1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2017 Cavium, Inc 3 */ 4 5 #include "test_perf_common.h" 6 7 /* See http://dpdk.org/doc/guides/tools/testeventdev.html for test details */ 8 9 static inline int 10 atq_nb_event_queues(struct evt_options *opt) 11 { 12 /* nb_queues = number of producers */ 13 return opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR ? 14 rte_eth_dev_count() : evt_nr_active_lcores(opt->plcores); 15 } 16 17 static inline __attribute__((always_inline)) void 18 atq_mark_fwd_latency(struct rte_event *const ev) 19 { 20 if (unlikely(ev->sub_event_type == 0)) { 21 struct perf_elt *const m = ev->event_ptr; 22 23 m->timestamp = rte_get_timer_cycles(); 24 } 25 } 26 27 static inline __attribute__((always_inline)) void 28 atq_fwd_event(struct rte_event *const ev, uint8_t *const sched_type_list, 29 const uint8_t nb_stages) 30 { 31 ev->sub_event_type++; 32 ev->sched_type = sched_type_list[ev->sub_event_type % nb_stages]; 33 ev->op = RTE_EVENT_OP_FORWARD; 34 ev->event_type = RTE_EVENT_TYPE_CPU; 35 } 36 37 static int 38 perf_atq_worker(void *arg, const int enable_fwd_latency) 39 { 40 PERF_WORKER_INIT; 41 struct rte_event ev; 42 43 while (t->done == false) { 44 uint16_t event = rte_event_dequeue_burst(dev, port, &ev, 1, 0); 45 46 if (enable_fwd_latency) 47 rte_prefetch0(ev.event_ptr); 48 49 if (!event) { 50 rte_pause(); 51 continue; 52 } 53 54 if (enable_fwd_latency) 55 /* first stage in pipeline, mark ts to compute fwd latency */ 56 atq_mark_fwd_latency(&ev); 57 58 /* last stage in pipeline */ 59 if (unlikely((ev.sub_event_type % nb_stages) == laststage)) { 60 if (enable_fwd_latency) 61 cnt = perf_process_last_stage_latency(pool, 62 &ev, w, bufs, sz, cnt); 63 else 64 cnt = perf_process_last_stage(pool, &ev, w, 65 bufs, sz, cnt); 66 } else { 67 atq_fwd_event(&ev, sched_type_list, nb_stages); 68 while (rte_event_enqueue_burst(dev, port, &ev, 1) != 1) 69 rte_pause(); 70 } 71 } 72 return 0; 73 } 74 75 static int 76 perf_atq_worker_burst(void *arg, const int enable_fwd_latency) 77 { 78 PERF_WORKER_INIT; 79 uint16_t i; 80 /* +1 to avoid prefetch out of array check */ 81 struct rte_event ev[BURST_SIZE + 1]; 82 83 while (t->done == false) { 84 uint16_t const nb_rx = rte_event_dequeue_burst(dev, port, ev, 85 BURST_SIZE, 0); 86 87 if (!nb_rx) { 88 rte_pause(); 89 continue; 90 } 91 92 for (i = 0; i < nb_rx; i++) { 93 if (enable_fwd_latency) { 94 rte_prefetch0(ev[i+1].event_ptr); 95 /* first stage in pipeline. 96 * mark time stamp to compute fwd latency 97 */ 98 atq_mark_fwd_latency(&ev[i]); 99 } 100 /* last stage in pipeline */ 101 if (unlikely((ev[i].sub_event_type % nb_stages) 102 == laststage)) { 103 if (enable_fwd_latency) 104 cnt = perf_process_last_stage_latency( 105 pool, &ev[i], w, bufs, sz, cnt); 106 else 107 cnt = perf_process_last_stage(pool, 108 &ev[i], w, bufs, sz, cnt); 109 110 ev[i].op = RTE_EVENT_OP_RELEASE; 111 } else { 112 atq_fwd_event(&ev[i], sched_type_list, 113 nb_stages); 114 } 115 } 116 117 uint16_t enq; 118 119 enq = rte_event_enqueue_burst(dev, port, ev, nb_rx); 120 while (enq < nb_rx) { 121 enq += rte_event_enqueue_burst(dev, port, 122 ev + enq, nb_rx - enq); 123 } 124 } 125 return 0; 126 } 127 128 static int 129 worker_wrapper(void *arg) 130 { 131 struct worker_data *w = arg; 132 struct evt_options *opt = w->t->opt; 133 134 const bool burst = evt_has_burst_mode(w->dev_id); 135 const int fwd_latency = opt->fwd_latency; 136 137 /* allow compiler to optimize */ 138 if (!burst && !fwd_latency) 139 return perf_atq_worker(arg, 0); 140 else if (!burst && fwd_latency) 141 return perf_atq_worker(arg, 1); 142 else if (burst && !fwd_latency) 143 return perf_atq_worker_burst(arg, 0); 144 else if (burst && fwd_latency) 145 return perf_atq_worker_burst(arg, 1); 146 147 rte_panic("invalid worker\n"); 148 } 149 150 static int 151 perf_atq_launch_lcores(struct evt_test *test, struct evt_options *opt) 152 { 153 return perf_launch_lcores(test, opt, worker_wrapper); 154 } 155 156 static int 157 perf_atq_eventdev_setup(struct evt_test *test, struct evt_options *opt) 158 { 159 int ret; 160 uint8_t queue; 161 uint8_t nb_queues; 162 uint8_t nb_ports; 163 struct rte_event_dev_info dev_info; 164 165 nb_ports = evt_nr_active_lcores(opt->wlcores); 166 nb_ports += opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR ? 0 : 167 evt_nr_active_lcores(opt->plcores); 168 169 nb_queues = atq_nb_event_queues(opt); 170 171 memset(&dev_info, 0, sizeof(struct rte_event_dev_info)); 172 ret = rte_event_dev_info_get(opt->dev_id, &dev_info); 173 if (ret) { 174 evt_err("failed to get eventdev info %d", opt->dev_id); 175 return ret; 176 } 177 178 const struct rte_event_dev_config config = { 179 .nb_event_queues = nb_queues, 180 .nb_event_ports = nb_ports, 181 .nb_events_limit = dev_info.max_num_events, 182 .nb_event_queue_flows = opt->nb_flows, 183 .nb_event_port_dequeue_depth = 184 dev_info.max_event_port_dequeue_depth, 185 .nb_event_port_enqueue_depth = 186 dev_info.max_event_port_enqueue_depth, 187 }; 188 189 ret = rte_event_dev_configure(opt->dev_id, &config); 190 if (ret) { 191 evt_err("failed to configure eventdev %d", opt->dev_id); 192 return ret; 193 } 194 195 struct rte_event_queue_conf q_conf = { 196 .priority = RTE_EVENT_DEV_PRIORITY_NORMAL, 197 .event_queue_cfg = RTE_EVENT_QUEUE_CFG_ALL_TYPES, 198 .nb_atomic_flows = opt->nb_flows, 199 .nb_atomic_order_sequences = opt->nb_flows, 200 }; 201 /* queue configurations */ 202 for (queue = 0; queue < nb_queues; queue++) { 203 ret = rte_event_queue_setup(opt->dev_id, queue, &q_conf); 204 if (ret) { 205 evt_err("failed to setup queue=%d", queue); 206 return ret; 207 } 208 } 209 210 ret = perf_event_dev_port_setup(test, opt, 1 /* stride */, nb_queues); 211 if (ret) 212 return ret; 213 214 if (!evt_has_distributed_sched(opt->dev_id)) { 215 uint32_t service_id; 216 rte_event_dev_service_id_get(opt->dev_id, &service_id); 217 ret = evt_service_setup(service_id); 218 if (ret) { 219 evt_err("No service lcore found to run event dev."); 220 return ret; 221 } 222 } 223 224 ret = rte_event_dev_start(opt->dev_id); 225 if (ret) { 226 evt_err("failed to start eventdev %d", opt->dev_id); 227 return ret; 228 } 229 230 return 0; 231 } 232 233 static void 234 perf_atq_opt_dump(struct evt_options *opt) 235 { 236 perf_opt_dump(opt, atq_nb_event_queues(opt)); 237 } 238 239 static int 240 perf_atq_opt_check(struct evt_options *opt) 241 { 242 return perf_opt_check(opt, atq_nb_event_queues(opt)); 243 } 244 245 static bool 246 perf_atq_capability_check(struct evt_options *opt) 247 { 248 struct rte_event_dev_info dev_info; 249 250 rte_event_dev_info_get(opt->dev_id, &dev_info); 251 if (dev_info.max_event_queues < atq_nb_event_queues(opt) || 252 dev_info.max_event_ports < perf_nb_event_ports(opt)) { 253 evt_err("not enough eventdev queues=%d/%d or ports=%d/%d", 254 atq_nb_event_queues(opt), dev_info.max_event_queues, 255 perf_nb_event_ports(opt), dev_info.max_event_ports); 256 } 257 if (!evt_has_all_types_queue(opt->dev_id)) 258 return false; 259 260 return true; 261 } 262 263 static const struct evt_test_ops perf_atq = { 264 .cap_check = perf_atq_capability_check, 265 .opt_check = perf_atq_opt_check, 266 .opt_dump = perf_atq_opt_dump, 267 .test_setup = perf_test_setup, 268 .ethdev_setup = perf_ethdev_setup, 269 .mempool_setup = perf_mempool_setup, 270 .eventdev_setup = perf_atq_eventdev_setup, 271 .launch_lcores = perf_atq_launch_lcores, 272 .eventdev_destroy = perf_eventdev_destroy, 273 .mempool_destroy = perf_mempool_destroy, 274 .ethdev_destroy = perf_ethdev_destroy, 275 .test_result = perf_test_result, 276 .test_destroy = perf_test_destroy, 277 }; 278 279 EVT_TEST_REGISTER(perf_atq); 280