xref: /dpdk/app/test-eventdev/test_perf_atq.c (revision 66b82db2ef7af55601165b944959645d77ee1f3c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Cavium, Inc
3  */
4 
5 #include "test_perf_common.h"
6 
7 /* See http://doc.dpdk.org/guides/tools/testeventdev.html for test details */
8 
9 static inline int
10 atq_nb_event_queues(struct evt_options *opt)
11 {
12 	/* nb_queues = number of producers */
13 	return opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR ?
14 		rte_eth_dev_count_avail() : evt_nr_active_lcores(opt->plcores);
15 }
16 
17 static inline __attribute__((always_inline)) void
18 atq_mark_fwd_latency(struct rte_event *const ev)
19 {
20 	if (unlikely(ev->sub_event_type == 0)) {
21 		struct perf_elt *const m = ev->event_ptr;
22 
23 		m->timestamp = rte_get_timer_cycles();
24 	}
25 }
26 
27 static inline __attribute__((always_inline)) void
28 atq_fwd_event(struct rte_event *const ev, uint8_t *const sched_type_list,
29 		const uint8_t nb_stages)
30 {
31 	ev->sub_event_type++;
32 	ev->sched_type = sched_type_list[ev->sub_event_type % nb_stages];
33 	ev->op = RTE_EVENT_OP_FORWARD;
34 	ev->event_type = RTE_EVENT_TYPE_CPU;
35 }
36 
37 static int
38 perf_atq_worker(void *arg, const int enable_fwd_latency)
39 {
40 	PERF_WORKER_INIT;
41 	struct rte_event ev;
42 
43 	while (t->done == false) {
44 		uint16_t event = rte_event_dequeue_burst(dev, port, &ev, 1, 0);
45 
46 		if (!event) {
47 			rte_pause();
48 			continue;
49 		}
50 
51 		if (enable_fwd_latency && !prod_timer_type)
52 		/* first stage in pipeline, mark ts to compute fwd latency */
53 			atq_mark_fwd_latency(&ev);
54 
55 		/* last stage in pipeline */
56 		if (unlikely((ev.sub_event_type % nb_stages) == laststage)) {
57 			if (enable_fwd_latency)
58 				cnt = perf_process_last_stage_latency(pool,
59 					&ev, w, bufs, sz, cnt);
60 			else
61 				cnt = perf_process_last_stage(pool, &ev, w,
62 					 bufs, sz, cnt);
63 		} else {
64 			atq_fwd_event(&ev, sched_type_list, nb_stages);
65 			while (rte_event_enqueue_burst(dev, port, &ev, 1) != 1)
66 				rte_pause();
67 		}
68 	}
69 	return 0;
70 }
71 
72 static int
73 perf_atq_worker_burst(void *arg, const int enable_fwd_latency)
74 {
75 	PERF_WORKER_INIT;
76 	uint16_t i;
77 	/* +1 to avoid prefetch out of array check */
78 	struct rte_event ev[BURST_SIZE + 1];
79 
80 	while (t->done == false) {
81 		uint16_t const nb_rx = rte_event_dequeue_burst(dev, port, ev,
82 				BURST_SIZE, 0);
83 
84 		if (!nb_rx) {
85 			rte_pause();
86 			continue;
87 		}
88 
89 		for (i = 0; i < nb_rx; i++) {
90 			if (enable_fwd_latency && !prod_timer_type) {
91 				rte_prefetch0(ev[i+1].event_ptr);
92 				/* first stage in pipeline.
93 				 * mark time stamp to compute fwd latency
94 				 */
95 				atq_mark_fwd_latency(&ev[i]);
96 			}
97 			/* last stage in pipeline */
98 			if (unlikely((ev[i].sub_event_type % nb_stages)
99 						== laststage)) {
100 				if (enable_fwd_latency)
101 					cnt = perf_process_last_stage_latency(
102 						pool, &ev[i], w, bufs, sz, cnt);
103 				else
104 					cnt = perf_process_last_stage(pool,
105 						&ev[i], w, bufs, sz, cnt);
106 
107 				ev[i].op = RTE_EVENT_OP_RELEASE;
108 			} else {
109 				atq_fwd_event(&ev[i], sched_type_list,
110 						nb_stages);
111 			}
112 		}
113 
114 		uint16_t enq;
115 
116 		enq = rte_event_enqueue_burst(dev, port, ev, nb_rx);
117 		while (enq < nb_rx) {
118 			enq += rte_event_enqueue_burst(dev, port,
119 							ev + enq, nb_rx - enq);
120 		}
121 	}
122 	return 0;
123 }
124 
125 static int
126 worker_wrapper(void *arg)
127 {
128 	struct worker_data *w  = arg;
129 	struct evt_options *opt = w->t->opt;
130 
131 	const bool burst = evt_has_burst_mode(w->dev_id);
132 	const int fwd_latency = opt->fwd_latency;
133 
134 	/* allow compiler to optimize */
135 	if (!burst && !fwd_latency)
136 		return perf_atq_worker(arg, 0);
137 	else if (!burst && fwd_latency)
138 		return perf_atq_worker(arg, 1);
139 	else if (burst && !fwd_latency)
140 		return perf_atq_worker_burst(arg, 0);
141 	else if (burst && fwd_latency)
142 		return perf_atq_worker_burst(arg, 1);
143 
144 	rte_panic("invalid worker\n");
145 }
146 
147 static int
148 perf_atq_launch_lcores(struct evt_test *test, struct evt_options *opt)
149 {
150 	return perf_launch_lcores(test, opt, worker_wrapper);
151 }
152 
153 static int
154 perf_atq_eventdev_setup(struct evt_test *test, struct evt_options *opt)
155 {
156 	int ret;
157 	uint8_t queue;
158 	uint8_t nb_queues;
159 	uint8_t nb_ports;
160 	uint16_t prod;
161 	struct rte_event_dev_info dev_info;
162 	struct test_perf *t = evt_test_priv(test);
163 
164 	nb_ports = evt_nr_active_lcores(opt->wlcores);
165 	nb_ports += (opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR ||
166 			opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) ? 0 :
167 		evt_nr_active_lcores(opt->plcores);
168 
169 	nb_queues = atq_nb_event_queues(opt);
170 
171 	memset(&dev_info, 0, sizeof(struct rte_event_dev_info));
172 	ret = rte_event_dev_info_get(opt->dev_id, &dev_info);
173 	if (ret) {
174 		evt_err("failed to get eventdev info %d", opt->dev_id);
175 		return ret;
176 	}
177 
178 	const struct rte_event_dev_config config = {
179 			.nb_event_queues = nb_queues,
180 			.nb_event_ports = nb_ports,
181 			.nb_events_limit  = dev_info.max_num_events,
182 			.nb_event_queue_flows = opt->nb_flows,
183 			.nb_event_port_dequeue_depth =
184 				dev_info.max_event_port_dequeue_depth,
185 			.nb_event_port_enqueue_depth =
186 				dev_info.max_event_port_enqueue_depth,
187 	};
188 
189 	ret = rte_event_dev_configure(opt->dev_id, &config);
190 	if (ret) {
191 		evt_err("failed to configure eventdev %d", opt->dev_id);
192 		return ret;
193 	}
194 
195 	struct rte_event_queue_conf q_conf = {
196 			.priority = RTE_EVENT_DEV_PRIORITY_NORMAL,
197 			.event_queue_cfg = RTE_EVENT_QUEUE_CFG_ALL_TYPES,
198 			.nb_atomic_flows = opt->nb_flows,
199 			.nb_atomic_order_sequences = opt->nb_flows,
200 	};
201 	/* queue configurations */
202 	for (queue = 0; queue < nb_queues; queue++) {
203 		ret = rte_event_queue_setup(opt->dev_id, queue, &q_conf);
204 		if (ret) {
205 			evt_err("failed to setup queue=%d", queue);
206 			return ret;
207 		}
208 	}
209 
210 	if (opt->wkr_deq_dep > dev_info.max_event_port_dequeue_depth)
211 		opt->wkr_deq_dep = dev_info.max_event_port_dequeue_depth;
212 
213 	/* port configuration */
214 	const struct rte_event_port_conf p_conf = {
215 			.dequeue_depth = opt->wkr_deq_dep,
216 			.enqueue_depth = dev_info.max_event_port_dequeue_depth,
217 			.new_event_threshold = dev_info.max_num_events,
218 	};
219 
220 	ret = perf_event_dev_port_setup(test, opt, 1 /* stride */, nb_queues,
221 			&p_conf);
222 	if (ret)
223 		return ret;
224 
225 	if (!evt_has_distributed_sched(opt->dev_id)) {
226 		uint32_t service_id;
227 		rte_event_dev_service_id_get(opt->dev_id, &service_id);
228 		ret = evt_service_setup(service_id);
229 		if (ret) {
230 			evt_err("No service lcore found to run event dev.");
231 			return ret;
232 		}
233 	}
234 
235 	ret = rte_event_dev_start(opt->dev_id);
236 	if (ret) {
237 		evt_err("failed to start eventdev %d", opt->dev_id);
238 		return ret;
239 	}
240 
241 	if (opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR) {
242 		RTE_ETH_FOREACH_DEV(prod) {
243 			ret = rte_eth_dev_start(prod);
244 			if (ret) {
245 				evt_err("Ethernet dev [%d] failed to start. Using synthetic producer",
246 						prod);
247 				return ret;
248 			}
249 
250 			ret = rte_event_eth_rx_adapter_start(prod);
251 			if (ret) {
252 				evt_err("Rx adapter[%d] start failed", prod);
253 				return ret;
254 			}
255 			printf("%s: Port[%d] using Rx adapter[%d] started\n",
256 					__func__, prod, prod);
257 		}
258 	} else if (opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) {
259 		for (prod = 0; prod < opt->nb_timer_adptrs; prod++) {
260 			ret = rte_event_timer_adapter_start(
261 					t->timer_adptr[prod]);
262 			if (ret) {
263 				evt_err("failed to Start event timer adapter %d"
264 						, prod);
265 				return ret;
266 			}
267 		}
268 	}
269 
270 	return 0;
271 }
272 
273 static void
274 perf_atq_opt_dump(struct evt_options *opt)
275 {
276 	perf_opt_dump(opt, atq_nb_event_queues(opt));
277 }
278 
279 static int
280 perf_atq_opt_check(struct evt_options *opt)
281 {
282 	return perf_opt_check(opt, atq_nb_event_queues(opt));
283 }
284 
285 static bool
286 perf_atq_capability_check(struct evt_options *opt)
287 {
288 	struct rte_event_dev_info dev_info;
289 
290 	rte_event_dev_info_get(opt->dev_id, &dev_info);
291 	if (dev_info.max_event_queues < atq_nb_event_queues(opt) ||
292 			dev_info.max_event_ports < perf_nb_event_ports(opt)) {
293 		evt_err("not enough eventdev queues=%d/%d or ports=%d/%d",
294 			atq_nb_event_queues(opt), dev_info.max_event_queues,
295 			perf_nb_event_ports(opt), dev_info.max_event_ports);
296 	}
297 	if (!evt_has_all_types_queue(opt->dev_id))
298 		return false;
299 
300 	return true;
301 }
302 
303 static const struct evt_test_ops perf_atq =  {
304 	.cap_check          = perf_atq_capability_check,
305 	.opt_check          = perf_atq_opt_check,
306 	.opt_dump           = perf_atq_opt_dump,
307 	.test_setup         = perf_test_setup,
308 	.ethdev_setup       = perf_ethdev_setup,
309 	.mempool_setup      = perf_mempool_setup,
310 	.eventdev_setup     = perf_atq_eventdev_setup,
311 	.launch_lcores      = perf_atq_launch_lcores,
312 	.eventdev_destroy   = perf_eventdev_destroy,
313 	.mempool_destroy    = perf_mempool_destroy,
314 	.ethdev_destroy     = perf_ethdev_destroy,
315 	.test_result        = perf_test_result,
316 	.test_destroy       = perf_test_destroy,
317 };
318 
319 EVT_TEST_REGISTER(perf_atq);
320