1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2016-2017 Intel Corporation 3 */ 4 5 #include <rte_malloc.h> 6 #include <rte_cycles.h> 7 #include <rte_crypto.h> 8 #include <rte_cryptodev.h> 9 10 #include "cperf_test_throughput.h" 11 #include "cperf_ops.h" 12 #include "cperf_test_common.h" 13 14 struct cperf_throughput_ctx { 15 uint8_t dev_id; 16 uint16_t qp_id; 17 uint8_t lcore_id; 18 19 struct rte_mempool *pool; 20 21 struct rte_cryptodev_sym_session *sess; 22 23 cperf_populate_ops_t populate_ops; 24 25 uint32_t src_buf_offset; 26 uint32_t dst_buf_offset; 27 28 const struct cperf_options *options; 29 const struct cperf_test_vector *test_vector; 30 }; 31 32 static void 33 cperf_throughput_test_free(struct cperf_throughput_ctx *ctx) 34 { 35 if (!ctx) 36 return; 37 if (ctx->sess) { 38 if (ctx->options->op_type == CPERF_ASYM_MODEX) { 39 rte_cryptodev_asym_session_clear(ctx->dev_id, 40 (void *)ctx->sess); 41 rte_cryptodev_asym_session_free((void *)ctx->sess); 42 } 43 #ifdef RTE_LIB_SECURITY 44 else if (ctx->options->op_type == CPERF_PDCP || 45 ctx->options->op_type == CPERF_DOCSIS) { 46 struct rte_security_ctx *sec_ctx = 47 (struct rte_security_ctx *) 48 rte_cryptodev_get_sec_ctx(ctx->dev_id); 49 rte_security_session_destroy( 50 sec_ctx, 51 (struct rte_security_session *)ctx->sess); 52 } 53 #endif 54 else { 55 rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess); 56 rte_cryptodev_sym_session_free(ctx->sess); 57 } 58 } 59 if (ctx->pool) 60 rte_mempool_free(ctx->pool); 61 62 rte_free(ctx); 63 } 64 65 void * 66 cperf_throughput_test_constructor(struct rte_mempool *sess_mp, 67 struct rte_mempool *sess_priv_mp, 68 uint8_t dev_id, uint16_t qp_id, 69 const struct cperf_options *options, 70 const struct cperf_test_vector *test_vector, 71 const struct cperf_op_fns *op_fns) 72 { 73 struct cperf_throughput_ctx *ctx = NULL; 74 75 ctx = rte_malloc(NULL, sizeof(struct cperf_throughput_ctx), 0); 76 if (ctx == NULL) 77 goto err; 78 79 ctx->dev_id = dev_id; 80 ctx->qp_id = qp_id; 81 82 ctx->populate_ops = op_fns->populate_ops; 83 ctx->options = options; 84 ctx->test_vector = test_vector; 85 86 /* IV goes at the end of the crypto operation */ 87 uint16_t iv_offset = sizeof(struct rte_crypto_op) + 88 sizeof(struct rte_crypto_sym_op); 89 90 ctx->sess = op_fns->sess_create(sess_mp, sess_priv_mp, dev_id, options, 91 test_vector, iv_offset); 92 if (ctx->sess == NULL) 93 goto err; 94 95 if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0, 96 &ctx->src_buf_offset, &ctx->dst_buf_offset, 97 &ctx->pool) < 0) 98 goto err; 99 100 return ctx; 101 err: 102 cperf_throughput_test_free(ctx); 103 104 return NULL; 105 } 106 107 int 108 cperf_throughput_test_runner(void *test_ctx) 109 { 110 struct cperf_throughput_ctx *ctx = test_ctx; 111 uint16_t test_burst_size; 112 uint8_t burst_size_idx = 0; 113 uint32_t imix_idx = 0; 114 115 static rte_atomic16_t display_once = RTE_ATOMIC16_INIT(0); 116 117 struct rte_crypto_op *ops[ctx->options->max_burst_size]; 118 struct rte_crypto_op *ops_processed[ctx->options->max_burst_size]; 119 uint64_t i; 120 121 uint32_t lcore = rte_lcore_id(); 122 123 #ifdef CPERF_LINEARIZATION_ENABLE 124 struct rte_cryptodev_info dev_info; 125 int linearize = 0; 126 127 /* Check if source mbufs require coalescing */ 128 if ((ctx->options->op_type != CPERF_ASYM_MODEX) && 129 (ctx->options->segment_sz < ctx->options->max_buffer_size)) { 130 rte_cryptodev_info_get(ctx->dev_id, &dev_info); 131 if ((dev_info.feature_flags & 132 RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0) 133 linearize = 1; 134 } 135 #endif /* CPERF_LINEARIZATION_ENABLE */ 136 137 ctx->lcore_id = lcore; 138 139 /* Warm up the host CPU before starting the test */ 140 for (i = 0; i < ctx->options->total_ops; i++) 141 rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0); 142 143 /* Get first size from range or list */ 144 if (ctx->options->inc_burst_size != 0) 145 test_burst_size = ctx->options->min_burst_size; 146 else 147 test_burst_size = ctx->options->burst_size_list[0]; 148 149 uint16_t iv_offset = sizeof(struct rte_crypto_op) + 150 sizeof(struct rte_crypto_sym_op); 151 152 while (test_burst_size <= ctx->options->max_burst_size) { 153 uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0; 154 uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0; 155 156 uint64_t tsc_start, tsc_end, tsc_duration; 157 158 uint16_t ops_unused = 0; 159 160 tsc_start = rte_rdtsc_precise(); 161 162 while (ops_enqd_total < ctx->options->total_ops) { 163 164 uint16_t burst_size = ((ops_enqd_total + test_burst_size) 165 <= ctx->options->total_ops) ? 166 test_burst_size : 167 ctx->options->total_ops - 168 ops_enqd_total; 169 170 uint16_t ops_needed = burst_size - ops_unused; 171 172 /* Allocate objects containing crypto operations and mbufs */ 173 if (rte_mempool_get_bulk(ctx->pool, (void **)ops, 174 ops_needed) != 0) { 175 RTE_LOG(ERR, USER1, 176 "Failed to allocate more crypto operations " 177 "from the crypto operation pool.\n" 178 "Consider increasing the pool size " 179 "with --pool-sz\n"); 180 return -1; 181 } 182 183 /* Setup crypto op, attach mbuf etc */ 184 (ctx->populate_ops)(ops, ctx->src_buf_offset, 185 ctx->dst_buf_offset, 186 ops_needed, ctx->sess, 187 ctx->options, ctx->test_vector, 188 iv_offset, &imix_idx); 189 190 /** 191 * When ops_needed is smaller than ops_enqd, the 192 * unused ops need to be moved to the front for 193 * next round use. 194 */ 195 if (unlikely(ops_enqd > ops_needed)) { 196 size_t nb_b_to_mov = ops_unused * sizeof( 197 struct rte_crypto_op *); 198 199 memmove(&ops[ops_needed], &ops[ops_enqd], 200 nb_b_to_mov); 201 } 202 203 #ifdef CPERF_LINEARIZATION_ENABLE 204 if (linearize) { 205 /* PMD doesn't support scatter-gather and source buffer 206 * is segmented. 207 * We need to linearize it before enqueuing. 208 */ 209 for (i = 0; i < burst_size; i++) 210 rte_pktmbuf_linearize( 211 ops[i]->sym->m_src); 212 } 213 #endif /* CPERF_LINEARIZATION_ENABLE */ 214 215 /* Enqueue burst of ops on crypto device */ 216 ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, 217 ops, burst_size); 218 if (ops_enqd < burst_size) 219 ops_enqd_failed++; 220 221 /** 222 * Calculate number of ops not enqueued (mainly for hw 223 * accelerators whose ingress queue can fill up). 224 */ 225 ops_unused = burst_size - ops_enqd; 226 ops_enqd_total += ops_enqd; 227 228 229 /* Dequeue processed burst of ops from crypto device */ 230 ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id, 231 ops_processed, test_burst_size); 232 233 if (likely(ops_deqd)) { 234 /* Free crypto ops so they can be reused. */ 235 rte_mempool_put_bulk(ctx->pool, 236 (void **)ops_processed, ops_deqd); 237 238 ops_deqd_total += ops_deqd; 239 } else { 240 /** 241 * Count dequeue polls which didn't return any 242 * processed operations. This statistic is mainly 243 * relevant to hw accelerators. 244 */ 245 ops_deqd_failed++; 246 } 247 248 } 249 250 /* Dequeue any operations still in the crypto device */ 251 252 while (ops_deqd_total < ctx->options->total_ops) { 253 /* Sending 0 length burst to flush sw crypto device */ 254 rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0); 255 256 /* dequeue burst */ 257 ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id, 258 ops_processed, test_burst_size); 259 if (ops_deqd == 0) 260 ops_deqd_failed++; 261 else { 262 rte_mempool_put_bulk(ctx->pool, 263 (void **)ops_processed, ops_deqd); 264 ops_deqd_total += ops_deqd; 265 } 266 } 267 268 tsc_end = rte_rdtsc_precise(); 269 tsc_duration = (tsc_end - tsc_start); 270 271 /* Calculate average operations processed per second */ 272 double ops_per_second = ((double)ctx->options->total_ops / 273 tsc_duration) * rte_get_tsc_hz(); 274 275 /* Calculate average throughput (Gbps) in bits per second */ 276 double throughput_gbps = ((ops_per_second * 277 ctx->options->test_buffer_size * 8) / 1000000000); 278 279 /* Calculate average cycles per packet */ 280 double cycles_per_packet = ((double)tsc_duration / 281 ctx->options->total_ops); 282 283 if (!ctx->options->csv) { 284 if (rte_atomic16_test_and_set(&display_once)) 285 printf("%12s%12s%12s%12s%12s%12s%12s%12s%12s%12s\n\n", 286 "lcore id", "Buf Size", "Burst Size", 287 "Enqueued", "Dequeued", "Failed Enq", 288 "Failed Deq", "MOps", "Gbps", 289 "Cycles/Buf"); 290 291 printf("%12u%12u%12u%12"PRIu64"%12"PRIu64"%12"PRIu64 292 "%12"PRIu64"%12.4f%12.4f%12.2f\n", 293 ctx->lcore_id, 294 ctx->options->test_buffer_size, 295 test_burst_size, 296 ops_enqd_total, 297 ops_deqd_total, 298 ops_enqd_failed, 299 ops_deqd_failed, 300 ops_per_second/1000000, 301 throughput_gbps, 302 cycles_per_packet); 303 } else { 304 if (rte_atomic16_test_and_set(&display_once)) 305 printf("#lcore id,Buffer Size(B)," 306 "Burst Size,Enqueued,Dequeued,Failed Enq," 307 "Failed Deq,Ops(Millions),Throughput(Gbps)," 308 "Cycles/Buf\n\n"); 309 310 printf("%u,%u,%u,%"PRIu64",%"PRIu64",%"PRIu64",%"PRIu64"," 311 "%.3f,%.3f,%.3f\n", 312 ctx->lcore_id, 313 ctx->options->test_buffer_size, 314 test_burst_size, 315 ops_enqd_total, 316 ops_deqd_total, 317 ops_enqd_failed, 318 ops_deqd_failed, 319 ops_per_second/1000000, 320 throughput_gbps, 321 cycles_per_packet); 322 } 323 324 /* Get next size from range or list */ 325 if (ctx->options->inc_burst_size != 0) 326 test_burst_size += ctx->options->inc_burst_size; 327 else { 328 if (++burst_size_idx == ctx->options->burst_size_count) 329 break; 330 test_burst_size = ctx->options->burst_size_list[burst_size_idx]; 331 } 332 333 } 334 335 return 0; 336 } 337 338 339 void 340 cperf_throughput_test_destructor(void *arg) 341 { 342 struct cperf_throughput_ctx *ctx = arg; 343 344 if (ctx == NULL) 345 return; 346 347 cperf_throughput_test_free(ctx); 348 } 349