1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2016-2017 Intel Corporation 3 */ 4 5 #include <stdlib.h> 6 7 #include <rte_malloc.h> 8 #include <rte_cycles.h> 9 #include <rte_crypto.h> 10 #include <rte_cryptodev.h> 11 12 #include "cperf_test_throughput.h" 13 #include "cperf_ops.h" 14 #include "cperf_test_common.h" 15 16 struct cperf_throughput_ctx { 17 uint8_t dev_id; 18 uint16_t qp_id; 19 uint8_t lcore_id; 20 21 struct rte_mempool *pool; 22 23 struct rte_cryptodev_sym_session *sess; 24 25 cperf_populate_ops_t populate_ops; 26 27 uint32_t src_buf_offset; 28 uint32_t dst_buf_offset; 29 30 const struct cperf_options *options; 31 const struct cperf_test_vector *test_vector; 32 }; 33 34 static void 35 cperf_throughput_test_free(struct cperf_throughput_ctx *ctx) 36 { 37 if (!ctx) 38 return; 39 if (ctx->sess) { 40 if (ctx->options->op_type == CPERF_ASYM_MODEX) 41 rte_cryptodev_asym_session_free(ctx->dev_id, 42 (void *)ctx->sess); 43 #ifdef RTE_LIB_SECURITY 44 else if (ctx->options->op_type == CPERF_PDCP || 45 ctx->options->op_type == CPERF_DOCSIS || 46 ctx->options->op_type == CPERF_IPSEC) { 47 struct rte_security_ctx *sec_ctx = 48 (struct rte_security_ctx *) 49 rte_cryptodev_get_sec_ctx(ctx->dev_id); 50 rte_security_session_destroy( 51 sec_ctx, 52 (struct rte_security_session *)ctx->sess); 53 } 54 #endif 55 else 56 rte_cryptodev_sym_session_free(ctx->dev_id, ctx->sess); 57 } 58 rte_mempool_free(ctx->pool); 59 60 rte_free(ctx); 61 } 62 63 void * 64 cperf_throughput_test_constructor(struct rte_mempool *sess_mp, 65 struct rte_mempool *sess_priv_mp, 66 uint8_t dev_id, uint16_t qp_id, 67 const struct cperf_options *options, 68 const struct cperf_test_vector *test_vector, 69 const struct cperf_op_fns *op_fns) 70 { 71 struct cperf_throughput_ctx *ctx = NULL; 72 73 ctx = rte_malloc(NULL, sizeof(struct cperf_throughput_ctx), 0); 74 if (ctx == NULL) 75 goto err; 76 77 ctx->dev_id = dev_id; 78 ctx->qp_id = qp_id; 79 80 ctx->populate_ops = op_fns->populate_ops; 81 ctx->options = options; 82 ctx->test_vector = test_vector; 83 84 /* IV goes at the end of the crypto operation */ 85 uint16_t iv_offset = sizeof(struct rte_crypto_op) + 86 sizeof(struct rte_crypto_sym_op); 87 88 ctx->sess = op_fns->sess_create(sess_mp, sess_priv_mp, dev_id, options, 89 test_vector, iv_offset); 90 if (ctx->sess == NULL) 91 goto err; 92 93 if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0, 94 &ctx->src_buf_offset, &ctx->dst_buf_offset, 95 &ctx->pool) < 0) 96 goto err; 97 98 return ctx; 99 err: 100 cperf_throughput_test_free(ctx); 101 102 return NULL; 103 } 104 105 int 106 cperf_throughput_test_runner(void *test_ctx) 107 { 108 struct cperf_throughput_ctx *ctx = test_ctx; 109 uint16_t test_burst_size; 110 uint8_t burst_size_idx = 0; 111 uint32_t imix_idx = 0; 112 113 static uint16_t display_once; 114 115 struct rte_crypto_op *ops[ctx->options->max_burst_size]; 116 struct rte_crypto_op *ops_processed[ctx->options->max_burst_size]; 117 uint64_t i; 118 119 uint32_t lcore = rte_lcore_id(); 120 121 #ifdef CPERF_LINEARIZATION_ENABLE 122 struct rte_cryptodev_info dev_info; 123 int linearize = 0; 124 125 /* Check if source mbufs require coalescing */ 126 if ((ctx->options->op_type != CPERF_ASYM_MODEX) && 127 (ctx->options->segment_sz < ctx->options->max_buffer_size)) { 128 rte_cryptodev_info_get(ctx->dev_id, &dev_info); 129 if ((dev_info.feature_flags & 130 RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0) 131 linearize = 1; 132 } 133 #endif /* CPERF_LINEARIZATION_ENABLE */ 134 135 ctx->lcore_id = lcore; 136 137 /* Warm up the host CPU before starting the test */ 138 for (i = 0; i < ctx->options->total_ops; i++) 139 rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0); 140 141 /* Get first size from range or list */ 142 if (ctx->options->inc_burst_size != 0) 143 test_burst_size = ctx->options->min_burst_size; 144 else 145 test_burst_size = ctx->options->burst_size_list[0]; 146 147 uint16_t iv_offset = sizeof(struct rte_crypto_op) + 148 sizeof(struct rte_crypto_sym_op); 149 150 while (test_burst_size <= ctx->options->max_burst_size) { 151 uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0; 152 uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0; 153 154 uint64_t tsc_start, tsc_end, tsc_duration; 155 156 uint16_t ops_unused = 0; 157 158 tsc_start = rte_rdtsc_precise(); 159 160 while (ops_enqd_total < ctx->options->total_ops) { 161 162 uint16_t burst_size = ((ops_enqd_total + test_burst_size) 163 <= ctx->options->total_ops) ? 164 test_burst_size : 165 ctx->options->total_ops - 166 ops_enqd_total; 167 168 uint16_t ops_needed = burst_size - ops_unused; 169 170 /* Allocate objects containing crypto operations and mbufs */ 171 if (rte_mempool_get_bulk(ctx->pool, (void **)ops, 172 ops_needed) != 0) { 173 RTE_LOG(ERR, USER1, 174 "Failed to allocate more crypto operations " 175 "from the crypto operation pool.\n" 176 "Consider increasing the pool size " 177 "with --pool-sz\n"); 178 return -1; 179 } 180 181 /* Setup crypto op, attach mbuf etc */ 182 (ctx->populate_ops)(ops, ctx->src_buf_offset, 183 ctx->dst_buf_offset, 184 ops_needed, ctx->sess, 185 ctx->options, ctx->test_vector, 186 iv_offset, &imix_idx, &tsc_start); 187 188 /** 189 * When ops_needed is smaller than ops_enqd, the 190 * unused ops need to be moved to the front for 191 * next round use. 192 */ 193 if (unlikely(ops_enqd > ops_needed)) { 194 size_t nb_b_to_mov = ops_unused * sizeof( 195 struct rte_crypto_op *); 196 197 memmove(&ops[ops_needed], &ops[ops_enqd], 198 nb_b_to_mov); 199 } 200 201 #ifdef CPERF_LINEARIZATION_ENABLE 202 if (linearize) { 203 /* PMD doesn't support scatter-gather and source buffer 204 * is segmented. 205 * We need to linearize it before enqueuing. 206 */ 207 for (i = 0; i < burst_size; i++) 208 rte_pktmbuf_linearize( 209 ops[i]->sym->m_src); 210 } 211 #endif /* CPERF_LINEARIZATION_ENABLE */ 212 213 /* Enqueue burst of ops on crypto device */ 214 ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, 215 ops, burst_size); 216 if (ops_enqd < burst_size) 217 ops_enqd_failed++; 218 219 /** 220 * Calculate number of ops not enqueued (mainly for hw 221 * accelerators whose ingress queue can fill up). 222 */ 223 ops_unused = burst_size - ops_enqd; 224 ops_enqd_total += ops_enqd; 225 226 227 /* Dequeue processed burst of ops from crypto device */ 228 ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id, 229 ops_processed, test_burst_size); 230 231 if (likely(ops_deqd)) { 232 /* Free crypto ops so they can be reused. */ 233 rte_mempool_put_bulk(ctx->pool, 234 (void **)ops_processed, ops_deqd); 235 236 ops_deqd_total += ops_deqd; 237 } else { 238 /** 239 * Count dequeue polls which didn't return any 240 * processed operations. This statistic is mainly 241 * relevant to hw accelerators. 242 */ 243 ops_deqd_failed++; 244 } 245 246 } 247 248 /* Dequeue any operations still in the crypto device */ 249 250 while (ops_deqd_total < ctx->options->total_ops) { 251 /* Sending 0 length burst to flush sw crypto device */ 252 rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0); 253 254 /* dequeue burst */ 255 ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id, 256 ops_processed, test_burst_size); 257 if (ops_deqd == 0) 258 ops_deqd_failed++; 259 else { 260 rte_mempool_put_bulk(ctx->pool, 261 (void **)ops_processed, ops_deqd); 262 ops_deqd_total += ops_deqd; 263 } 264 } 265 266 tsc_end = rte_rdtsc_precise(); 267 tsc_duration = (tsc_end - tsc_start); 268 269 /* Calculate average operations processed per second */ 270 double ops_per_second = ((double)ctx->options->total_ops / 271 tsc_duration) * rte_get_tsc_hz(); 272 273 /* Calculate average throughput (Gbps) in bits per second */ 274 double throughput_gbps = ((ops_per_second * 275 ctx->options->test_buffer_size * 8) / 1000000000); 276 277 /* Calculate average cycles per packet */ 278 double cycles_per_packet = ((double)tsc_duration / 279 ctx->options->total_ops); 280 281 uint16_t exp = 0; 282 if (!ctx->options->csv) { 283 if (__atomic_compare_exchange_n(&display_once, &exp, 1, 0, 284 __ATOMIC_RELAXED, __ATOMIC_RELAXED)) 285 printf("%12s%12s%12s%12s%12s%12s%12s%12s%12s%12s\n\n", 286 "lcore id", "Buf Size", "Burst Size", 287 "Enqueued", "Dequeued", "Failed Enq", 288 "Failed Deq", "MOps", "Gbps", 289 "Cycles/Buf"); 290 291 printf("%12u%12u%12u%12"PRIu64"%12"PRIu64"%12"PRIu64 292 "%12"PRIu64"%12.4f%12.4f%12.2f\n", 293 ctx->lcore_id, 294 ctx->options->test_buffer_size, 295 test_burst_size, 296 ops_enqd_total, 297 ops_deqd_total, 298 ops_enqd_failed, 299 ops_deqd_failed, 300 ops_per_second/1000000, 301 throughput_gbps, 302 cycles_per_packet); 303 } else { 304 if (__atomic_compare_exchange_n(&display_once, &exp, 1, 0, 305 __ATOMIC_RELAXED, __ATOMIC_RELAXED)) 306 printf("#lcore id,Buffer Size(B)," 307 "Burst Size,Enqueued,Dequeued,Failed Enq," 308 "Failed Deq,Ops(Millions),Throughput(Gbps)," 309 "Cycles/Buf\n\n"); 310 311 printf("%u,%u,%u,%"PRIu64",%"PRIu64",%"PRIu64",%"PRIu64"," 312 "%.3f,%.3f,%.3f\n", 313 ctx->lcore_id, 314 ctx->options->test_buffer_size, 315 test_burst_size, 316 ops_enqd_total, 317 ops_deqd_total, 318 ops_enqd_failed, 319 ops_deqd_failed, 320 ops_per_second/1000000, 321 throughput_gbps, 322 cycles_per_packet); 323 } 324 325 /* Get next size from range or list */ 326 if (ctx->options->inc_burst_size != 0) 327 test_burst_size += ctx->options->inc_burst_size; 328 else { 329 if (++burst_size_idx == ctx->options->burst_size_count) 330 break; 331 test_burst_size = ctx->options->burst_size_list[burst_size_idx]; 332 } 333 334 } 335 336 return 0; 337 } 338 339 340 void 341 cperf_throughput_test_destructor(void *arg) 342 { 343 struct cperf_throughput_ctx *ctx = arg; 344 345 if (ctx == NULL) 346 return; 347 348 cperf_throughput_test_free(ctx); 349 } 350