xref: /dpdk/app/test-eventdev/test_perf_atq.c (revision 665b49c51639a10c553433bc2bcd85c7331c631e)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Cavium, Inc
3  */
4 
5 #include "test_perf_common.h"
6 
7 /* See http://doc.dpdk.org/guides/tools/testeventdev.html for test details */
8 
9 static inline int
10 atq_nb_event_queues(struct evt_options *opt)
11 {
12 	/* nb_queues = number of producers */
13 	return opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR ?
14 		rte_eth_dev_count_avail() : evt_nr_active_lcores(opt->plcores);
15 }
16 
17 static __rte_always_inline void
18 atq_fwd_event(struct rte_event *const ev, uint8_t *const sched_type_list,
19 		const uint8_t nb_stages)
20 {
21 	ev->sub_event_type++;
22 	ev->sched_type = sched_type_list[ev->sub_event_type % nb_stages];
23 	ev->op = RTE_EVENT_OP_FORWARD;
24 	ev->event_type = RTE_EVENT_TYPE_CPU;
25 }
26 
27 static __rte_always_inline void
28 atq_fwd_event_vector(struct rte_event *const ev, uint8_t *const sched_type_list,
29 		const uint8_t nb_stages)
30 {
31 	ev->sub_event_type++;
32 	ev->sched_type = sched_type_list[ev->sub_event_type % nb_stages];
33 	ev->op = RTE_EVENT_OP_FORWARD;
34 	ev->event_type = RTE_EVENT_TYPE_CPU_VECTOR;
35 }
36 
37 static int
38 perf_atq_worker(void *arg, const int enable_fwd_latency)
39 {
40 	uint16_t enq = 0, deq = 0;
41 	struct rte_event ev;
42 	PERF_WORKER_INIT;
43 
44 	while (t->done == false) {
45 		deq = rte_event_dequeue_burst(dev, port, &ev, 1, 0);
46 
47 		if (!deq) {
48 			rte_pause();
49 			continue;
50 		}
51 
52 		if (prod_crypto_type && (ev.event_type == RTE_EVENT_TYPE_CRYPTODEV)) {
53 			if (perf_handle_crypto_ev(&ev, &pe, enable_fwd_latency))
54 				continue;
55 		}
56 
57 		stage = ev.sub_event_type % nb_stages;
58 		if (enable_fwd_latency && !prod_timer_type && stage == 0)
59 		/* first stage in pipeline, mark ts to compute fwd latency */
60 			perf_mark_fwd_latency(ev.event_ptr);
61 
62 		/* last stage in pipeline */
63 		if (unlikely(stage == laststage)) {
64 			if (enable_fwd_latency)
65 				cnt = perf_process_last_stage_latency(pool, prod_crypto_type,
66 					&ev, w, bufs, sz, cnt);
67 			else
68 				cnt = perf_process_last_stage(pool, prod_crypto_type, &ev, w,
69 					 bufs, sz, cnt);
70 		} else {
71 			atq_fwd_event(&ev, sched_type_list, nb_stages);
72 			do {
73 				enq = rte_event_enqueue_burst(dev, port, &ev,
74 							      1);
75 			} while (!enq && !t->done);
76 		}
77 	}
78 
79 	perf_worker_cleanup(pool, dev, port, &ev, enq, deq);
80 
81 	return 0;
82 }
83 
84 static int
85 perf_atq_worker_burst(void *arg, const int enable_fwd_latency)
86 {
87 	/* +1 to avoid prefetch out of array check */
88 	struct rte_event ev[BURST_SIZE + 1];
89 	uint16_t enq = 0, nb_rx = 0;
90 	PERF_WORKER_INIT;
91 	uint16_t i;
92 
93 	while (t->done == false) {
94 		nb_rx = rte_event_dequeue_burst(dev, port, ev, BURST_SIZE, 0);
95 
96 		if (!nb_rx) {
97 			rte_pause();
98 			continue;
99 		}
100 
101 		for (i = 0; i < nb_rx; i++) {
102 			if (prod_crypto_type && (ev[i].event_type == RTE_EVENT_TYPE_CRYPTODEV)) {
103 				if (perf_handle_crypto_ev(&ev[i], &pe, enable_fwd_latency))
104 					continue;
105 			}
106 
107 			stage = ev[i].sub_event_type % nb_stages;
108 			if (enable_fwd_latency && !prod_timer_type && stage == 0) {
109 				rte_prefetch0(ev[i+1].event_ptr);
110 				/* first stage in pipeline.
111 				 * mark time stamp to compute fwd latency
112 				 */
113 				perf_mark_fwd_latency(ev[i].event_ptr);
114 			}
115 			/* last stage in pipeline */
116 			if (unlikely(stage == laststage)) {
117 				if (enable_fwd_latency)
118 					cnt = perf_process_last_stage_latency(pool,
119 						prod_crypto_type, &ev[i], w, bufs, sz, cnt);
120 				else
121 					cnt = perf_process_last_stage(pool, prod_crypto_type,
122 						&ev[i], w, bufs, sz, cnt);
123 
124 				ev[i].op = RTE_EVENT_OP_RELEASE;
125 			} else {
126 				atq_fwd_event(&ev[i], sched_type_list,
127 						nb_stages);
128 			}
129 		}
130 
131 		enq = rte_event_enqueue_burst(dev, port, ev, nb_rx);
132 		while ((enq < nb_rx) && !t->done) {
133 			enq += rte_event_enqueue_burst(dev, port,
134 							ev + enq, nb_rx - enq);
135 		}
136 	}
137 
138 	perf_worker_cleanup(pool, dev, port, ev, enq, nb_rx);
139 
140 	return 0;
141 }
142 
143 static int
144 perf_atq_worker_vector(void *arg, const int enable_fwd_latency)
145 {
146 	uint16_t enq = 0, deq = 0;
147 	struct rte_event ev;
148 	PERF_WORKER_INIT;
149 
150 	RTE_SET_USED(sz);
151 	RTE_SET_USED(cnt);
152 	RTE_SET_USED(prod_crypto_type);
153 
154 	while (t->done == false) {
155 		deq = rte_event_dequeue_burst(dev, port, &ev, 1, 0);
156 
157 		if (!deq)
158 			continue;
159 
160 		if (ev.event_type == RTE_EVENT_TYPE_CRYPTODEV_VECTOR) {
161 			if (perf_handle_crypto_vector_ev(&ev, &pe, enable_fwd_latency))
162 				continue;
163 		}
164 
165 		stage = ev.sub_event_type % nb_stages;
166 		/* First q in pipeline, mark timestamp to compute fwd latency */
167 		if (enable_fwd_latency && !prod_timer_type && stage == 0)
168 			perf_mark_fwd_latency(pe);
169 
170 		/* Last stage in pipeline */
171 		if (unlikely(stage == laststage)) {
172 			perf_process_vector_last_stage(pool, t->ca_op_pool, &ev, w,
173 							enable_fwd_latency);
174 		} else {
175 			atq_fwd_event_vector(&ev, sched_type_list, nb_stages);
176 			do {
177 				enq = rte_event_enqueue_burst(dev, port, &ev, 1);
178 			} while (!enq && !t->done);
179 		}
180 	}
181 
182 	perf_worker_cleanup(pool, dev, port, &ev, enq, deq);
183 
184 	return 0;
185 }
186 
187 static int
188 worker_wrapper(void *arg)
189 {
190 	struct worker_data *w  = arg;
191 	struct evt_options *opt = w->t->opt;
192 
193 	const bool burst = evt_has_burst_mode(w->dev_id);
194 	const int fwd_latency = opt->fwd_latency;
195 
196 	/* allow compiler to optimize */
197 	if (opt->ena_vector && opt->prod_type == EVT_PROD_TYPE_EVENT_CRYPTO_ADPTR)
198 		return perf_atq_worker_vector(arg, fwd_latency);
199 	else if (!burst && !fwd_latency)
200 		return perf_atq_worker(arg, 0);
201 	else if (!burst && fwd_latency)
202 		return perf_atq_worker(arg, 1);
203 	else if (burst && !fwd_latency)
204 		return perf_atq_worker_burst(arg, 0);
205 	else if (burst && fwd_latency)
206 		return perf_atq_worker_burst(arg, 1);
207 
208 	rte_panic("invalid worker\n");
209 }
210 
211 static int
212 perf_atq_launch_lcores(struct evt_test *test, struct evt_options *opt)
213 {
214 	return perf_launch_lcores(test, opt, worker_wrapper);
215 }
216 
217 static int
218 perf_atq_eventdev_setup(struct evt_test *test, struct evt_options *opt)
219 {
220 	int ret;
221 	uint8_t queue;
222 	uint8_t nb_queues;
223 	uint8_t nb_ports;
224 	uint16_t prod;
225 	struct rte_event_dev_info dev_info;
226 	struct test_perf *t = evt_test_priv(test);
227 
228 	nb_ports = evt_nr_active_lcores(opt->wlcores);
229 	nb_ports += (opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR ||
230 			opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) ? 0 :
231 		evt_nr_active_lcores(opt->plcores);
232 
233 	nb_queues = atq_nb_event_queues(opt);
234 
235 	ret = rte_event_dev_info_get(opt->dev_id, &dev_info);
236 	if (ret) {
237 		evt_err("failed to get eventdev info %d", opt->dev_id);
238 		return ret;
239 	}
240 
241 	ret = evt_configure_eventdev(opt, nb_queues, nb_ports);
242 	if (ret) {
243 		evt_err("failed to configure eventdev %d", opt->dev_id);
244 		return ret;
245 	}
246 
247 	struct rte_event_queue_conf q_conf = {
248 			.priority = RTE_EVENT_DEV_PRIORITY_NORMAL,
249 			.event_queue_cfg = RTE_EVENT_QUEUE_CFG_ALL_TYPES,
250 			.nb_atomic_flows = opt->nb_flows,
251 			.nb_atomic_order_sequences = opt->nb_flows,
252 	};
253 	/* queue configurations */
254 	for (queue = 0; queue < nb_queues; queue++) {
255 		ret = rte_event_queue_setup(opt->dev_id, queue, &q_conf);
256 		if (ret) {
257 			evt_err("failed to setup queue=%d", queue);
258 			return ret;
259 		}
260 	}
261 
262 	if (opt->wkr_deq_dep > dev_info.max_event_port_dequeue_depth)
263 		opt->wkr_deq_dep = dev_info.max_event_port_dequeue_depth;
264 
265 	/* port configuration */
266 	const struct rte_event_port_conf p_conf = {
267 			.dequeue_depth = opt->wkr_deq_dep,
268 			.enqueue_depth = dev_info.max_event_port_dequeue_depth,
269 			.new_event_threshold = dev_info.max_num_events,
270 	};
271 
272 	ret = perf_event_dev_port_setup(test, opt, 1 /* stride */, nb_queues,
273 			&p_conf);
274 	if (ret)
275 		return ret;
276 
277 	if (!evt_has_distributed_sched(opt->dev_id)) {
278 		uint32_t service_id;
279 		rte_event_dev_service_id_get(opt->dev_id, &service_id);
280 		ret = evt_service_setup(service_id);
281 		if (ret) {
282 			evt_err("No service lcore found to run event dev.");
283 			return ret;
284 		}
285 	}
286 
287 	ret = rte_event_dev_start(opt->dev_id);
288 	if (ret) {
289 		evt_err("failed to start eventdev %d", opt->dev_id);
290 		return ret;
291 	}
292 
293 	if (opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR) {
294 		RTE_ETH_FOREACH_DEV(prod) {
295 			ret = rte_eth_dev_start(prod);
296 			if (ret) {
297 				evt_err("Ethernet dev [%d] failed to start. Using synthetic producer",
298 						prod);
299 				return ret;
300 			}
301 
302 			ret = rte_event_eth_rx_adapter_start(prod);
303 			if (ret) {
304 				evt_err("Rx adapter[%d] start failed", prod);
305 				return ret;
306 			}
307 			printf("%s: Port[%d] using Rx adapter[%d] started\n",
308 					__func__, prod, prod);
309 		}
310 	} else if (opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) {
311 		for (prod = 0; prod < opt->nb_timer_adptrs; prod++) {
312 			ret = rte_event_timer_adapter_start(
313 					t->timer_adptr[prod]);
314 			if (ret) {
315 				evt_err("failed to Start event timer adapter %d"
316 						, prod);
317 				return ret;
318 			}
319 		}
320 	} else if (opt->prod_type == EVT_PROD_TYPE_EVENT_CRYPTO_ADPTR) {
321 		uint8_t cdev_id, cdev_count;
322 
323 		cdev_count = rte_cryptodev_count();
324 		for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) {
325 			ret = rte_cryptodev_start(cdev_id);
326 			if (ret) {
327 				evt_err("Failed to start cryptodev %u",
328 					cdev_id);
329 				return ret;
330 			}
331 		}
332 	}
333 
334 	return 0;
335 }
336 
337 static void
338 perf_atq_opt_dump(struct evt_options *opt)
339 {
340 	perf_opt_dump(opt, atq_nb_event_queues(opt));
341 }
342 
343 static int
344 perf_atq_opt_check(struct evt_options *opt)
345 {
346 	return perf_opt_check(opt, atq_nb_event_queues(opt));
347 }
348 
349 static bool
350 perf_atq_capability_check(struct evt_options *opt)
351 {
352 	struct rte_event_dev_info dev_info;
353 
354 	rte_event_dev_info_get(opt->dev_id, &dev_info);
355 	if (dev_info.max_event_queues < atq_nb_event_queues(opt) ||
356 			dev_info.max_event_ports < perf_nb_event_ports(opt)) {
357 		evt_err("not enough eventdev queues=%d/%d or ports=%d/%d",
358 			atq_nb_event_queues(opt), dev_info.max_event_queues,
359 			perf_nb_event_ports(opt), dev_info.max_event_ports);
360 	}
361 	if (!evt_has_all_types_queue(opt->dev_id))
362 		return false;
363 
364 	return true;
365 }
366 
367 static const struct evt_test_ops perf_atq =  {
368 	.cap_check          = perf_atq_capability_check,
369 	.opt_check          = perf_atq_opt_check,
370 	.opt_dump           = perf_atq_opt_dump,
371 	.test_setup         = perf_test_setup,
372 	.ethdev_setup       = perf_ethdev_setup,
373 	.cryptodev_setup    = perf_cryptodev_setup,
374 	.ethdev_rx_stop     = perf_ethdev_rx_stop,
375 	.mempool_setup      = perf_mempool_setup,
376 	.eventdev_setup     = perf_atq_eventdev_setup,
377 	.launch_lcores      = perf_atq_launch_lcores,
378 	.eventdev_destroy   = perf_eventdev_destroy,
379 	.mempool_destroy    = perf_mempool_destroy,
380 	.ethdev_destroy     = perf_ethdev_destroy,
381 	.cryptodev_destroy  = perf_cryptodev_destroy,
382 	.test_result        = perf_test_result,
383 	.test_destroy       = perf_test_destroy,
384 };
385 
386 EVT_TEST_REGISTER(perf_atq);
387