xref: /dpdk/app/test-crypto-perf/cperf_test_throughput.c (revision b53d106d34b5c638f5a2cbdfee0da5bd42d4383f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4 
5 #include <rte_malloc.h>
6 #include <rte_cycles.h>
7 #include <rte_crypto.h>
8 #include <rte_cryptodev.h>
9 
10 #include "cperf_test_throughput.h"
11 #include "cperf_ops.h"
12 #include "cperf_test_common.h"
13 
14 struct cperf_throughput_ctx {
15 	uint8_t dev_id;
16 	uint16_t qp_id;
17 	uint8_t lcore_id;
18 
19 	struct rte_mempool *pool;
20 
21 	struct rte_cryptodev_sym_session *sess;
22 
23 	cperf_populate_ops_t populate_ops;
24 
25 	uint32_t src_buf_offset;
26 	uint32_t dst_buf_offset;
27 
28 	const struct cperf_options *options;
29 	const struct cperf_test_vector *test_vector;
30 };
31 
32 static void
33 cperf_throughput_test_free(struct cperf_throughput_ctx *ctx)
34 {
35 	if (!ctx)
36 		return;
37 	if (ctx->sess) {
38 		if (ctx->options->op_type == CPERF_ASYM_MODEX) {
39 			rte_cryptodev_asym_session_clear(ctx->dev_id,
40 							 (void *)ctx->sess);
41 			rte_cryptodev_asym_session_free((void *)ctx->sess);
42 		}
43 #ifdef RTE_LIB_SECURITY
44 		else if (ctx->options->op_type == CPERF_PDCP ||
45 			 ctx->options->op_type == CPERF_DOCSIS ||
46 			 ctx->options->op_type == CPERF_IPSEC) {
47 			struct rte_security_ctx *sec_ctx =
48 				(struct rte_security_ctx *)
49 					rte_cryptodev_get_sec_ctx(ctx->dev_id);
50 			rte_security_session_destroy(
51 				sec_ctx,
52 				(struct rte_security_session *)ctx->sess);
53 		}
54 #endif
55 		else {
56 			rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
57 			rte_cryptodev_sym_session_free(ctx->sess);
58 		}
59 	}
60 	if (ctx->pool)
61 		rte_mempool_free(ctx->pool);
62 
63 	rte_free(ctx);
64 }
65 
66 void *
67 cperf_throughput_test_constructor(struct rte_mempool *sess_mp,
68 		struct rte_mempool *sess_priv_mp,
69 		uint8_t dev_id, uint16_t qp_id,
70 		const struct cperf_options *options,
71 		const struct cperf_test_vector *test_vector,
72 		const struct cperf_op_fns *op_fns)
73 {
74 	struct cperf_throughput_ctx *ctx = NULL;
75 
76 	ctx = rte_malloc(NULL, sizeof(struct cperf_throughput_ctx), 0);
77 	if (ctx == NULL)
78 		goto err;
79 
80 	ctx->dev_id = dev_id;
81 	ctx->qp_id = qp_id;
82 
83 	ctx->populate_ops = op_fns->populate_ops;
84 	ctx->options = options;
85 	ctx->test_vector = test_vector;
86 
87 	/* IV goes at the end of the crypto operation */
88 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
89 		sizeof(struct rte_crypto_sym_op);
90 
91 	ctx->sess = op_fns->sess_create(sess_mp, sess_priv_mp, dev_id, options,
92 			test_vector, iv_offset);
93 	if (ctx->sess == NULL)
94 		goto err;
95 
96 	if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0,
97 			&ctx->src_buf_offset, &ctx->dst_buf_offset,
98 			&ctx->pool) < 0)
99 		goto err;
100 
101 	return ctx;
102 err:
103 	cperf_throughput_test_free(ctx);
104 
105 	return NULL;
106 }
107 
108 int
109 cperf_throughput_test_runner(void *test_ctx)
110 {
111 	struct cperf_throughput_ctx *ctx = test_ctx;
112 	uint16_t test_burst_size;
113 	uint8_t burst_size_idx = 0;
114 	uint32_t imix_idx = 0;
115 
116 	static uint16_t display_once;
117 
118 	struct rte_crypto_op *ops[ctx->options->max_burst_size];
119 	struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
120 	uint64_t i;
121 
122 	uint32_t lcore = rte_lcore_id();
123 
124 #ifdef CPERF_LINEARIZATION_ENABLE
125 	struct rte_cryptodev_info dev_info;
126 	int linearize = 0;
127 
128 	/* Check if source mbufs require coalescing */
129 	if ((ctx->options->op_type != CPERF_ASYM_MODEX) &&
130 	    (ctx->options->segment_sz < ctx->options->max_buffer_size)) {
131 		rte_cryptodev_info_get(ctx->dev_id, &dev_info);
132 		if ((dev_info.feature_flags &
133 				RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
134 			linearize = 1;
135 	}
136 #endif /* CPERF_LINEARIZATION_ENABLE */
137 
138 	ctx->lcore_id = lcore;
139 
140 	/* Warm up the host CPU before starting the test */
141 	for (i = 0; i < ctx->options->total_ops; i++)
142 		rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
143 
144 	/* Get first size from range or list */
145 	if (ctx->options->inc_burst_size != 0)
146 		test_burst_size = ctx->options->min_burst_size;
147 	else
148 		test_burst_size = ctx->options->burst_size_list[0];
149 
150 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
151 		sizeof(struct rte_crypto_sym_op);
152 
153 	while (test_burst_size <= ctx->options->max_burst_size) {
154 		uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0;
155 		uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0;
156 
157 		uint64_t tsc_start, tsc_end, tsc_duration;
158 
159 		uint16_t ops_unused = 0;
160 
161 		tsc_start = rte_rdtsc_precise();
162 
163 		while (ops_enqd_total < ctx->options->total_ops) {
164 
165 			uint16_t burst_size = ((ops_enqd_total + test_burst_size)
166 					<= ctx->options->total_ops) ?
167 							test_burst_size :
168 							ctx->options->total_ops -
169 							ops_enqd_total;
170 
171 			uint16_t ops_needed = burst_size - ops_unused;
172 
173 			/* Allocate objects containing crypto operations and mbufs */
174 			if (rte_mempool_get_bulk(ctx->pool, (void **)ops,
175 						ops_needed) != 0) {
176 				RTE_LOG(ERR, USER1,
177 					"Failed to allocate more crypto operations "
178 					"from the crypto operation pool.\n"
179 					"Consider increasing the pool size "
180 					"with --pool-sz\n");
181 				return -1;
182 			}
183 
184 			/* Setup crypto op, attach mbuf etc */
185 			(ctx->populate_ops)(ops, ctx->src_buf_offset,
186 					ctx->dst_buf_offset,
187 					ops_needed, ctx->sess,
188 					ctx->options, ctx->test_vector,
189 					iv_offset, &imix_idx, &tsc_start);
190 
191 			/**
192 			 * When ops_needed is smaller than ops_enqd, the
193 			 * unused ops need to be moved to the front for
194 			 * next round use.
195 			 */
196 			if (unlikely(ops_enqd > ops_needed)) {
197 				size_t nb_b_to_mov = ops_unused * sizeof(
198 						struct rte_crypto_op *);
199 
200 				memmove(&ops[ops_needed], &ops[ops_enqd],
201 					nb_b_to_mov);
202 			}
203 
204 #ifdef CPERF_LINEARIZATION_ENABLE
205 			if (linearize) {
206 				/* PMD doesn't support scatter-gather and source buffer
207 				 * is segmented.
208 				 * We need to linearize it before enqueuing.
209 				 */
210 				for (i = 0; i < burst_size; i++)
211 					rte_pktmbuf_linearize(
212 						ops[i]->sym->m_src);
213 			}
214 #endif /* CPERF_LINEARIZATION_ENABLE */
215 
216 			/* Enqueue burst of ops on crypto device */
217 			ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
218 					ops, burst_size);
219 			if (ops_enqd < burst_size)
220 				ops_enqd_failed++;
221 
222 			/**
223 			 * Calculate number of ops not enqueued (mainly for hw
224 			 * accelerators whose ingress queue can fill up).
225 			 */
226 			ops_unused = burst_size - ops_enqd;
227 			ops_enqd_total += ops_enqd;
228 
229 
230 			/* Dequeue processed burst of ops from crypto device */
231 			ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
232 					ops_processed, test_burst_size);
233 
234 			if (likely(ops_deqd))  {
235 				/* Free crypto ops so they can be reused. */
236 				rte_mempool_put_bulk(ctx->pool,
237 						(void **)ops_processed, ops_deqd);
238 
239 				ops_deqd_total += ops_deqd;
240 			} else {
241 				/**
242 				 * Count dequeue polls which didn't return any
243 				 * processed operations. This statistic is mainly
244 				 * relevant to hw accelerators.
245 				 */
246 				ops_deqd_failed++;
247 			}
248 
249 		}
250 
251 		/* Dequeue any operations still in the crypto device */
252 
253 		while (ops_deqd_total < ctx->options->total_ops) {
254 			/* Sending 0 length burst to flush sw crypto device */
255 			rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
256 
257 			/* dequeue burst */
258 			ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
259 					ops_processed, test_burst_size);
260 			if (ops_deqd == 0)
261 				ops_deqd_failed++;
262 			else {
263 				rte_mempool_put_bulk(ctx->pool,
264 						(void **)ops_processed, ops_deqd);
265 				ops_deqd_total += ops_deqd;
266 			}
267 		}
268 
269 		tsc_end = rte_rdtsc_precise();
270 		tsc_duration = (tsc_end - tsc_start);
271 
272 		/* Calculate average operations processed per second */
273 		double ops_per_second = ((double)ctx->options->total_ops /
274 				tsc_duration) * rte_get_tsc_hz();
275 
276 		/* Calculate average throughput (Gbps) in bits per second */
277 		double throughput_gbps = ((ops_per_second *
278 				ctx->options->test_buffer_size * 8) / 1000000000);
279 
280 		/* Calculate average cycles per packet */
281 		double cycles_per_packet = ((double)tsc_duration /
282 				ctx->options->total_ops);
283 
284 		uint16_t exp = 0;
285 		if (!ctx->options->csv) {
286 			if (__atomic_compare_exchange_n(&display_once, &exp, 1, 0,
287 					__ATOMIC_RELAXED, __ATOMIC_RELAXED))
288 				printf("%12s%12s%12s%12s%12s%12s%12s%12s%12s%12s\n\n",
289 					"lcore id", "Buf Size", "Burst Size",
290 					"Enqueued", "Dequeued", "Failed Enq",
291 					"Failed Deq", "MOps", "Gbps",
292 					"Cycles/Buf");
293 
294 			printf("%12u%12u%12u%12"PRIu64"%12"PRIu64"%12"PRIu64
295 					"%12"PRIu64"%12.4f%12.4f%12.2f\n",
296 					ctx->lcore_id,
297 					ctx->options->test_buffer_size,
298 					test_burst_size,
299 					ops_enqd_total,
300 					ops_deqd_total,
301 					ops_enqd_failed,
302 					ops_deqd_failed,
303 					ops_per_second/1000000,
304 					throughput_gbps,
305 					cycles_per_packet);
306 		} else {
307 			if (__atomic_compare_exchange_n(&display_once, &exp, 1, 0,
308 					__ATOMIC_RELAXED, __ATOMIC_RELAXED))
309 				printf("#lcore id,Buffer Size(B),"
310 					"Burst Size,Enqueued,Dequeued,Failed Enq,"
311 					"Failed Deq,Ops(Millions),Throughput(Gbps),"
312 					"Cycles/Buf\n\n");
313 
314 			printf("%u,%u,%u,%"PRIu64",%"PRIu64",%"PRIu64",%"PRIu64","
315 					"%.3f,%.3f,%.3f\n",
316 					ctx->lcore_id,
317 					ctx->options->test_buffer_size,
318 					test_burst_size,
319 					ops_enqd_total,
320 					ops_deqd_total,
321 					ops_enqd_failed,
322 					ops_deqd_failed,
323 					ops_per_second/1000000,
324 					throughput_gbps,
325 					cycles_per_packet);
326 		}
327 
328 		/* Get next size from range or list */
329 		if (ctx->options->inc_burst_size != 0)
330 			test_burst_size += ctx->options->inc_burst_size;
331 		else {
332 			if (++burst_size_idx == ctx->options->burst_size_count)
333 				break;
334 			test_burst_size = ctx->options->burst_size_list[burst_size_idx];
335 		}
336 
337 	}
338 
339 	return 0;
340 }
341 
342 
343 void
344 cperf_throughput_test_destructor(void *arg)
345 {
346 	struct cperf_throughput_ctx *ctx = arg;
347 
348 	if (ctx == NULL)
349 		return;
350 
351 	cperf_throughput_test_free(ctx);
352 }
353