xref: /dpdk/app/test-crypto-perf/cperf_test_throughput.c (revision bdce2564dbf78e1fecc0db438b562ae19f0c057c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4 
5 #include <stdlib.h>
6 
7 #include <rte_malloc.h>
8 #include <rte_cycles.h>
9 #include <rte_crypto.h>
10 #include <rte_cryptodev.h>
11 
12 #include "cperf_test_throughput.h"
13 #include "cperf_ops.h"
14 #include "cperf_test_common.h"
15 
16 struct cperf_throughput_ctx {
17 	uint8_t dev_id;
18 	uint16_t qp_id;
19 	uint8_t lcore_id;
20 
21 	struct rte_mempool *pool;
22 
23 	struct rte_cryptodev_sym_session *sess;
24 
25 	cperf_populate_ops_t populate_ops;
26 
27 	uint32_t src_buf_offset;
28 	uint32_t dst_buf_offset;
29 
30 	const struct cperf_options *options;
31 	const struct cperf_test_vector *test_vector;
32 };
33 
34 static void
35 cperf_throughput_test_free(struct cperf_throughput_ctx *ctx)
36 {
37 	if (!ctx)
38 		return;
39 	if (ctx->sess) {
40 		if (ctx->options->op_type == CPERF_ASYM_MODEX)
41 			rte_cryptodev_asym_session_free(ctx->dev_id,
42 					(void *)ctx->sess);
43 #ifdef RTE_LIB_SECURITY
44 		else if (ctx->options->op_type == CPERF_PDCP ||
45 			 ctx->options->op_type == CPERF_DOCSIS ||
46 			 ctx->options->op_type == CPERF_IPSEC) {
47 			struct rte_security_ctx *sec_ctx =
48 				(struct rte_security_ctx *)
49 					rte_cryptodev_get_sec_ctx(ctx->dev_id);
50 			rte_security_session_destroy(
51 				sec_ctx,
52 				(struct rte_security_session *)ctx->sess);
53 		}
54 #endif
55 		else
56 			rte_cryptodev_sym_session_free(ctx->dev_id, ctx->sess);
57 	}
58 	rte_mempool_free(ctx->pool);
59 
60 	rte_free(ctx);
61 }
62 
63 void *
64 cperf_throughput_test_constructor(struct rte_mempool *sess_mp,
65 		struct rte_mempool *sess_priv_mp,
66 		uint8_t dev_id, uint16_t qp_id,
67 		const struct cperf_options *options,
68 		const struct cperf_test_vector *test_vector,
69 		const struct cperf_op_fns *op_fns)
70 {
71 	struct cperf_throughput_ctx *ctx = NULL;
72 
73 	ctx = rte_malloc(NULL, sizeof(struct cperf_throughput_ctx), 0);
74 	if (ctx == NULL)
75 		goto err;
76 
77 	ctx->dev_id = dev_id;
78 	ctx->qp_id = qp_id;
79 
80 	ctx->populate_ops = op_fns->populate_ops;
81 	ctx->options = options;
82 	ctx->test_vector = test_vector;
83 
84 	/* IV goes at the end of the crypto operation */
85 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
86 		sizeof(struct rte_crypto_sym_op);
87 
88 	ctx->sess = op_fns->sess_create(sess_mp, sess_priv_mp, dev_id, options,
89 			test_vector, iv_offset);
90 	if (ctx->sess == NULL)
91 		goto err;
92 
93 	if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0,
94 			&ctx->src_buf_offset, &ctx->dst_buf_offset,
95 			&ctx->pool) < 0)
96 		goto err;
97 
98 	return ctx;
99 err:
100 	cperf_throughput_test_free(ctx);
101 
102 	return NULL;
103 }
104 
105 int
106 cperf_throughput_test_runner(void *test_ctx)
107 {
108 	struct cperf_throughput_ctx *ctx = test_ctx;
109 	uint16_t test_burst_size;
110 	uint8_t burst_size_idx = 0;
111 	uint32_t imix_idx = 0;
112 
113 	static uint16_t display_once;
114 
115 	struct rte_crypto_op *ops[ctx->options->max_burst_size];
116 	struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
117 	uint64_t i;
118 
119 	uint32_t lcore = rte_lcore_id();
120 
121 #ifdef CPERF_LINEARIZATION_ENABLE
122 	struct rte_cryptodev_info dev_info;
123 	int linearize = 0;
124 
125 	/* Check if source mbufs require coalescing */
126 	if ((ctx->options->op_type != CPERF_ASYM_MODEX) &&
127 	    (ctx->options->segment_sz < ctx->options->max_buffer_size)) {
128 		rte_cryptodev_info_get(ctx->dev_id, &dev_info);
129 		if ((dev_info.feature_flags &
130 				RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
131 			linearize = 1;
132 	}
133 #endif /* CPERF_LINEARIZATION_ENABLE */
134 
135 	ctx->lcore_id = lcore;
136 
137 	/* Warm up the host CPU before starting the test */
138 	for (i = 0; i < ctx->options->total_ops; i++)
139 		rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
140 
141 	/* Get first size from range or list */
142 	if (ctx->options->inc_burst_size != 0)
143 		test_burst_size = ctx->options->min_burst_size;
144 	else
145 		test_burst_size = ctx->options->burst_size_list[0];
146 
147 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
148 		sizeof(struct rte_crypto_sym_op);
149 
150 	while (test_burst_size <= ctx->options->max_burst_size) {
151 		uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0;
152 		uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0;
153 
154 		uint64_t tsc_start, tsc_end, tsc_duration;
155 
156 		uint16_t ops_unused = 0;
157 
158 		tsc_start = rte_rdtsc_precise();
159 
160 		while (ops_enqd_total < ctx->options->total_ops) {
161 
162 			uint16_t burst_size = ((ops_enqd_total + test_burst_size)
163 					<= ctx->options->total_ops) ?
164 							test_burst_size :
165 							ctx->options->total_ops -
166 							ops_enqd_total;
167 
168 			uint16_t ops_needed = burst_size - ops_unused;
169 
170 			/* Allocate objects containing crypto operations and mbufs */
171 			if (rte_mempool_get_bulk(ctx->pool, (void **)ops,
172 						ops_needed) != 0) {
173 				RTE_LOG(ERR, USER1,
174 					"Failed to allocate more crypto operations "
175 					"from the crypto operation pool.\n"
176 					"Consider increasing the pool size "
177 					"with --pool-sz\n");
178 				return -1;
179 			}
180 
181 			/* Setup crypto op, attach mbuf etc */
182 			(ctx->populate_ops)(ops, ctx->src_buf_offset,
183 					ctx->dst_buf_offset,
184 					ops_needed, ctx->sess,
185 					ctx->options, ctx->test_vector,
186 					iv_offset, &imix_idx, &tsc_start);
187 
188 			/**
189 			 * When ops_needed is smaller than ops_enqd, the
190 			 * unused ops need to be moved to the front for
191 			 * next round use.
192 			 */
193 			if (unlikely(ops_enqd > ops_needed)) {
194 				size_t nb_b_to_mov = ops_unused * sizeof(
195 						struct rte_crypto_op *);
196 
197 				memmove(&ops[ops_needed], &ops[ops_enqd],
198 					nb_b_to_mov);
199 			}
200 
201 #ifdef CPERF_LINEARIZATION_ENABLE
202 			if (linearize) {
203 				/* PMD doesn't support scatter-gather and source buffer
204 				 * is segmented.
205 				 * We need to linearize it before enqueuing.
206 				 */
207 				for (i = 0; i < burst_size; i++)
208 					rte_pktmbuf_linearize(
209 						ops[i]->sym->m_src);
210 			}
211 #endif /* CPERF_LINEARIZATION_ENABLE */
212 
213 			/* Enqueue burst of ops on crypto device */
214 			ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
215 					ops, burst_size);
216 			if (ops_enqd < burst_size)
217 				ops_enqd_failed++;
218 
219 			/**
220 			 * Calculate number of ops not enqueued (mainly for hw
221 			 * accelerators whose ingress queue can fill up).
222 			 */
223 			ops_unused = burst_size - ops_enqd;
224 			ops_enqd_total += ops_enqd;
225 
226 
227 			/* Dequeue processed burst of ops from crypto device */
228 			ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
229 					ops_processed, test_burst_size);
230 
231 			if (likely(ops_deqd))  {
232 				/* Free crypto ops so they can be reused. */
233 				rte_mempool_put_bulk(ctx->pool,
234 						(void **)ops_processed, ops_deqd);
235 
236 				ops_deqd_total += ops_deqd;
237 			} else {
238 				/**
239 				 * Count dequeue polls which didn't return any
240 				 * processed operations. This statistic is mainly
241 				 * relevant to hw accelerators.
242 				 */
243 				ops_deqd_failed++;
244 			}
245 
246 		}
247 
248 		/* Dequeue any operations still in the crypto device */
249 
250 		while (ops_deqd_total < ctx->options->total_ops) {
251 			/* Sending 0 length burst to flush sw crypto device */
252 			rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
253 
254 			/* dequeue burst */
255 			ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
256 					ops_processed, test_burst_size);
257 			if (ops_deqd == 0)
258 				ops_deqd_failed++;
259 			else {
260 				rte_mempool_put_bulk(ctx->pool,
261 						(void **)ops_processed, ops_deqd);
262 				ops_deqd_total += ops_deqd;
263 			}
264 		}
265 
266 		tsc_end = rte_rdtsc_precise();
267 		tsc_duration = (tsc_end - tsc_start);
268 
269 		/* Calculate average operations processed per second */
270 		double ops_per_second = ((double)ctx->options->total_ops /
271 				tsc_duration) * rte_get_tsc_hz();
272 
273 		/* Calculate average throughput (Gbps) in bits per second */
274 		double throughput_gbps = ((ops_per_second *
275 				ctx->options->test_buffer_size * 8) / 1000000000);
276 
277 		/* Calculate average cycles per packet */
278 		double cycles_per_packet = ((double)tsc_duration /
279 				ctx->options->total_ops);
280 
281 		uint16_t exp = 0;
282 		if (!ctx->options->csv) {
283 			if (__atomic_compare_exchange_n(&display_once, &exp, 1, 0,
284 					__ATOMIC_RELAXED, __ATOMIC_RELAXED))
285 				printf("%12s%12s%12s%12s%12s%12s%12s%12s%12s%12s\n\n",
286 					"lcore id", "Buf Size", "Burst Size",
287 					"Enqueued", "Dequeued", "Failed Enq",
288 					"Failed Deq", "MOps", "Gbps",
289 					"Cycles/Buf");
290 
291 			printf("%12u%12u%12u%12"PRIu64"%12"PRIu64"%12"PRIu64
292 					"%12"PRIu64"%12.4f%12.4f%12.2f\n",
293 					ctx->lcore_id,
294 					ctx->options->test_buffer_size,
295 					test_burst_size,
296 					ops_enqd_total,
297 					ops_deqd_total,
298 					ops_enqd_failed,
299 					ops_deqd_failed,
300 					ops_per_second/1000000,
301 					throughput_gbps,
302 					cycles_per_packet);
303 		} else {
304 			if (__atomic_compare_exchange_n(&display_once, &exp, 1, 0,
305 					__ATOMIC_RELAXED, __ATOMIC_RELAXED))
306 				printf("#lcore id,Buffer Size(B),"
307 					"Burst Size,Enqueued,Dequeued,Failed Enq,"
308 					"Failed Deq,Ops(Millions),Throughput(Gbps),"
309 					"Cycles/Buf\n\n");
310 
311 			printf("%u,%u,%u,%"PRIu64",%"PRIu64",%"PRIu64",%"PRIu64","
312 					"%.3f,%.3f,%.3f\n",
313 					ctx->lcore_id,
314 					ctx->options->test_buffer_size,
315 					test_burst_size,
316 					ops_enqd_total,
317 					ops_deqd_total,
318 					ops_enqd_failed,
319 					ops_deqd_failed,
320 					ops_per_second/1000000,
321 					throughput_gbps,
322 					cycles_per_packet);
323 		}
324 
325 		/* Get next size from range or list */
326 		if (ctx->options->inc_burst_size != 0)
327 			test_burst_size += ctx->options->inc_burst_size;
328 		else {
329 			if (++burst_size_idx == ctx->options->burst_size_count)
330 				break;
331 			test_burst_size = ctx->options->burst_size_list[burst_size_idx];
332 		}
333 
334 	}
335 
336 	return 0;
337 }
338 
339 
340 void
341 cperf_throughput_test_destructor(void *arg)
342 {
343 	struct cperf_throughput_ctx *ctx = arg;
344 
345 	if (ctx == NULL)
346 		return;
347 
348 	cperf_throughput_test_free(ctx);
349 }
350