xref: /dpdk/app/test-eventdev/test_perf_atq.c (revision 02d36ef6a9528e0f4a3403956e66bcea5fadbf8c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Cavium, Inc
3  */
4 
5 #include "test_perf_common.h"
6 
7 /* See http://doc.dpdk.org/guides/tools/testeventdev.html for test details */
8 
9 static inline int
10 atq_nb_event_queues(struct evt_options *opt)
11 {
12 	/* nb_queues = number of producers */
13 	return opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR ?
14 		rte_eth_dev_count_avail() : evt_nr_active_lcores(opt->plcores);
15 }
16 
17 static __rte_always_inline void
18 atq_fwd_event(struct rte_event *const ev, uint8_t *const sched_type_list,
19 		const uint8_t nb_stages)
20 {
21 	ev->sub_event_type++;
22 	ev->sched_type = sched_type_list[ev->sub_event_type % nb_stages];
23 	ev->op = RTE_EVENT_OP_FORWARD;
24 	ev->event_type = RTE_EVENT_TYPE_CPU;
25 }
26 
27 static int
28 perf_atq_worker(void *arg, const int enable_fwd_latency)
29 {
30 	struct perf_elt *pe = NULL;
31 	uint16_t enq = 0, deq = 0;
32 	struct rte_event ev;
33 	PERF_WORKER_INIT;
34 	uint8_t stage;
35 
36 	while (t->done == false) {
37 		deq = rte_event_dequeue_burst(dev, port, &ev, 1, 0);
38 
39 		if (!deq) {
40 			rte_pause();
41 			continue;
42 		}
43 
44 		if (prod_crypto_type && (ev.event_type == RTE_EVENT_TYPE_CRYPTODEV)) {
45 			if (perf_handle_crypto_ev(&ev, &pe, enable_fwd_latency))
46 				continue;
47 		}
48 
49 		stage = ev.sub_event_type % nb_stages;
50 		if (enable_fwd_latency && !prod_timer_type && stage == 0)
51 		/* first stage in pipeline, mark ts to compute fwd latency */
52 			perf_mark_fwd_latency(ev.event_ptr);
53 
54 		/* last stage in pipeline */
55 		if (unlikely(stage == laststage)) {
56 			if (enable_fwd_latency)
57 				cnt = perf_process_last_stage_latency(pool, prod_crypto_type,
58 					&ev, w, bufs, sz, cnt);
59 			else
60 				cnt = perf_process_last_stage(pool, prod_crypto_type, &ev, w,
61 					 bufs, sz, cnt);
62 		} else {
63 			atq_fwd_event(&ev, sched_type_list, nb_stages);
64 			do {
65 				enq = rte_event_enqueue_burst(dev, port, &ev,
66 							      1);
67 			} while (!enq && !t->done);
68 		}
69 	}
70 
71 	perf_worker_cleanup(pool, dev, port, &ev, enq, deq);
72 
73 	return 0;
74 }
75 
76 static int
77 perf_atq_worker_burst(void *arg, const int enable_fwd_latency)
78 {
79 	/* +1 to avoid prefetch out of array check */
80 	struct rte_event ev[BURST_SIZE + 1];
81 	uint16_t enq = 0, nb_rx = 0;
82 	struct perf_elt *pe = NULL;
83 	PERF_WORKER_INIT;
84 	uint8_t stage;
85 	uint16_t i;
86 
87 	while (t->done == false) {
88 		nb_rx = rte_event_dequeue_burst(dev, port, ev, BURST_SIZE, 0);
89 
90 		if (!nb_rx) {
91 			rte_pause();
92 			continue;
93 		}
94 
95 		for (i = 0; i < nb_rx; i++) {
96 			if (prod_crypto_type && (ev[i].event_type == RTE_EVENT_TYPE_CRYPTODEV)) {
97 				if (perf_handle_crypto_ev(&ev[i], &pe, enable_fwd_latency))
98 					continue;
99 			}
100 
101 			stage = ev[i].sub_event_type % nb_stages;
102 			if (enable_fwd_latency && !prod_timer_type && stage == 0) {
103 				rte_prefetch0(ev[i+1].event_ptr);
104 				/* first stage in pipeline.
105 				 * mark time stamp to compute fwd latency
106 				 */
107 				perf_mark_fwd_latency(ev[i].event_ptr);
108 			}
109 			/* last stage in pipeline */
110 			if (unlikely(stage == laststage)) {
111 				if (enable_fwd_latency)
112 					cnt = perf_process_last_stage_latency(pool,
113 						prod_crypto_type, &ev[i], w, bufs, sz, cnt);
114 				else
115 					cnt = perf_process_last_stage(pool, prod_crypto_type,
116 						&ev[i], w, bufs, sz, cnt);
117 
118 				ev[i].op = RTE_EVENT_OP_RELEASE;
119 			} else {
120 				atq_fwd_event(&ev[i], sched_type_list,
121 						nb_stages);
122 			}
123 		}
124 
125 		enq = rte_event_enqueue_burst(dev, port, ev, nb_rx);
126 		while ((enq < nb_rx) && !t->done) {
127 			enq += rte_event_enqueue_burst(dev, port,
128 							ev + enq, nb_rx - enq);
129 		}
130 	}
131 
132 	perf_worker_cleanup(pool, dev, port, ev, enq, nb_rx);
133 
134 	return 0;
135 }
136 
137 static int
138 worker_wrapper(void *arg)
139 {
140 	struct worker_data *w  = arg;
141 	struct evt_options *opt = w->t->opt;
142 
143 	const bool burst = evt_has_burst_mode(w->dev_id);
144 	const int fwd_latency = opt->fwd_latency;
145 
146 	/* allow compiler to optimize */
147 	if (!burst && !fwd_latency)
148 		return perf_atq_worker(arg, 0);
149 	else if (!burst && fwd_latency)
150 		return perf_atq_worker(arg, 1);
151 	else if (burst && !fwd_latency)
152 		return perf_atq_worker_burst(arg, 0);
153 	else if (burst && fwd_latency)
154 		return perf_atq_worker_burst(arg, 1);
155 
156 	rte_panic("invalid worker\n");
157 }
158 
159 static int
160 perf_atq_launch_lcores(struct evt_test *test, struct evt_options *opt)
161 {
162 	return perf_launch_lcores(test, opt, worker_wrapper);
163 }
164 
165 static int
166 perf_atq_eventdev_setup(struct evt_test *test, struct evt_options *opt)
167 {
168 	int ret;
169 	uint8_t queue;
170 	uint8_t nb_queues;
171 	uint8_t nb_ports;
172 	uint16_t prod;
173 	struct rte_event_dev_info dev_info;
174 	struct test_perf *t = evt_test_priv(test);
175 
176 	nb_ports = evt_nr_active_lcores(opt->wlcores);
177 	nb_ports += (opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR ||
178 			opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) ? 0 :
179 		evt_nr_active_lcores(opt->plcores);
180 
181 	nb_queues = atq_nb_event_queues(opt);
182 
183 	ret = rte_event_dev_info_get(opt->dev_id, &dev_info);
184 	if (ret) {
185 		evt_err("failed to get eventdev info %d", opt->dev_id);
186 		return ret;
187 	}
188 
189 	ret = evt_configure_eventdev(opt, nb_queues, nb_ports);
190 	if (ret) {
191 		evt_err("failed to configure eventdev %d", opt->dev_id);
192 		return ret;
193 	}
194 
195 	struct rte_event_queue_conf q_conf = {
196 			.priority = RTE_EVENT_DEV_PRIORITY_NORMAL,
197 			.event_queue_cfg = RTE_EVENT_QUEUE_CFG_ALL_TYPES,
198 			.nb_atomic_flows = opt->nb_flows,
199 			.nb_atomic_order_sequences = opt->nb_flows,
200 	};
201 	/* queue configurations */
202 	for (queue = 0; queue < nb_queues; queue++) {
203 		ret = rte_event_queue_setup(opt->dev_id, queue, &q_conf);
204 		if (ret) {
205 			evt_err("failed to setup queue=%d", queue);
206 			return ret;
207 		}
208 	}
209 
210 	if (opt->wkr_deq_dep > dev_info.max_event_port_dequeue_depth)
211 		opt->wkr_deq_dep = dev_info.max_event_port_dequeue_depth;
212 
213 	/* port configuration */
214 	const struct rte_event_port_conf p_conf = {
215 			.dequeue_depth = opt->wkr_deq_dep,
216 			.enqueue_depth = dev_info.max_event_port_dequeue_depth,
217 			.new_event_threshold = dev_info.max_num_events,
218 	};
219 
220 	ret = perf_event_dev_port_setup(test, opt, 1 /* stride */, nb_queues,
221 			&p_conf);
222 	if (ret)
223 		return ret;
224 
225 	if (!evt_has_distributed_sched(opt->dev_id)) {
226 		uint32_t service_id;
227 		rte_event_dev_service_id_get(opt->dev_id, &service_id);
228 		ret = evt_service_setup(service_id);
229 		if (ret) {
230 			evt_err("No service lcore found to run event dev.");
231 			return ret;
232 		}
233 	}
234 
235 	ret = rte_event_dev_start(opt->dev_id);
236 	if (ret) {
237 		evt_err("failed to start eventdev %d", opt->dev_id);
238 		return ret;
239 	}
240 
241 	if (opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR) {
242 		RTE_ETH_FOREACH_DEV(prod) {
243 			ret = rte_eth_dev_start(prod);
244 			if (ret) {
245 				evt_err("Ethernet dev [%d] failed to start. Using synthetic producer",
246 						prod);
247 				return ret;
248 			}
249 
250 			ret = rte_event_eth_rx_adapter_start(prod);
251 			if (ret) {
252 				evt_err("Rx adapter[%d] start failed", prod);
253 				return ret;
254 			}
255 			printf("%s: Port[%d] using Rx adapter[%d] started\n",
256 					__func__, prod, prod);
257 		}
258 	} else if (opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) {
259 		for (prod = 0; prod < opt->nb_timer_adptrs; prod++) {
260 			ret = rte_event_timer_adapter_start(
261 					t->timer_adptr[prod]);
262 			if (ret) {
263 				evt_err("failed to Start event timer adapter %d"
264 						, prod);
265 				return ret;
266 			}
267 		}
268 	} else if (opt->prod_type == EVT_PROD_TYPE_EVENT_CRYPTO_ADPTR) {
269 		uint8_t cdev_id, cdev_count;
270 
271 		cdev_count = rte_cryptodev_count();
272 		for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) {
273 			ret = rte_cryptodev_start(cdev_id);
274 			if (ret) {
275 				evt_err("Failed to start cryptodev %u",
276 					cdev_id);
277 				return ret;
278 			}
279 		}
280 	}
281 
282 	return 0;
283 }
284 
285 static void
286 perf_atq_opt_dump(struct evt_options *opt)
287 {
288 	perf_opt_dump(opt, atq_nb_event_queues(opt));
289 }
290 
291 static int
292 perf_atq_opt_check(struct evt_options *opt)
293 {
294 	return perf_opt_check(opt, atq_nb_event_queues(opt));
295 }
296 
297 static bool
298 perf_atq_capability_check(struct evt_options *opt)
299 {
300 	struct rte_event_dev_info dev_info;
301 
302 	rte_event_dev_info_get(opt->dev_id, &dev_info);
303 	if (dev_info.max_event_queues < atq_nb_event_queues(opt) ||
304 			dev_info.max_event_ports < perf_nb_event_ports(opt)) {
305 		evt_err("not enough eventdev queues=%d/%d or ports=%d/%d",
306 			atq_nb_event_queues(opt), dev_info.max_event_queues,
307 			perf_nb_event_ports(opt), dev_info.max_event_ports);
308 	}
309 	if (!evt_has_all_types_queue(opt->dev_id))
310 		return false;
311 
312 	return true;
313 }
314 
315 static const struct evt_test_ops perf_atq =  {
316 	.cap_check          = perf_atq_capability_check,
317 	.opt_check          = perf_atq_opt_check,
318 	.opt_dump           = perf_atq_opt_dump,
319 	.test_setup         = perf_test_setup,
320 	.ethdev_setup       = perf_ethdev_setup,
321 	.cryptodev_setup    = perf_cryptodev_setup,
322 	.ethdev_rx_stop     = perf_ethdev_rx_stop,
323 	.mempool_setup      = perf_mempool_setup,
324 	.eventdev_setup     = perf_atq_eventdev_setup,
325 	.launch_lcores      = perf_atq_launch_lcores,
326 	.eventdev_destroy   = perf_eventdev_destroy,
327 	.mempool_destroy    = perf_mempool_destroy,
328 	.ethdev_destroy     = perf_ethdev_destroy,
329 	.cryptodev_destroy  = perf_cryptodev_destroy,
330 	.test_result        = perf_test_result,
331 	.test_destroy       = perf_test_destroy,
332 };
333 
334 EVT_TEST_REGISTER(perf_atq);
335