xref: /dpdk/app/test-crypto-perf/cperf_test_throughput.c (revision 79daa287a6733a753c87989621394567408f3345)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4 
5 #include <stdlib.h>
6 
7 #include <rte_malloc.h>
8 #include <rte_cycles.h>
9 #include <rte_crypto.h>
10 #include <rte_cryptodev.h>
11 
12 #include "cperf_test_throughput.h"
13 #include "cperf_ops.h"
14 #include "cperf_test_common.h"
15 
16 struct cperf_throughput_ctx {
17 	uint8_t dev_id;
18 	uint16_t qp_id;
19 	uint8_t lcore_id;
20 
21 	struct rte_mempool *pool;
22 
23 	void *sess;
24 	uint8_t sess_owner;
25 
26 	cperf_populate_ops_t populate_ops;
27 
28 	uint32_t src_buf_offset;
29 	uint32_t dst_buf_offset;
30 
31 	const struct cperf_options *options;
32 	const struct cperf_test_vector *test_vector;
33 };
34 
35 static void
36 cperf_throughput_test_free(struct cperf_throughput_ctx *ctx)
37 {
38 	if (!ctx)
39 		return;
40 	if (ctx->sess != NULL && ctx->sess_owner) {
41 		if (cperf_is_asym_test(ctx->options))
42 			rte_cryptodev_asym_session_free(ctx->dev_id,
43 					(void *)ctx->sess);
44 #ifdef RTE_LIB_SECURITY
45 		else if (ctx->options->op_type == CPERF_PDCP ||
46 			 ctx->options->op_type == CPERF_DOCSIS ||
47 			 ctx->options->op_type == CPERF_TLS ||
48 			 ctx->options->op_type == CPERF_IPSEC) {
49 			void *sec_ctx = rte_cryptodev_get_sec_ctx(ctx->dev_id);
50 
51 			rte_security_session_destroy(sec_ctx, (void *)ctx->sess);
52 		}
53 #endif
54 		else
55 			rte_cryptodev_sym_session_free(ctx->dev_id, ctx->sess);
56 	}
57 	rte_mempool_free(ctx->pool);
58 
59 	rte_free(ctx);
60 }
61 
62 void *
63 cperf_throughput_test_constructor(struct rte_mempool *sess_mp,
64 		uint8_t dev_id, uint16_t qp_id,
65 		const struct cperf_options *options,
66 		const struct cperf_test_vector *test_vector,
67 		const struct cperf_op_fns *op_fns,
68 		void **sess)
69 {
70 	struct cperf_throughput_ctx *ctx = NULL;
71 
72 	ctx = rte_malloc(NULL, sizeof(struct cperf_throughput_ctx), 0);
73 	if (ctx == NULL)
74 		goto err;
75 
76 	ctx->dev_id = dev_id;
77 	ctx->qp_id = qp_id;
78 
79 	ctx->populate_ops = op_fns->populate_ops;
80 	ctx->options = options;
81 	ctx->test_vector = test_vector;
82 
83 	/* IV goes at the end of the crypto operation */
84 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
85 		sizeof(struct rte_crypto_sym_op);
86 
87 	if (*sess != NULL) {
88 		ctx->sess = *sess;
89 		ctx->sess_owner = false;
90 	} else {
91 		ctx->sess = op_fns->sess_create(sess_mp, dev_id, options, test_vector,
92 			iv_offset);
93 		if (ctx->sess == NULL)
94 			goto err;
95 		*sess = ctx->sess;
96 		ctx->sess_owner = true;
97 	}
98 
99 	if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0,
100 			&ctx->src_buf_offset, &ctx->dst_buf_offset,
101 			&ctx->pool) < 0)
102 		goto err;
103 
104 	return ctx;
105 err:
106 	cperf_throughput_test_free(ctx);
107 
108 	return NULL;
109 }
110 
111 static void
112 cperf_verify_init_ops(struct rte_mempool *mp __rte_unused,
113 		      void *opaque_arg,
114 		      void *obj,
115 		      __rte_unused unsigned int i)
116 {
117 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
118 		sizeof(struct rte_crypto_sym_op);
119 	uint32_t imix_idx = 0;
120 	struct cperf_throughput_ctx *ctx = opaque_arg;
121 	struct rte_crypto_op *op = obj;
122 
123 	(ctx->populate_ops)(&op, ctx->src_buf_offset,
124 			ctx->dst_buf_offset,
125 			1, ctx->sess, ctx->options,
126 			ctx->test_vector, iv_offset, &imix_idx, NULL);
127 
128 	cperf_mbuf_set(op->sym->m_src, ctx->options, ctx->test_vector);
129 }
130 
131 int
132 cperf_throughput_test_runner(void *test_ctx)
133 {
134 	struct cperf_throughput_ctx *ctx = test_ctx;
135 	uint16_t test_burst_size;
136 	uint8_t burst_size_idx = 0;
137 	uint32_t imix_idx = 0;
138 
139 	static RTE_ATOMIC(uint16_t) display_once;
140 
141 	struct rte_crypto_op *ops[ctx->options->max_burst_size];
142 	struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
143 	uint64_t i;
144 
145 	uint32_t lcore = rte_lcore_id();
146 
147 #ifdef CPERF_LINEARIZATION_ENABLE
148 	struct rte_cryptodev_info dev_info;
149 	int linearize = 0;
150 
151 	/* Check if source mbufs require coalescing */
152 	if ((ctx->options->op_type != CPERF_ASYM_MODEX) &&
153 	    (ctx->options->segment_sz < ctx->options->max_buffer_size)) {
154 		rte_cryptodev_info_get(ctx->dev_id, &dev_info);
155 		if ((dev_info.feature_flags &
156 				RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
157 			linearize = 1;
158 	}
159 #endif /* CPERF_LINEARIZATION_ENABLE */
160 
161 	ctx->lcore_id = lcore;
162 
163 	/* Warm up the host CPU before starting the test */
164 	for (i = 0; i < ctx->options->total_ops; i++)
165 		rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
166 
167 	/* Get first size from range or list */
168 	if (ctx->options->inc_burst_size != 0)
169 		test_burst_size = ctx->options->min_burst_size;
170 	else
171 		test_burst_size = ctx->options->burst_size_list[0];
172 
173 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
174 		sizeof(struct rte_crypto_sym_op);
175 
176 	if (ctx->options->out_of_place)
177 		rte_mempool_obj_iter(ctx->pool, cperf_verify_init_ops, (void *)ctx);
178 
179 	while (test_burst_size <= ctx->options->max_burst_size) {
180 		uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0;
181 		uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0;
182 
183 		uint64_t tsc_start, tsc_end, tsc_duration;
184 
185 		uint16_t ops_unused = 0;
186 
187 		tsc_start = rte_rdtsc_precise();
188 
189 		while (ops_enqd_total < ctx->options->total_ops) {
190 
191 			uint16_t burst_size = ((ops_enqd_total + test_burst_size)
192 					<= ctx->options->total_ops) ?
193 							test_burst_size :
194 							ctx->options->total_ops -
195 							ops_enqd_total;
196 
197 			uint16_t ops_needed = burst_size - ops_unused;
198 
199 			/* Allocate objects containing crypto operations and mbufs */
200 			if (rte_mempool_get_bulk(ctx->pool, (void **)ops,
201 						ops_needed) != 0) {
202 				RTE_LOG(ERR, USER1,
203 					"Failed to allocate more crypto operations "
204 					"from the crypto operation pool.\n"
205 					"Consider increasing the pool size "
206 					"with --pool-sz\n");
207 				return -1;
208 			}
209 
210 			/* Setup crypto op, attach mbuf etc */
211 			if (!ctx->options->out_of_place)
212 				(ctx->populate_ops)(ops, ctx->src_buf_offset,
213 						ctx->dst_buf_offset,
214 						ops_needed, ctx->sess,
215 						ctx->options, ctx->test_vector,
216 						iv_offset, &imix_idx, &tsc_start);
217 
218 			/**
219 			 * When ops_needed is smaller than ops_enqd, the
220 			 * unused ops need to be moved to the front for
221 			 * next round use.
222 			 */
223 			if (unlikely(ops_enqd > ops_needed)) {
224 				size_t nb_b_to_mov = ops_unused * sizeof(
225 						struct rte_crypto_op *);
226 
227 				memmove(&ops[ops_needed], &ops[ops_enqd],
228 					nb_b_to_mov);
229 			}
230 
231 #ifdef CPERF_LINEARIZATION_ENABLE
232 			if (linearize) {
233 				/* PMD doesn't support scatter-gather and source buffer
234 				 * is segmented.
235 				 * We need to linearize it before enqueuing.
236 				 */
237 				for (i = 0; i < burst_size; i++)
238 					rte_pktmbuf_linearize(
239 						ops[i]->sym->m_src);
240 			}
241 #endif /* CPERF_LINEARIZATION_ENABLE */
242 
243 			/* Enqueue burst of ops on crypto device */
244 			ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
245 					ops, burst_size);
246 			if (ops_enqd < burst_size)
247 				ops_enqd_failed++;
248 
249 			/**
250 			 * Calculate number of ops not enqueued (mainly for hw
251 			 * accelerators whose ingress queue can fill up).
252 			 */
253 			ops_unused = burst_size - ops_enqd;
254 			ops_enqd_total += ops_enqd;
255 
256 
257 			/* Dequeue processed burst of ops from crypto device */
258 			ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
259 					ops_processed, test_burst_size);
260 
261 			if (likely(ops_deqd))  {
262 				/* Free crypto ops so they can be reused. */
263 				rte_mempool_put_bulk(ctx->pool,
264 						(void **)ops_processed, ops_deqd);
265 
266 				ops_deqd_total += ops_deqd;
267 			} else {
268 				/**
269 				 * Count dequeue polls which didn't return any
270 				 * processed operations. This statistic is mainly
271 				 * relevant to hw accelerators.
272 				 */
273 				ops_deqd_failed++;
274 			}
275 
276 		}
277 
278 		/* Dequeue any operations still in the crypto device */
279 
280 		while (ops_deqd_total < ctx->options->total_ops) {
281 			/* Sending 0 length burst to flush sw crypto device */
282 			rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
283 
284 			/* dequeue burst */
285 			ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
286 					ops_processed, test_burst_size);
287 			if (ops_deqd == 0)
288 				ops_deqd_failed++;
289 			else {
290 				rte_mempool_put_bulk(ctx->pool,
291 						(void **)ops_processed, ops_deqd);
292 				ops_deqd_total += ops_deqd;
293 			}
294 		}
295 
296 		tsc_end = rte_rdtsc_precise();
297 		tsc_duration = (tsc_end - tsc_start);
298 
299 		/* Calculate average operations processed per second */
300 		double ops_per_second = ((double)ctx->options->total_ops /
301 				tsc_duration) * rte_get_tsc_hz();
302 
303 		/* Calculate average throughput (Gbps) in bits per second */
304 		double throughput_gbps = ((ops_per_second *
305 				ctx->options->test_buffer_size * 8) / 1000000000);
306 
307 		/* Calculate average cycles per packet */
308 		double cycles_per_packet = ((double)tsc_duration /
309 				ctx->options->total_ops);
310 
311 		uint16_t exp = 0;
312 		if (!ctx->options->csv) {
313 			if (rte_atomic_compare_exchange_strong_explicit(&display_once, &exp, 1,
314 					rte_memory_order_relaxed, rte_memory_order_relaxed))
315 				printf("%12s%12s%12s%12s%12s%12s%12s%12s%12s%12s\n\n",
316 					"lcore id", "Buf Size", "Burst Size",
317 					"Enqueued", "Dequeued", "Failed Enq",
318 					"Failed Deq", "MOps", "Gbps",
319 					"Cycles/Buf");
320 
321 			printf("%12u%12u%12u%12"PRIu64"%12"PRIu64"%12"PRIu64
322 					"%12"PRIu64"%12.4f%12.4f%12.2f\n",
323 					ctx->lcore_id,
324 					ctx->options->test_buffer_size,
325 					test_burst_size,
326 					ops_enqd_total,
327 					ops_deqd_total,
328 					ops_enqd_failed,
329 					ops_deqd_failed,
330 					ops_per_second/1000000,
331 					throughput_gbps,
332 					cycles_per_packet);
333 		} else {
334 			if (rte_atomic_compare_exchange_strong_explicit(&display_once, &exp, 1,
335 					rte_memory_order_relaxed, rte_memory_order_relaxed))
336 				printf("#lcore id,Buffer Size(B),"
337 					"Burst Size,Enqueued,Dequeued,Failed Enq,"
338 					"Failed Deq,Ops(Millions),Throughput(Gbps),"
339 					"Cycles/Buf\n\n");
340 
341 			printf("%u,%u,%u,%"PRIu64",%"PRIu64",%"PRIu64",%"PRIu64","
342 					"%.3f,%.3f,%.3f\n",
343 					ctx->lcore_id,
344 					ctx->options->test_buffer_size,
345 					test_burst_size,
346 					ops_enqd_total,
347 					ops_deqd_total,
348 					ops_enqd_failed,
349 					ops_deqd_failed,
350 					ops_per_second/1000000,
351 					throughput_gbps,
352 					cycles_per_packet);
353 		}
354 
355 		/* Get next size from range or list */
356 		if (ctx->options->inc_burst_size != 0)
357 			test_burst_size += ctx->options->inc_burst_size;
358 		else {
359 			if (++burst_size_idx == ctx->options->burst_size_count)
360 				break;
361 			test_burst_size = ctx->options->burst_size_list[burst_size_idx];
362 		}
363 
364 	}
365 
366 	return 0;
367 }
368 
369 
370 void
371 cperf_throughput_test_destructor(void *arg)
372 {
373 	struct cperf_throughput_ctx *ctx = arg;
374 
375 	if (ctx == NULL)
376 		return;
377 
378 	cperf_throughput_test_free(ctx);
379 }
380