ev.queue_id = p->queue_id;
52 	ev.sched_type = t->opt->sched_type_list[0];
53 	ev.priority = RTE_EVENT_DEV_PRIORITY_NORMAL;
54 	ev.event_type =  RTE_EVENT_TYPE_CPU;
55 	ev.sub_event_type = 0; /* stage 0 */
56 
57 	while (count < nb_pkts && t->done == false) {
58 		if (rte_mempool_get_bulk(pool, (void **)m, BURST_SIZE) < 0)
59 			continue;
60 		for (i = 0; i < BURST_SIZE; i++) {
61 			ev.flow_id = flow_counter++ % nb_flows;
62 			ev.event_ptr = m[i];
63 			m[i]->timestamp = rte_get_timer_cycles();
64 			while (rte_event_enqueue_burst(dev_id,
65 						       port, &ev, 1) != 1) {
66 				if (t->done)
67 					break;
68 				rte_pause();
69 				m[i]->timestamp = rte_get_timer_cycles();
70 			}
71 		}
72 		count += BURST_SIZE;
73 	}
74 
75 	return 0;
76 }
77 
78 static inline int
79 perf_event_timer_producer(void *arg)
80 {
81 	int i;
82 	struct prod_data *p  = arg;
83 	struct test_perf *t = p->t;
84 	struct evt_options *opt = t->opt;
85 	uint32_t flow_counter = 0;
86 	uint64_t count = 0;
87 	uint64_t arm_latency = 0;
88 	const uint8_t nb_timer_adptrs = opt->nb_timer_adptrs;
89 	const uint32_t nb_flows = t->nb_flows;
90 	const uint64_t nb_timers = opt->nb_timers;
91 	struct rte_mempool *pool = t->pool;
92 	struct perf_elt *m[BURST_SIZE + 1] = {NULL};
93 	struct rte_event_timer_adapter **adptr = t->timer_adptr;
94 	struct rte_event_timer tim;
95 	uint64_t timeout_ticks = opt->expiry_nsec / opt->timer_tick_nsec;
96 
97 	memset(&tim, 0, sizeof(struct rte_event_timer));
98 	timeout_ticks = opt->optm_timer_tick_nsec ?
99 			(timeout_ticks * opt->timer_tick_nsec)
100 			/ opt->optm_timer_tick_nsec : timeout_ticks;
101 	timeout_ticks += timeout_ticks ? 0 : 1;
102 	tim.ev.event_type =  RTE_EVENT_TYPE_TIMER;
103 	tim.ev.op = RTE_EVENT_OP_NEW;
104 	tim.ev.sched_type = t->opt->sched_type_list[0];
105 	tim.ev.queue_id = p->queue_id;
106 	tim.ev.priority = RTE_EVENT_DEV_PRIORITY_NORMAL;
107 	tim.state = RTE_EVENT_TIMER_NOT_ARMED;
108 	tim.timeout_ticks = timeout_ticks;
109 
110 	if (opt->verbose_level > 1)
111 		printf("%s(): lcore %d\n", __func__, rte_lcore_id());
112 
113 	while (count < nb_timers && t->done == false) {
114 		if (rte_mempool_get_bulk(pool, (void **)m, BURST_SIZE) < 0)
115 			continue;
116 		for (i = 0; i < BURST_SIZE; i++) {
117 			rte_prefetch0(m[i + 1]);
118 			m[i]->tim = tim;
119 			m[i]->tim.ev.flow_id = flow_counter++ % nb_flows;
120 			m[i]->tim.ev.event_ptr = m[i];
121 			m[i]->timestamp = rte_get_timer_cycles();
122 			while (rte_event_timer_arm_burst(
123 			       adptr[flow_counter % nb_timer_adptrs],
124 			       (struct rte_event_timer **)&m[i], 1) != 1) {
125 				if (t->done)
126 					break;
127 				m[i]->timestamp = rte_get_timer_cycles();
128 			}
129 			arm_latency += rte_get_timer_cycles() - m[i]->timestamp;
130 		}
131 		count += BURST_SIZE;
132 	}
133 	fflush(stdout);
134 	rte_delay_ms(1000);
135 	printf("%s(): lcore %d Average event timer arm latency = %.3f us\n",
136 			__func__, rte_lcore_id(),
137 			count ? (float)(arm_latency / count) /
138 			(rte_get_timer_hz() / 1000000) : 0);
139 	return 0;
140 }
141 
142 static inline int
143 perf_event_timer_producer_burst(void *arg)
144 {
145 	int i;
146 	struct prod_data *p  = arg;
147 	struct test_perf *t = p->t;
148 	struct evt_options *opt = t->opt;
149 	uint32_t flow_counter = 0;
150 	uint64_t count = 0;
151 	uint64_t arm_latency = 0;
152 	const uint8_t nb_timer_adptrs = opt->nb_timer_adptrs;
153 	const uint32_t nb_flows = t->nb_flows;
154 	const uint64_t nb_timers = opt->nb_timers;
155 	struct rte_mempool *pool = t->pool;
156 	struct perf_elt *m[BURST_SIZE + 1] = {NULL};
157 	struct rte_event_timer_adapter **adptr = t->timer_adptr;
158 	struct rte_event_timer tim;
159 	uint64_t timeout_ticks = opt->expiry_nsec / opt->timer_tick_nsec;
160 
161 	memset(&tim, 0, sizeof(struct rte_event_timer));
162 	timeout_ticks = opt->optm_timer_tick_nsec ?
163 			(timeout_ticks * opt->timer_tick_nsec)
164 			/ opt->optm_timer_tick_nsec : timeout_ticks;
165 	timeout_ticks += timeout_ticks ? 0 : 1;
166 	tim.ev.event_type =  RTE_EVENT_TYPE_TIMER;
167 	tim.ev.op = RTE_EVENT_OP_NEW;
168 	tim.ev.sched_type = t->opt->sched_type_list[0];
169 	tim.ev.queue_id = p->queue_id;
170 	tim.ev.priority = RTE_EVENT_DEV_PRIORITY_NORMAL;
171 	tim.state = RTE_EVENT_TIMER_NOT_ARMED;
172 	tim.timeout_ticks = timeout_ticks;
173 
174 	if (opt->verbose_level > 1)
175 		printf("%s(): lcore %d\n", __func__, rte_lcore_id());
176 
177 	while (count < nb_timers && t->done == false) {
178 		if (rte_mempool_get_bulk(pool, (void **)m, BURST_SIZE) < 0)
179 			continue;
180 		for (i = 0; i < BURST_SIZE; i++) {
181 			rte_prefetch0(m[i + 1]);
182 			m[i]->tim = tim;
183 			m[i]->tim.ev.flow_id = flow_counter++ % nb_flows;
184 			m[i]->tim.ev.event_ptr = m[i];
185 			m[i]->timestamp = rte_get_timer_cycles();
186 		}
187 		rte_event_timer_arm_tmo_tick_burst(
188 				adptr[flow_counter % nb_timer_adptrs],
189 				(struct rte_event_timer **)m,
190 				tim.timeout_ticks,
191 				BURST_SIZE);
192 		arm_latency += rte_get_timer_cycles() - m[i - 1]->timestamp;
193 		count += BURST_SIZE;
194 	}
195 	fflush(stdout);
196 	rte_delay_ms(1000);
197 	printf("%s(): lcore %d Average event timer arm latency = %.3f us\n",
198 			__func__, rte_lcore_id(),
199 			count ? (float)(arm_latency / count) /
200 			(rte_get_timer_hz() / 1000000) : 0);
201 	return 0;
202 }
203 
204 static int
205 perf_producer_wrapper(void *arg)
206 {
207 	struct prod_data *p  = arg;
208 	struct test_perf *t = p->t;
209 	/* Launch the producer function only in case of synthetic producer. */
210 	if (t->opt->prod_type == EVT_PROD_TYPE_SYNT)
211 		return perf_producer(arg);
212 	else if (t->opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR &&
213 			!t->opt->timdev_use_burst)
214 		return perf_event_timer_producer(arg);
215 	else if (t->opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR &&
216 			t->opt->timdev_use_burst)
217 		return perf_event_timer_producer_burst(arg);
218 	return 0;
219 }
220 
221 static inline uint64_t
222 processed_pkts(struct test_perf *t)
223 {
224 	uint8_t i;
225 	uint64_t total = 0;
226 
227 	for (i = 0; i < t->nb_workers; i++)
228 		total += t->worker[i].processed_pkts;
229 
230 	return total;
231 }
232 
233 static inline uint64_t
234 total_latency(struct test_perf *t)
235 {
236 	uint8_t i;
237 	uint64_t total = 0;
238 
239 	for (i = 0; i < t->nb_workers; i++)
240 		total += t->worker[i].latency;
241 
242 	return total;
243 }
244 
245 
246 int
247 perf_launch_lcores(struct evt_test *test, struct evt_options *opt,
248 		int (*worker)(void *))
249 {
250 	int ret, lcore_id;
251 	struct test_perf *t = evt_test_priv(test);
252 
253 	int port_idx = 0;
254 	/* launch workers */
255 	RTE_LCORE_FOREACH_WORKER(lcore_id) {
256 		if (!(opt->wlcores[lcore_id]))
257 			continue;
258 
259 		ret = rte_eal_remote_launch(worker,
260 				 &t->worker[port_idx], lcore_id);
261 		if (ret) {
262 			evt_err("failed to launch worker %d", lcore_id);
263 			return ret;
264 		}
265 		port_idx++;
266 	}
267 
268 	/* launch producers */
269 	RTE_LCORE_FOREACH_WORKER(lcore_id) {
270 		if (!(opt->plcores[lcore_id]))
271 			continue;
272 
273 		ret = rte_eal_remote_launch(perf_producer_wrapper,
274 				&t->prod[port_idx], lcore_id);
275 		if (ret) {
276 			evt_err("failed to launch perf_producer %d", lcore_id);
277 			return ret;
278 		}
279 		port_idx++;
280 	}
281 
282 	const uint64_t total_pkts = t->outstand_pkts;
283 
284 	uint64_t dead_lock_cycles = rte_get_timer_cycles();
285 	int64_t dead_lock_remaining  =  total_pkts;
286 	const uint64_t dead_lock_sample = rte_get_timer_hz() * 5;
287 
288 	uint64_t perf_cycles = rte_get_timer_cycles();
289 	int64_t perf_remaining  = total_pkts;
290 	const uint64_t perf_sample = rte_get_timer_hz();
291 
292 	static float total_mpps;
293 	static uint64_t samples;
294 
295 	const uint64_t freq_mhz = rte_get_timer_hz() / 1000000;
296 	int64_t remaining = t->outstand_pkts - processed_pkts(t);
297 
298 	while (t->done == false) {
299 		const uint64_t new_cycles = rte_get_timer_cycles();
300 
301 		if ((new_cycles - perf_cycles) > perf_sample) {
302 			const uint64_t latency = total_latency(t);
303 			const uint64_t pkts = processed_pkts(t);
304 
305 			remaining = t->outstand_pkts - pkts;
306 			float mpps = (float)(perf_remaining-remaining)/1000000;
307 
308 			perf_remaining = remaining;
309 			perf_cycles = new_cycles;
310 			total_mpps += mpps;
311 			++samples;
312 			if (opt->fwd_latency && pkts > 0) {
313 				printf(CLGRN"\r%.3f mpps avg %.3f mpps [avg fwd latency %.3f us] "CLNRM,
314 					mpps, total_mpps/samples,
315 					(float)(latency/pkts)/freq_mhz);
316 			} else {
317 				printf(CLGRN"\r%.3f mpps avg %.3f mpps"CLNRM,
318 					mpps, total_mpps/samples);
319 			}
320 			fflush(stdout);
321 
322 			if (remaining <= 0) {
323 				t->result = EVT_TEST_SUCCESS;
324 				if (opt->prod_type == EVT_PROD_TYPE_SYNT ||
325 					opt->prod_type ==
326 					EVT_PROD_TYPE_EVENT_TIMER_ADPTR) {
327 					t->done = true;
328 					break;
329 				}
330 			}
331 		}
332 
333 		if (new_cycles - dead_lock_cycles > dead_lock_sample &&
334 		    (opt->prod_type == EVT_PROD_TYPE_SYNT ||
335 		     opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR)) {
336 			remaining = t->outstand_pkts - processed_pkts(t);
337 			if (dead_lock_remaining == remaining) {
338 				rte_event_dev_dump(opt->dev_id, stdout);
339 				evt_err("No schedules for seconds, deadlock");
340 				t->done = true;
341 				break;
342 			}
343 			dead_lock_remaining = remaining;
344 			dead_lock_cycles = new_cycles;
345 		}
346 	}
347 	printf("\n");
348 	return 0;
349 }
350 
351 static int
352 perf_event_rx_adapter_setup(struct evt_options *opt, uint8_t stride,
353 		struct rte_event_port_conf prod_conf)
354 {
355 	int ret = 0;
356 	uint16_t prod;
357 	struct rte_event_eth_rx_adapter_queue_conf queue_conf;
358 
359 	memset(&queue_conf, 0,
360 			sizeof(struct rte_event_eth_rx_adapter_queue_conf));
361 	queue_conf.ev.sched_type = opt->sched_type_list[0];
362 	RTE_ETH_FOREACH_DEV(prod) {
363 		uint32_t cap;
364 
365 		ret = rte_event_eth_rx_adapter_caps_get(opt->dev_id,
366 				prod, &cap);
367 		if (ret) {
368 			evt_err("failed to get event rx adapter[%d]"
369 					" capabilities",
370 					opt->dev_id);
371 			return ret;
372 		}
373 		queue_conf.ev.queue_id = prod * stride;
374 		ret = rte_event_eth_rx_adapter_create(prod, opt->dev_id,
375 				&prod_conf);
376 		if (ret) {
377 			evt_err("failed to create rx adapter[%d]", prod);
378 			return ret;
379 		}
380 		ret = rte_event_eth_rx_adapter_queue_add(prod, prod, -1,
381 				&queue_conf);
382 		if (ret) {
383 			evt_err("failed to add rx queues to adapter[%d]", prod);
384 			return ret;
385 		}
386 
387 		if (!(cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT)) {
388 			uint32_t service_id;
389 
390 			rte_event_eth_rx_adapter_service_id_get(prod,
391 					&service_id);
392 			ret = evt_service_setup(service_id);
393 			if (ret) {
394 				evt_err("Failed to setup service core"
395 						" for Rx adapter\n");
396 				return ret;
397 			}
398 		}
399 	}
400 
401 	return ret;
402 }
403 
404 static int
405 perf_event_timer_adapter_setup(struct test_perf *t)
406 {
407 	int i;
408 	int ret;
409 	struct rte_event_timer_adapter_info adapter_info;
410 	struct rte_event_timer_adapter *wl;
411 	uint8_t nb_producers = evt_nr_active_lcores(t->opt->plcores);
412 	uint8_t flags = RTE_EVENT_TIMER_ADAPTER_F_ADJUST_RES;
413 
414 	if (nb_producers == 1)
415 		flags |= RTE_EVENT_TIMER_ADAPTER_F_SP_PUT;
416 
417 	for (i = 0; i < t->opt->nb_timer_adptrs; i++) {
418 		struct rte_event_timer_adapter_conf config = {
419 			.event_dev_id = t->opt->dev_id,
420 			.timer_adapter_id = i,
421 			.timer_tick_ns = t->opt->timer_tick_nsec,
422 			.max_tmo_ns = t->opt->max_tmo_nsec,
423 			.nb_timers = t->opt->pool_sz,
424 			.flags = flags,
425 		};
426 
427 		wl = rte_event_timer_adapter_create(&config);
428 		if (wl == NULL) {
429 			evt_err("failed to create event timer ring %d", i);
430 			return rte_errno;
431 		}
432 
433 		memset(&adapter_info, 0,
434 				sizeof(struct rte_event_timer_adapter_info));
435 		rte_event_timer_adapter_get_info(wl, &adapter_info);
436 		t->opt->optm_timer_tick_nsec = adapter_info.min_resolution_ns;
437 
438 		if (!(adapter_info.caps &
439 				RTE_EVENT_TIMER_ADAPTER_CAP_INTERNAL_PORT)) {
440 			uint32_t service_id = -1U;
441 
442 			rte_event_timer_adapter_service_id_get(wl,
443 					&service_id);
444 			ret = evt_service_setup(service_id);
445 			if (ret) {
446 				evt_err("Failed to setup service core"
447 						" for timer adapter\n");
448 				return ret;
449 			}
450 			rte_service_runstate_set(service_id, 1);
451 		}
452 		t->timer_adptr[i] = wl;
453 	}
454 	return 0;
455 }
456 
457 int
458 perf_event_dev_port_setup(struct evt_test *test, struct evt_options *opt,
459 				uint8_t stride, uint8_t nb_queues,
460 				const struct rte_event_port_conf *port_conf)
461 {
462 	struct test_perf *t = evt_test_priv(test);
463 	uint16_t port, prod;
464 	int ret = -1;
465 
466 	/* setup one port per worker, linking to all queues */
467 	for (port = 0; port < evt_nr_active_lcores(opt->wlcores);
468 				port++) {
469 		struct worker_data *w = &t->worker[port];
470 
471 		w->dev_id = opt->dev_id;
472 		w->port_id = port;
473 		w->t = t;
474 		w->processed_pkts = 0;
475 		w->latency = 0;
476 
477 		ret = rte_event_port_setup(opt->dev_id, port, port_conf);
478 		if (ret) {
479 			evt_err("failed to setup port %d", port);
480 			return ret;
481 		}
482 
483 		ret = rte_event_port_link(opt->dev_id, port, NULL, NULL, 0);
484 		if (ret != nb_queues) {
485 			evt_err("failed to link all queues to port %d", port);
486 			return -EINVAL;
487 		}
488 	}
489 
490 	/* port for producers, no links */
491 	if (opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR) {
492 		for ( ; port < perf_nb_event_ports(opt); port++) {
493 			struct prod_data *p = &t->prod[port];
494 			p->t = t;
495 		}
496 
497 		ret = perf_event_rx_adapter_setup(opt, stride, *port_conf);
498 		if (ret)
499 			return ret;
500 	} else if (opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) {
501 		prod = 0;
502 		for ( ; port < perf_nb_event_ports(opt); port++) {
503 			struct prod_data *p = &t->prod[port];
504 			p->queue_id = prod * stride;
505 			p->t = t;
506 			prod++;
507 		}
508 
509 		ret = perf_event_timer_adapter_setup(t);
510 		if (ret)
511 			return ret;
512 	} else {
513 		prod = 0;
514 		for ( ; port < perf_nb_event_ports(opt); port++) {
515 			struct prod_data *p = &t->prod[port];
516 
517 			p->dev_id = opt->dev_id;
518 			p->port_id = port;
519 			p->queue_id = prod * stride;
520 			p->t = t;
521 
522 			ret = rte_event_port_setup(opt->dev_id, port,
523 					port_conf);
524 			if (ret) {
525 				evt_err("failed to setup port %d", port);
526 				return ret;
527 			}
528 			prod++;
529 		}
530 	}
531 
532 	return ret;
533 }
534 
535 int
536 perf_opt_check(struct evt_options *opt, uint64_t nb_queues)
537 {
538 	unsigned int lcores;
539 
540 	/* N producer + N worker + main when producer cores are used
541 	 * Else N worker + main when Rx adapter is used
542 	 */
543 	lcores = opt->prod_type == EVT_PROD_TYPE_SYNT ? 3 : 2;
544 
545 	if (rte_lcore_count() < lcores) {
546 		evt_err("test need minimum %d lcores", lcores);
547 		return -1;
548 	}
549 
550 	/* Validate worker lcores */
551 	if (evt_lcores_has_overlap(opt->wlcores, rte_get_main_lcore())) {
552 		evt_err("worker lcores overlaps with main lcore");
553 		return -1;
554 	}
555 	if (evt_lcores_has_overlap_multi(opt->wlcores, opt->plcores)) {
556 		evt_err("worker lcores overlaps producer lcores");
557 		return -1;
558 	}
559 	if (evt_has_disabled_lcore(opt->wlcores)) {
560 		evt_err("one or more workers lcores are not enabled");
561 		return -1;
562 	}
563 	if (!evt_has_active_lcore(opt->wlcores)) {
564 		evt_err("minimum one worker is required");
565 		return -1;
566 	}
567 
568 	if (opt->prod_type == EVT_PROD_TYPE_SYNT ||
569 			opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) {
570 		/* Validate producer lcores */
571 		if (evt_lcores_has_overlap(opt->plcores,
572 					rte_get_main_lcore())) {
573 			evt_err("producer lcores overlaps with main lcore");
574 			return -1;
575 		}
576 		if (evt_has_disabled_lcore(opt->plcores)) {
577 			evt_err("one or more producer lcores are not enabled");
578 			return -1;
579 		}
580 		if (!evt_has_active_lcore(opt->plcores)) {
581 			evt_err("minimum one producer is required");
582 			return -1;
583 		}
584 	}
585 
586 	if (evt_has_invalid_stage(opt))
587 		return -1;
588 
589 	if (evt_has_invalid_sched_type(opt))
590 		return -1;
591 
592 	if (nb_queues > EVT_MAX_QUEUES) {
593 		evt_err("number of queues exceeds %d", EVT_MAX_QUEUES);
594 		return -1;
595 	}
596 	if (perf_nb_event_ports(opt) > EVT_MAX_PORTS) {
597 		evt_err("number of ports exceeds %d", EVT_MAX_PORTS);
598 		return -1;
599 	}
600 
601 	/* Fixups */
602 	if ((opt->nb_stages == 1 &&
603 			opt->prod_type != EVT_PROD_TYPE_EVENT_TIMER_ADPTR) &&
604 			opt->fwd_latency) {
605 		evt_info("fwd_latency is valid when nb_stages > 1, disabling");
606 		opt->fwd_latency = 0;
607 	}
608 
609 	if (opt->fwd_latency && !opt->q_priority) {
610 		evt_info("enabled queue priority for latency measurement");
611 		opt->q_priority = 1;
612 	}
613 	if (opt->nb_pkts == 0)
614 		opt->nb_pkts = INT64_MAX/evt_nr_active_lcores(opt->plcores);
615 
616 	return 0;
617 }
618 
619 void
620 perf_opt_dump(struct evt_options *opt, uint8_t nb_queues)
621 {
622 	evt_dump("nb_prod_lcores", "%d", evt_nr_active_lcores(opt->plcores));
623 	evt_dump_producer_lcores(opt);
624 	evt_dump("nb_worker_lcores", "%d", evt_nr_active_lcores(opt->wlcores));
625 	evt_dump_worker_lcores(opt);
626 	evt_dump_nb_stages(opt);
627 	evt_dump("nb_evdev_ports", "%d", perf_nb_event_ports(opt));
628 	evt_dump("nb_evdev_queues", "%d", nb_queues);
629 	evt_dump_queue_priority(opt);
630 	evt_dump_sched_type_list(opt);
631 	evt_dump_producer_type(opt);
632 }
633 
634 void
635 perf_eventdev_destroy(struct evt_test *test, struct evt_options *opt)
636 {
637 	int i;
638 	struct test_perf *t = evt_test_priv(test);
639 
640 	if (opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) {
641 		for (i = 0; i < opt->nb_timer_adptrs; i++)
642 			rte_event_timer_adapter_stop(t->timer_adptr[i]);
643 	}
644 	rte_event_dev_stop(opt->dev_id);
645 	rte_event_dev_close(opt->dev_id);
646 }
647 
648 static inline void
649 perf_elt_init(struct rte_mempool *mp, void *arg __rte_unused,
650 	    void *obj, unsigned i __rte_unused)
651 {
652 	memset(obj, 0, mp->elt_size);
653 }
654 
655 #define NB_RX_DESC			128
656 #define NB_TX_DESC			512
657 int
658 perf_ethdev_setup(struct evt_test *test, struct evt_options *opt)
659 {
660 	uint16_t i;
661 	int ret;
662 	struct test_perf *t = evt_test_priv(test);
663 	struct rte_eth_conf port_conf = {
664 		.rxmode = {
665 			.mq_mode = ETH_MQ_RX_RSS,
666 			.max_rx_pkt_len = RTE_ETHER_MAX_LEN,
667 			.split_hdr_size = 0,
668 		},
669 		.rx_adv_conf = {
670 			.rss_conf = {
671 				.rss_key = NULL,
672 				.rss_hf = ETH_RSS_IP,
673 			},
674 		},
675 	};
676 
677 	if (opt->prod_type == EVT_PROD_TYPE_SYNT ||
678 			opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR)
679 		return 0;
680 
681 	if (!rte_eth_dev_count_avail()) {
682 		evt_err("No ethernet ports found.");
683 		return -ENODEV;
684 	}
685 
686 	RTE_ETH_FOREACH_DEV(i) {
687 		struct rte_eth_dev_info dev_info;
688 		struct rte_eth_conf local_port_conf = port_conf;
689 
690 		ret = rte_eth_dev_info_get(i, &dev_info);
691 		if (ret != 0) {
692 			evt_err("Error during getting device (port %u) info: %s\n",
693 					i, strerror(-ret));
694 			return ret;
695 		}
696 
697 		local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
698 			dev_info.flow_type_rss_offloads;
699 		if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
700 				port_conf.rx_adv_conf.rss_conf.rss_hf) {
701 			evt_info("Port %u modified RSS hash function based on hardware support,"
702 				"requested:%#"PRIx64" configured:%#"PRIx64"\n",
703 				i,
704 				port_conf.rx_adv_conf.rss_conf.rss_hf,
705 				local_port_conf.rx_adv_conf.rss_conf.rss_hf);
706 		}
707 
708 		if (rte_eth_dev_configure(i, 1, 1, &local_port_conf) < 0) {
709 			evt_err("Failed to configure eth port [%d]", i);
710 			return -EINVAL;
711 		}
712 
713 		if (rte_eth_rx_queue_setup(i, 0, NB_RX_DESC,
714 				rte_socket_id(), NULL, t->pool) < 0) {
715 			evt_err("Failed to setup eth port [%d] rx_queue: %d.",
716 					i, 0);
717 			return -EINVAL;
718 		}
719 
720 		if (rte_eth_tx_queue_setup(i, 0, NB_TX_DESC,
721 					rte_socket_id(), NULL) < 0) {
722 			evt_err("Failed to setup eth port [%d] tx_queue: %d.",
723 					i, 0);
724 			return -EINVAL;
725 		}
726 
727 		ret = rte_eth_promiscuous_enable(i);
728 		if (ret != 0) {
729 			evt_err("Failed to enable promiscuous mode for eth port [%d]: %s",
730 				i, rte_strerror(-ret));
731 			return ret;
732 		}
733 	}
734 
735 	return 0;
736 }
737 
738 void perf_ethdev_destroy(struct evt_test *test, struct evt_options *opt)
739 {
740 	uint16_t i;
741 	RTE_SET_USED(test);
742 
743 	if (opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR) {
744 		RTE_ETH_FOREACH_DEV(i) {
745 			rte_event_eth_rx_adapter_stop(i);
746 			rte_eth_dev_stop(i);
747 		}
748 	}
749 }
750 
751 int
752 perf_mempool_setup(struct evt_test *test, struct evt_options *opt)
753 {
754 	struct test_perf *t = evt_test_priv(test);
755 
756 	if (opt->prod_type == EVT_PROD_TYPE_SYNT ||
757 			opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) {
758 		t->pool = rte_mempool_create(test->name, /* mempool name */
759 				opt->pool_sz, /* number of elements*/
760 				sizeof(struct perf_elt), /* element size*/
761 				512, /* cache size*/
762 				0, NULL, NULL,
763 				perf_elt_init, /* obj constructor */
764 				NULL, opt->socket_id, 0); /* flags */
765 	} else {
766 		t->pool = rte_pktmbuf_pool_create(test->name, /* mempool name */
767 				opt->pool_sz, /* number of elements*/
768 				512, /* cache size*/
769 				0,
770 				RTE_MBUF_DEFAULT_BUF_SIZE,
771 				opt->socket_id); /* flags */
772 
773 	}
774 
775 	if (t->pool == NULL) {
776 		evt_err("failed to create mempool");
777 		return -ENOMEM;
778 	}
779 
780 	return 0;
781 }
782 
783 void
784 perf_mempool_destroy(struct evt_test *test, struct evt_options *opt)
785 {
786 	RTE_SET_USED(opt);
787 	struct test_perf *t = evt_test_priv(test);
788 
789 	rte_mempool_free(t->pool);
790 }
791 
792 int
793 perf_test_setup(struct evt_test *test, struct evt_options *opt)
794 {
795 	void *test_perf;
796 
797 	test_perf = rte_zmalloc_socket(test->name, sizeof(struct test_perf),
798 				RTE_CACHE_LINE_SIZE, opt->socket_id);
799 	if (test_perf  == NULL) {
800 		evt_err("failed to allocate test_perf memory");
801 		goto nomem;
802 	}
803 	test->test_priv = test_perf;
804 
805 	struct test_perf *t = evt_test_priv(test);
806 
807 	if (opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) {
808 		t->outstand_pkts = opt->nb_timers *
809 			evt_nr_active_lcores(opt->plcores);
810 		t->nb_pkts = opt->nb_timers;
811 	} else {
812 		t->outstand_pkts = opt->nb_pkts *
813 			evt_nr_active_lcores(opt->plcores);
814 		t->nb_pkts = opt->nb_pkts;
815 	}
816 
817 	t->nb_workers = evt_nr_active_lcores(opt->wlcores);
818 	t->done = false;
819 	t->nb_flows = opt->nb_flows;
820 	t->result = EVT_TEST_FAILED;
821 	t->opt = opt;
822 	memcpy(t->sched_type_list, opt->sched_type_list,
823 			sizeof(opt->sched_type_list));
824 	return 0;
825 nomem:
826 	return -ENOMEM;
827 }
828 
829 void
830 perf_test_destroy(struct evt_test *test, struct evt_options *opt)
831 {
832 	RTE_SET_USED(opt);
833 
834 	rte_free(test->test_priv);
835 }
836