xref: /dpdk/app/test-crypto-perf/cperf_test_throughput.c (revision 89f0711f9ddfb5822da9d34f384b92f72a61c4dc)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4 
5 #include <rte_malloc.h>
6 #include <rte_cycles.h>
7 #include <rte_crypto.h>
8 #include <rte_cryptodev.h>
9 
10 #include "cperf_test_throughput.h"
11 #include "cperf_ops.h"
12 #include "cperf_test_common.h"
13 
14 struct cperf_throughput_ctx {
15 	uint8_t dev_id;
16 	uint16_t qp_id;
17 	uint8_t lcore_id;
18 
19 	struct rte_mempool *pool;
20 
21 	struct rte_cryptodev_sym_session *sess;
22 
23 	cperf_populate_ops_t populate_ops;
24 
25 	uint32_t src_buf_offset;
26 	uint32_t dst_buf_offset;
27 
28 	const struct cperf_options *options;
29 	const struct cperf_test_vector *test_vector;
30 };
31 
32 static void
33 cperf_throughput_test_free(struct cperf_throughput_ctx *ctx)
34 {
35 	if (ctx) {
36 		if (ctx->sess) {
37 			rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
38 			rte_cryptodev_sym_session_free(ctx->sess);
39 		}
40 
41 		if (ctx->pool)
42 			rte_mempool_free(ctx->pool);
43 
44 		rte_free(ctx);
45 	}
46 }
47 
48 void *
49 cperf_throughput_test_constructor(struct rte_mempool *sess_mp,
50 		uint8_t dev_id, uint16_t qp_id,
51 		const struct cperf_options *options,
52 		const struct cperf_test_vector *test_vector,
53 		const struct cperf_op_fns *op_fns)
54 {
55 	struct cperf_throughput_ctx *ctx = NULL;
56 
57 	ctx = rte_malloc(NULL, sizeof(struct cperf_throughput_ctx), 0);
58 	if (ctx == NULL)
59 		goto err;
60 
61 	ctx->dev_id = dev_id;
62 	ctx->qp_id = qp_id;
63 
64 	ctx->populate_ops = op_fns->populate_ops;
65 	ctx->options = options;
66 	ctx->test_vector = test_vector;
67 
68 	/* IV goes at the end of the crypto operation */
69 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
70 		sizeof(struct rte_crypto_sym_op);
71 
72 	ctx->sess = op_fns->sess_create(sess_mp, dev_id, options, test_vector,
73 					iv_offset);
74 	if (ctx->sess == NULL)
75 		goto err;
76 
77 	if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0,
78 			&ctx->src_buf_offset, &ctx->dst_buf_offset,
79 			&ctx->pool) < 0)
80 		goto err;
81 
82 	return ctx;
83 err:
84 	cperf_throughput_test_free(ctx);
85 
86 	return NULL;
87 }
88 
89 int
90 cperf_throughput_test_runner(void *test_ctx)
91 {
92 	struct cperf_throughput_ctx *ctx = test_ctx;
93 	uint16_t test_burst_size;
94 	uint8_t burst_size_idx = 0;
95 	uint32_t imix_idx = 0;
96 
97 	static int only_once;
98 
99 	struct rte_crypto_op *ops[ctx->options->max_burst_size];
100 	struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
101 	uint64_t i;
102 
103 	uint32_t lcore = rte_lcore_id();
104 
105 #ifdef CPERF_LINEARIZATION_ENABLE
106 	struct rte_cryptodev_info dev_info;
107 	int linearize = 0;
108 
109 	/* Check if source mbufs require coalescing */
110 	if (ctx->options->segment_sz < ctx->options->max_buffer_size) {
111 		rte_cryptodev_info_get(ctx->dev_id, &dev_info);
112 		if ((dev_info.feature_flags &
113 				RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
114 			linearize = 1;
115 	}
116 #endif /* CPERF_LINEARIZATION_ENABLE */
117 
118 	ctx->lcore_id = lcore;
119 
120 	/* Warm up the host CPU before starting the test */
121 	for (i = 0; i < ctx->options->total_ops; i++)
122 		rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
123 
124 	/* Get first size from range or list */
125 	if (ctx->options->inc_burst_size != 0)
126 		test_burst_size = ctx->options->min_burst_size;
127 	else
128 		test_burst_size = ctx->options->burst_size_list[0];
129 
130 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
131 		sizeof(struct rte_crypto_sym_op);
132 
133 	while (test_burst_size <= ctx->options->max_burst_size) {
134 		uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0;
135 		uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0;
136 
137 		uint64_t tsc_start, tsc_end, tsc_duration;
138 
139 		uint16_t ops_unused = 0;
140 
141 		tsc_start = rte_rdtsc_precise();
142 
143 		while (ops_enqd_total < ctx->options->total_ops) {
144 
145 			uint16_t burst_size = ((ops_enqd_total + test_burst_size)
146 					<= ctx->options->total_ops) ?
147 							test_burst_size :
148 							ctx->options->total_ops -
149 							ops_enqd_total;
150 
151 			uint16_t ops_needed = burst_size - ops_unused;
152 
153 			/* Allocate objects containing crypto operations and mbufs */
154 			if (rte_mempool_get_bulk(ctx->pool, (void **)ops,
155 						ops_needed) != 0) {
156 				RTE_LOG(ERR, USER1,
157 					"Failed to allocate more crypto operations "
158 					"from the crypto operation pool.\n"
159 					"Consider increasing the pool size "
160 					"with --pool-sz\n");
161 				return -1;
162 			}
163 
164 			/* Setup crypto op, attach mbuf etc */
165 			(ctx->populate_ops)(ops, ctx->src_buf_offset,
166 					ctx->dst_buf_offset,
167 					ops_needed, ctx->sess,
168 					ctx->options, ctx->test_vector,
169 					iv_offset, &imix_idx);
170 
171 			/**
172 			 * When ops_needed is smaller than ops_enqd, the
173 			 * unused ops need to be moved to the front for
174 			 * next round use.
175 			 */
176 			if (unlikely(ops_enqd > ops_needed)) {
177 				size_t nb_b_to_mov = ops_unused * sizeof(
178 						struct rte_crypto_op *);
179 
180 				memmove(&ops[ops_needed], &ops[ops_enqd],
181 					nb_b_to_mov);
182 			}
183 
184 #ifdef CPERF_LINEARIZATION_ENABLE
185 			if (linearize) {
186 				/* PMD doesn't support scatter-gather and source buffer
187 				 * is segmented.
188 				 * We need to linearize it before enqueuing.
189 				 */
190 				for (i = 0; i < burst_size; i++)
191 					rte_pktmbuf_linearize(ops[i]->sym->m_src);
192 			}
193 #endif /* CPERF_LINEARIZATION_ENABLE */
194 
195 			/* Enqueue burst of ops on crypto device */
196 			ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
197 					ops, burst_size);
198 			if (ops_enqd < burst_size)
199 				ops_enqd_failed++;
200 
201 			/**
202 			 * Calculate number of ops not enqueued (mainly for hw
203 			 * accelerators whose ingress queue can fill up).
204 			 */
205 			ops_unused = burst_size - ops_enqd;
206 			ops_enqd_total += ops_enqd;
207 
208 
209 			/* Dequeue processed burst of ops from crypto device */
210 			ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
211 					ops_processed, test_burst_size);
212 
213 			if (likely(ops_deqd))  {
214 				/* Free crypto ops so they can be reused. */
215 				rte_mempool_put_bulk(ctx->pool,
216 						(void **)ops_processed, ops_deqd);
217 
218 				ops_deqd_total += ops_deqd;
219 			} else {
220 				/**
221 				 * Count dequeue polls which didn't return any
222 				 * processed operations. This statistic is mainly
223 				 * relevant to hw accelerators.
224 				 */
225 				ops_deqd_failed++;
226 			}
227 
228 		}
229 
230 		/* Dequeue any operations still in the crypto device */
231 
232 		while (ops_deqd_total < ctx->options->total_ops) {
233 			/* Sending 0 length burst to flush sw crypto device */
234 			rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
235 
236 			/* dequeue burst */
237 			ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
238 					ops_processed, test_burst_size);
239 			if (ops_deqd == 0)
240 				ops_deqd_failed++;
241 			else {
242 				rte_mempool_put_bulk(ctx->pool,
243 						(void **)ops_processed, ops_deqd);
244 				ops_deqd_total += ops_deqd;
245 			}
246 		}
247 
248 		tsc_end = rte_rdtsc_precise();
249 		tsc_duration = (tsc_end - tsc_start);
250 
251 		/* Calculate average operations processed per second */
252 		double ops_per_second = ((double)ctx->options->total_ops /
253 				tsc_duration) * rte_get_tsc_hz();
254 
255 		/* Calculate average throughput (Gbps) in bits per second */
256 		double throughput_gbps = ((ops_per_second *
257 				ctx->options->test_buffer_size * 8) / 1000000000);
258 
259 		/* Calculate average cycles per packet */
260 		double cycles_per_packet = ((double)tsc_duration /
261 				ctx->options->total_ops);
262 
263 		if (!ctx->options->csv) {
264 			if (!only_once)
265 				printf("%12s%12s%12s%12s%12s%12s%12s%12s%12s%12s\n\n",
266 					"lcore id", "Buf Size", "Burst Size",
267 					"Enqueued", "Dequeued", "Failed Enq",
268 					"Failed Deq", "MOps", "Gbps",
269 					"Cycles/Buf");
270 			only_once = 1;
271 
272 			printf("%12u%12u%12u%12"PRIu64"%12"PRIu64"%12"PRIu64
273 					"%12"PRIu64"%12.4f%12.4f%12.2f\n",
274 					ctx->lcore_id,
275 					ctx->options->test_buffer_size,
276 					test_burst_size,
277 					ops_enqd_total,
278 					ops_deqd_total,
279 					ops_enqd_failed,
280 					ops_deqd_failed,
281 					ops_per_second/1000000,
282 					throughput_gbps,
283 					cycles_per_packet);
284 		} else {
285 			if (!only_once)
286 				printf("#lcore id,Buffer Size(B),"
287 					"Burst Size,Enqueued,Dequeued,Failed Enq,"
288 					"Failed Deq,Ops(Millions),Throughput(Gbps),"
289 					"Cycles/Buf\n\n");
290 			only_once = 1;
291 
292 			printf("%u;%u;%u;%"PRIu64";%"PRIu64";%"PRIu64";%"PRIu64";"
293 					"%.3f;%.3f;%.3f\n",
294 					ctx->lcore_id,
295 					ctx->options->test_buffer_size,
296 					test_burst_size,
297 					ops_enqd_total,
298 					ops_deqd_total,
299 					ops_enqd_failed,
300 					ops_deqd_failed,
301 					ops_per_second/1000000,
302 					throughput_gbps,
303 					cycles_per_packet);
304 		}
305 
306 		/* Get next size from range or list */
307 		if (ctx->options->inc_burst_size != 0)
308 			test_burst_size += ctx->options->inc_burst_size;
309 		else {
310 			if (++burst_size_idx == ctx->options->burst_size_count)
311 				break;
312 			test_burst_size = ctx->options->burst_size_list[burst_size_idx];
313 		}
314 
315 	}
316 
317 	return 0;
318 }
319 
320 
321 void
322 cperf_throughput_test_destructor(void *arg)
323 {
324 	struct cperf_throughput_ctx *ctx = arg;
325 
326 	if (ctx == NULL)
327 		return;
328 
329 	cperf_throughput_test_free(ctx);
330 }
331