xref: /dpdk/app/test-crypto-perf/cperf_test_throughput.c (revision e9fd1ebf981f361844aea9ec94e17f4bda5e1479)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4 
5 #include <stdlib.h>
6 
7 #include <rte_malloc.h>
8 #include <rte_cycles.h>
9 #include <rte_crypto.h>
10 #include <rte_cryptodev.h>
11 
12 #include "cperf_test_throughput.h"
13 #include "cperf_ops.h"
14 #include "cperf_test_common.h"
15 
16 struct cperf_throughput_ctx {
17 	uint8_t dev_id;
18 	uint16_t qp_id;
19 	uint8_t lcore_id;
20 
21 	struct rte_mempool *pool;
22 
23 	void *sess;
24 
25 	cperf_populate_ops_t populate_ops;
26 
27 	uint32_t src_buf_offset;
28 	uint32_t dst_buf_offset;
29 
30 	const struct cperf_options *options;
31 	const struct cperf_test_vector *test_vector;
32 };
33 
34 static void
35 cperf_throughput_test_free(struct cperf_throughput_ctx *ctx)
36 {
37 	if (!ctx)
38 		return;
39 	if (ctx->sess) {
40 		if (ctx->options->op_type == CPERF_ASYM_MODEX)
41 			rte_cryptodev_asym_session_free(ctx->dev_id,
42 					(void *)ctx->sess);
43 #ifdef RTE_LIB_SECURITY
44 		else if (ctx->options->op_type == CPERF_PDCP ||
45 			 ctx->options->op_type == CPERF_DOCSIS ||
46 			 ctx->options->op_type == CPERF_TLS ||
47 			 ctx->options->op_type == CPERF_IPSEC) {
48 			void *sec_ctx = rte_cryptodev_get_sec_ctx(ctx->dev_id);
49 
50 			rte_security_session_destroy(sec_ctx, (void *)ctx->sess);
51 		}
52 #endif
53 		else
54 			rte_cryptodev_sym_session_free(ctx->dev_id, ctx->sess);
55 	}
56 	rte_mempool_free(ctx->pool);
57 
58 	rte_free(ctx);
59 }
60 
61 void *
62 cperf_throughput_test_constructor(struct rte_mempool *sess_mp,
63 		uint8_t dev_id, uint16_t qp_id,
64 		const struct cperf_options *options,
65 		const struct cperf_test_vector *test_vector,
66 		const struct cperf_op_fns *op_fns)
67 {
68 	struct cperf_throughput_ctx *ctx = NULL;
69 
70 	ctx = rte_malloc(NULL, sizeof(struct cperf_throughput_ctx), 0);
71 	if (ctx == NULL)
72 		goto err;
73 
74 	ctx->dev_id = dev_id;
75 	ctx->qp_id = qp_id;
76 
77 	ctx->populate_ops = op_fns->populate_ops;
78 	ctx->options = options;
79 	ctx->test_vector = test_vector;
80 
81 	/* IV goes at the end of the crypto operation */
82 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
83 		sizeof(struct rte_crypto_sym_op);
84 
85 	ctx->sess = op_fns->sess_create(sess_mp, dev_id, options,
86 			test_vector, iv_offset);
87 	if (ctx->sess == NULL)
88 		goto err;
89 
90 	if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0,
91 			&ctx->src_buf_offset, &ctx->dst_buf_offset,
92 			&ctx->pool) < 0)
93 		goto err;
94 
95 	return ctx;
96 err:
97 	cperf_throughput_test_free(ctx);
98 
99 	return NULL;
100 }
101 
102 int
103 cperf_throughput_test_runner(void *test_ctx)
104 {
105 	struct cperf_throughput_ctx *ctx = test_ctx;
106 	uint16_t test_burst_size;
107 	uint8_t burst_size_idx = 0;
108 	uint32_t imix_idx = 0;
109 
110 	static uint16_t display_once;
111 
112 	struct rte_crypto_op *ops[ctx->options->max_burst_size];
113 	struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
114 	uint64_t i;
115 
116 	uint32_t lcore = rte_lcore_id();
117 
118 #ifdef CPERF_LINEARIZATION_ENABLE
119 	struct rte_cryptodev_info dev_info;
120 	int linearize = 0;
121 
122 	/* Check if source mbufs require coalescing */
123 	if ((ctx->options->op_type != CPERF_ASYM_MODEX) &&
124 	    (ctx->options->segment_sz < ctx->options->max_buffer_size)) {
125 		rte_cryptodev_info_get(ctx->dev_id, &dev_info);
126 		if ((dev_info.feature_flags &
127 				RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
128 			linearize = 1;
129 	}
130 #endif /* CPERF_LINEARIZATION_ENABLE */
131 
132 	ctx->lcore_id = lcore;
133 
134 	/* Warm up the host CPU before starting the test */
135 	for (i = 0; i < ctx->options->total_ops; i++)
136 		rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
137 
138 	/* Get first size from range or list */
139 	if (ctx->options->inc_burst_size != 0)
140 		test_burst_size = ctx->options->min_burst_size;
141 	else
142 		test_burst_size = ctx->options->burst_size_list[0];
143 
144 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
145 		sizeof(struct rte_crypto_sym_op);
146 
147 	while (test_burst_size <= ctx->options->max_burst_size) {
148 		uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0;
149 		uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0;
150 
151 		uint64_t tsc_start, tsc_end, tsc_duration;
152 
153 		uint16_t ops_unused = 0;
154 
155 		tsc_start = rte_rdtsc_precise();
156 
157 		while (ops_enqd_total < ctx->options->total_ops) {
158 
159 			uint16_t burst_size = ((ops_enqd_total + test_burst_size)
160 					<= ctx->options->total_ops) ?
161 							test_burst_size :
162 							ctx->options->total_ops -
163 							ops_enqd_total;
164 
165 			uint16_t ops_needed = burst_size - ops_unused;
166 
167 			/* Allocate objects containing crypto operations and mbufs */
168 			if (rte_mempool_get_bulk(ctx->pool, (void **)ops,
169 						ops_needed) != 0) {
170 				RTE_LOG(ERR, USER1,
171 					"Failed to allocate more crypto operations "
172 					"from the crypto operation pool.\n"
173 					"Consider increasing the pool size "
174 					"with --pool-sz\n");
175 				return -1;
176 			}
177 
178 			/* Setup crypto op, attach mbuf etc */
179 			(ctx->populate_ops)(ops, ctx->src_buf_offset,
180 					ctx->dst_buf_offset,
181 					ops_needed, ctx->sess,
182 					ctx->options, ctx->test_vector,
183 					iv_offset, &imix_idx, &tsc_start);
184 
185 			/**
186 			 * When ops_needed is smaller than ops_enqd, the
187 			 * unused ops need to be moved to the front for
188 			 * next round use.
189 			 */
190 			if (unlikely(ops_enqd > ops_needed)) {
191 				size_t nb_b_to_mov = ops_unused * sizeof(
192 						struct rte_crypto_op *);
193 
194 				memmove(&ops[ops_needed], &ops[ops_enqd],
195 					nb_b_to_mov);
196 			}
197 
198 #ifdef CPERF_LINEARIZATION_ENABLE
199 			if (linearize) {
200 				/* PMD doesn't support scatter-gather and source buffer
201 				 * is segmented.
202 				 * We need to linearize it before enqueuing.
203 				 */
204 				for (i = 0; i < burst_size; i++)
205 					rte_pktmbuf_linearize(
206 						ops[i]->sym->m_src);
207 			}
208 #endif /* CPERF_LINEARIZATION_ENABLE */
209 
210 			/* Enqueue burst of ops on crypto device */
211 			ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
212 					ops, burst_size);
213 			if (ops_enqd < burst_size)
214 				ops_enqd_failed++;
215 
216 			/**
217 			 * Calculate number of ops not enqueued (mainly for hw
218 			 * accelerators whose ingress queue can fill up).
219 			 */
220 			ops_unused = burst_size - ops_enqd;
221 			ops_enqd_total += ops_enqd;
222 
223 
224 			/* Dequeue processed burst of ops from crypto device */
225 			ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
226 					ops_processed, test_burst_size);
227 
228 			if (likely(ops_deqd))  {
229 				/* Free crypto ops so they can be reused. */
230 				rte_mempool_put_bulk(ctx->pool,
231 						(void **)ops_processed, ops_deqd);
232 
233 				ops_deqd_total += ops_deqd;
234 			} else {
235 				/**
236 				 * Count dequeue polls which didn't return any
237 				 * processed operations. This statistic is mainly
238 				 * relevant to hw accelerators.
239 				 */
240 				ops_deqd_failed++;
241 			}
242 
243 		}
244 
245 		/* Dequeue any operations still in the crypto device */
246 
247 		while (ops_deqd_total < ctx->options->total_ops) {
248 			/* Sending 0 length burst to flush sw crypto device */
249 			rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
250 
251 			/* dequeue burst */
252 			ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
253 					ops_processed, test_burst_size);
254 			if (ops_deqd == 0)
255 				ops_deqd_failed++;
256 			else {
257 				rte_mempool_put_bulk(ctx->pool,
258 						(void **)ops_processed, ops_deqd);
259 				ops_deqd_total += ops_deqd;
260 			}
261 		}
262 
263 		tsc_end = rte_rdtsc_precise();
264 		tsc_duration = (tsc_end - tsc_start);
265 
266 		/* Calculate average operations processed per second */
267 		double ops_per_second = ((double)ctx->options->total_ops /
268 				tsc_duration) * rte_get_tsc_hz();
269 
270 		/* Calculate average throughput (Gbps) in bits per second */
271 		double throughput_gbps = ((ops_per_second *
272 				ctx->options->test_buffer_size * 8) / 1000000000);
273 
274 		/* Calculate average cycles per packet */
275 		double cycles_per_packet = ((double)tsc_duration /
276 				ctx->options->total_ops);
277 
278 		uint16_t exp = 0;
279 		if (!ctx->options->csv) {
280 			if (__atomic_compare_exchange_n(&display_once, &exp, 1, 0,
281 					__ATOMIC_RELAXED, __ATOMIC_RELAXED))
282 				printf("%12s%12s%12s%12s%12s%12s%12s%12s%12s%12s\n\n",
283 					"lcore id", "Buf Size", "Burst Size",
284 					"Enqueued", "Dequeued", "Failed Enq",
285 					"Failed Deq", "MOps", "Gbps",
286 					"Cycles/Buf");
287 
288 			printf("%12u%12u%12u%12"PRIu64"%12"PRIu64"%12"PRIu64
289 					"%12"PRIu64"%12.4f%12.4f%12.2f\n",
290 					ctx->lcore_id,
291 					ctx->options->test_buffer_size,
292 					test_burst_size,
293 					ops_enqd_total,
294 					ops_deqd_total,
295 					ops_enqd_failed,
296 					ops_deqd_failed,
297 					ops_per_second/1000000,
298 					throughput_gbps,
299 					cycles_per_packet);
300 		} else {
301 			if (__atomic_compare_exchange_n(&display_once, &exp, 1, 0,
302 					__ATOMIC_RELAXED, __ATOMIC_RELAXED))
303 				printf("#lcore id,Buffer Size(B),"
304 					"Burst Size,Enqueued,Dequeued,Failed Enq,"
305 					"Failed Deq,Ops(Millions),Throughput(Gbps),"
306 					"Cycles/Buf\n\n");
307 
308 			printf("%u,%u,%u,%"PRIu64",%"PRIu64",%"PRIu64",%"PRIu64","
309 					"%.3f,%.3f,%.3f\n",
310 					ctx->lcore_id,
311 					ctx->options->test_buffer_size,
312 					test_burst_size,
313 					ops_enqd_total,
314 					ops_deqd_total,
315 					ops_enqd_failed,
316 					ops_deqd_failed,
317 					ops_per_second/1000000,
318 					throughput_gbps,
319 					cycles_per_packet);
320 		}
321 
322 		/* Get next size from range or list */
323 		if (ctx->options->inc_burst_size != 0)
324 			test_burst_size += ctx->options->inc_burst_size;
325 		else {
326 			if (++burst_size_idx == ctx->options->burst_size_count)
327 				break;
328 			test_burst_size = ctx->options->burst_size_list[burst_size_idx];
329 		}
330 
331 	}
332 
333 	return 0;
334 }
335 
336 
337 void
338 cperf_throughput_test_destructor(void *arg)
339 {
340 	struct cperf_throughput_ctx *ctx = arg;
341 
342 	if (ctx == NULL)
343 		return;
344 
345 	cperf_throughput_test_free(ctx);
346 }
347