xref: /dpdk/app/test-crypto-perf/cperf_test_throughput.c (revision 8809f78c7dd9f33a44a4f89c58fc91ded34296ed)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4 
5 #include <rte_malloc.h>
6 #include <rte_cycles.h>
7 #include <rte_crypto.h>
8 #include <rte_cryptodev.h>
9 
10 #include "cperf_test_throughput.h"
11 #include "cperf_ops.h"
12 #include "cperf_test_common.h"
13 
14 struct cperf_throughput_ctx {
15 	uint8_t dev_id;
16 	uint16_t qp_id;
17 	uint8_t lcore_id;
18 
19 	struct rte_mempool *pool;
20 
21 	struct rte_cryptodev_sym_session *sess;
22 
23 	cperf_populate_ops_t populate_ops;
24 
25 	uint32_t src_buf_offset;
26 	uint32_t dst_buf_offset;
27 
28 	const struct cperf_options *options;
29 	const struct cperf_test_vector *test_vector;
30 };
31 
32 static void
33 cperf_throughput_test_free(struct cperf_throughput_ctx *ctx)
34 {
35 	if (!ctx)
36 		return;
37 	if (ctx->sess) {
38 #ifdef RTE_LIB_SECURITY
39 		if (ctx->options->op_type == CPERF_PDCP ||
40 				ctx->options->op_type == CPERF_DOCSIS) {
41 			struct rte_security_ctx *sec_ctx =
42 				(struct rte_security_ctx *)
43 				rte_cryptodev_get_sec_ctx(ctx->dev_id);
44 			rte_security_session_destroy(sec_ctx,
45 				(struct rte_security_session *)ctx->sess);
46 		} else
47 #endif
48 		{
49 			rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
50 			rte_cryptodev_sym_session_free(ctx->sess);
51 		}
52 	}
53 	if (ctx->pool)
54 		rte_mempool_free(ctx->pool);
55 
56 	rte_free(ctx);
57 }
58 
59 void *
60 cperf_throughput_test_constructor(struct rte_mempool *sess_mp,
61 		struct rte_mempool *sess_priv_mp,
62 		uint8_t dev_id, uint16_t qp_id,
63 		const struct cperf_options *options,
64 		const struct cperf_test_vector *test_vector,
65 		const struct cperf_op_fns *op_fns)
66 {
67 	struct cperf_throughput_ctx *ctx = NULL;
68 
69 	ctx = rte_malloc(NULL, sizeof(struct cperf_throughput_ctx), 0);
70 	if (ctx == NULL)
71 		goto err;
72 
73 	ctx->dev_id = dev_id;
74 	ctx->qp_id = qp_id;
75 
76 	ctx->populate_ops = op_fns->populate_ops;
77 	ctx->options = options;
78 	ctx->test_vector = test_vector;
79 
80 	/* IV goes at the end of the crypto operation */
81 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
82 		sizeof(struct rte_crypto_sym_op);
83 
84 	ctx->sess = op_fns->sess_create(sess_mp, sess_priv_mp, dev_id, options,
85 			test_vector, iv_offset);
86 	if (ctx->sess == NULL)
87 		goto err;
88 
89 	if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0,
90 			&ctx->src_buf_offset, &ctx->dst_buf_offset,
91 			&ctx->pool) < 0)
92 		goto err;
93 
94 	return ctx;
95 err:
96 	cperf_throughput_test_free(ctx);
97 
98 	return NULL;
99 }
100 
101 int
102 cperf_throughput_test_runner(void *test_ctx)
103 {
104 	struct cperf_throughput_ctx *ctx = test_ctx;
105 	uint16_t test_burst_size;
106 	uint8_t burst_size_idx = 0;
107 	uint32_t imix_idx = 0;
108 
109 	static rte_atomic16_t display_once = RTE_ATOMIC16_INIT(0);
110 
111 	struct rte_crypto_op *ops[ctx->options->max_burst_size];
112 	struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
113 	uint64_t i;
114 
115 	uint32_t lcore = rte_lcore_id();
116 
117 #ifdef CPERF_LINEARIZATION_ENABLE
118 	struct rte_cryptodev_info dev_info;
119 	int linearize = 0;
120 
121 	/* Check if source mbufs require coalescing */
122 	if (ctx->options->segment_sz < ctx->options->max_buffer_size) {
123 		rte_cryptodev_info_get(ctx->dev_id, &dev_info);
124 		if ((dev_info.feature_flags &
125 				RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
126 			linearize = 1;
127 	}
128 #endif /* CPERF_LINEARIZATION_ENABLE */
129 
130 	ctx->lcore_id = lcore;
131 
132 	/* Warm up the host CPU before starting the test */
133 	for (i = 0; i < ctx->options->total_ops; i++)
134 		rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
135 
136 	/* Get first size from range or list */
137 	if (ctx->options->inc_burst_size != 0)
138 		test_burst_size = ctx->options->min_burst_size;
139 	else
140 		test_burst_size = ctx->options->burst_size_list[0];
141 
142 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
143 		sizeof(struct rte_crypto_sym_op);
144 
145 	while (test_burst_size <= ctx->options->max_burst_size) {
146 		uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0;
147 		uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0;
148 
149 		uint64_t tsc_start, tsc_end, tsc_duration;
150 
151 		uint16_t ops_unused = 0;
152 
153 		tsc_start = rte_rdtsc_precise();
154 
155 		while (ops_enqd_total < ctx->options->total_ops) {
156 
157 			uint16_t burst_size = ((ops_enqd_total + test_burst_size)
158 					<= ctx->options->total_ops) ?
159 							test_burst_size :
160 							ctx->options->total_ops -
161 							ops_enqd_total;
162 
163 			uint16_t ops_needed = burst_size - ops_unused;
164 
165 			/* Allocate objects containing crypto operations and mbufs */
166 			if (rte_mempool_get_bulk(ctx->pool, (void **)ops,
167 						ops_needed) != 0) {
168 				RTE_LOG(ERR, USER1,
169 					"Failed to allocate more crypto operations "
170 					"from the crypto operation pool.\n"
171 					"Consider increasing the pool size "
172 					"with --pool-sz\n");
173 				return -1;
174 			}
175 
176 			/* Setup crypto op, attach mbuf etc */
177 			(ctx->populate_ops)(ops, ctx->src_buf_offset,
178 					ctx->dst_buf_offset,
179 					ops_needed, ctx->sess,
180 					ctx->options, ctx->test_vector,
181 					iv_offset, &imix_idx);
182 
183 			/**
184 			 * When ops_needed is smaller than ops_enqd, the
185 			 * unused ops need to be moved to the front for
186 			 * next round use.
187 			 */
188 			if (unlikely(ops_enqd > ops_needed)) {
189 				size_t nb_b_to_mov = ops_unused * sizeof(
190 						struct rte_crypto_op *);
191 
192 				memmove(&ops[ops_needed], &ops[ops_enqd],
193 					nb_b_to_mov);
194 			}
195 
196 #ifdef CPERF_LINEARIZATION_ENABLE
197 			if (linearize) {
198 				/* PMD doesn't support scatter-gather and source buffer
199 				 * is segmented.
200 				 * We need to linearize it before enqueuing.
201 				 */
202 				for (i = 0; i < burst_size; i++)
203 					rte_pktmbuf_linearize(ops[i]->sym->m_src);
204 			}
205 #endif /* CPERF_LINEARIZATION_ENABLE */
206 
207 			/* Enqueue burst of ops on crypto device */
208 			ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
209 					ops, burst_size);
210 			if (ops_enqd < burst_size)
211 				ops_enqd_failed++;
212 
213 			/**
214 			 * Calculate number of ops not enqueued (mainly for hw
215 			 * accelerators whose ingress queue can fill up).
216 			 */
217 			ops_unused = burst_size - ops_enqd;
218 			ops_enqd_total += ops_enqd;
219 
220 
221 			/* Dequeue processed burst of ops from crypto device */
222 			ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
223 					ops_processed, test_burst_size);
224 
225 			if (likely(ops_deqd))  {
226 				/* Free crypto ops so they can be reused. */
227 				rte_mempool_put_bulk(ctx->pool,
228 						(void **)ops_processed, ops_deqd);
229 
230 				ops_deqd_total += ops_deqd;
231 			} else {
232 				/**
233 				 * Count dequeue polls which didn't return any
234 				 * processed operations. This statistic is mainly
235 				 * relevant to hw accelerators.
236 				 */
237 				ops_deqd_failed++;
238 			}
239 
240 		}
241 
242 		/* Dequeue any operations still in the crypto device */
243 
244 		while (ops_deqd_total < ctx->options->total_ops) {
245 			/* Sending 0 length burst to flush sw crypto device */
246 			rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
247 
248 			/* dequeue burst */
249 			ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
250 					ops_processed, test_burst_size);
251 			if (ops_deqd == 0)
252 				ops_deqd_failed++;
253 			else {
254 				rte_mempool_put_bulk(ctx->pool,
255 						(void **)ops_processed, ops_deqd);
256 				ops_deqd_total += ops_deqd;
257 			}
258 		}
259 
260 		tsc_end = rte_rdtsc_precise();
261 		tsc_duration = (tsc_end - tsc_start);
262 
263 		/* Calculate average operations processed per second */
264 		double ops_per_second = ((double)ctx->options->total_ops /
265 				tsc_duration) * rte_get_tsc_hz();
266 
267 		/* Calculate average throughput (Gbps) in bits per second */
268 		double throughput_gbps = ((ops_per_second *
269 				ctx->options->test_buffer_size * 8) / 1000000000);
270 
271 		/* Calculate average cycles per packet */
272 		double cycles_per_packet = ((double)tsc_duration /
273 				ctx->options->total_ops);
274 
275 		if (!ctx->options->csv) {
276 			if (rte_atomic16_test_and_set(&display_once))
277 				printf("%12s%12s%12s%12s%12s%12s%12s%12s%12s%12s\n\n",
278 					"lcore id", "Buf Size", "Burst Size",
279 					"Enqueued", "Dequeued", "Failed Enq",
280 					"Failed Deq", "MOps", "Gbps",
281 					"Cycles/Buf");
282 
283 			printf("%12u%12u%12u%12"PRIu64"%12"PRIu64"%12"PRIu64
284 					"%12"PRIu64"%12.4f%12.4f%12.2f\n",
285 					ctx->lcore_id,
286 					ctx->options->test_buffer_size,
287 					test_burst_size,
288 					ops_enqd_total,
289 					ops_deqd_total,
290 					ops_enqd_failed,
291 					ops_deqd_failed,
292 					ops_per_second/1000000,
293 					throughput_gbps,
294 					cycles_per_packet);
295 		} else {
296 			if (rte_atomic16_test_and_set(&display_once))
297 				printf("#lcore id,Buffer Size(B),"
298 					"Burst Size,Enqueued,Dequeued,Failed Enq,"
299 					"Failed Deq,Ops(Millions),Throughput(Gbps),"
300 					"Cycles/Buf\n\n");
301 
302 			printf("%u;%u;%u;%"PRIu64";%"PRIu64";%"PRIu64";%"PRIu64";"
303 					"%.3f;%.3f;%.3f\n",
304 					ctx->lcore_id,
305 					ctx->options->test_buffer_size,
306 					test_burst_size,
307 					ops_enqd_total,
308 					ops_deqd_total,
309 					ops_enqd_failed,
310 					ops_deqd_failed,
311 					ops_per_second/1000000,
312 					throughput_gbps,
313 					cycles_per_packet);
314 		}
315 
316 		/* Get next size from range or list */
317 		if (ctx->options->inc_burst_size != 0)
318 			test_burst_size += ctx->options->inc_burst_size;
319 		else {
320 			if (++burst_size_idx == ctx->options->burst_size_count)
321 				break;
322 			test_burst_size = ctx->options->burst_size_list[burst_size_idx];
323 		}
324 
325 	}
326 
327 	return 0;
328 }
329 
330 
331 void
332 cperf_throughput_test_destructor(void *arg)
333 {
334 	struct cperf_throughput_ctx *ctx = arg;
335 
336 	if (ctx == NULL)
337 		return;
338 
339 	cperf_throughput_test_free(ctx);
340 }
341