1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2016-2017 Intel Corporation 3 */ 4 5 #include <rte_malloc.h> 6 #include <rte_cycles.h> 7 #include <rte_crypto.h> 8 #include <rte_cryptodev.h> 9 10 #include "cperf_test_throughput.h" 11 #include "cperf_ops.h" 12 #include "cperf_test_common.h" 13 14 struct cperf_throughput_ctx { 15 uint8_t dev_id; 16 uint16_t qp_id; 17 uint8_t lcore_id; 18 19 struct rte_mempool *pool; 20 21 struct rte_cryptodev_sym_session *sess; 22 23 cperf_populate_ops_t populate_ops; 24 25 uint32_t src_buf_offset; 26 uint32_t dst_buf_offset; 27 28 const struct cperf_options *options; 29 const struct cperf_test_vector *test_vector; 30 }; 31 32 static void 33 cperf_throughput_test_free(struct cperf_throughput_ctx *ctx) 34 { 35 if (!ctx) 36 return; 37 if (ctx->sess) { 38 #ifdef RTE_LIBRTE_SECURITY 39 if (ctx->options->op_type == CPERF_PDCP) { 40 struct rte_security_ctx *sec_ctx = 41 (struct rte_security_ctx *) 42 rte_cryptodev_get_sec_ctx(ctx->dev_id); 43 rte_security_session_destroy(sec_ctx, 44 (struct rte_security_session *)ctx->sess); 45 } else 46 #endif 47 { 48 rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess); 49 rte_cryptodev_sym_session_free(ctx->sess); 50 } 51 } 52 if (ctx->pool) 53 rte_mempool_free(ctx->pool); 54 55 rte_free(ctx); 56 } 57 58 void * 59 cperf_throughput_test_constructor(struct rte_mempool *sess_mp, 60 struct rte_mempool *sess_priv_mp, 61 uint8_t dev_id, uint16_t qp_id, 62 const struct cperf_options *options, 63 const struct cperf_test_vector *test_vector, 64 const struct cperf_op_fns *op_fns) 65 { 66 struct cperf_throughput_ctx *ctx = NULL; 67 68 ctx = rte_malloc(NULL, sizeof(struct cperf_throughput_ctx), 0); 69 if (ctx == NULL) 70 goto err; 71 72 ctx->dev_id = dev_id; 73 ctx->qp_id = qp_id; 74 75 ctx->populate_ops = op_fns->populate_ops; 76 ctx->options = options; 77 ctx->test_vector = test_vector; 78 79 /* IV goes at the end of the crypto operation */ 80 uint16_t iv_offset = sizeof(struct rte_crypto_op) + 81 sizeof(struct rte_crypto_sym_op); 82 83 ctx->sess = op_fns->sess_create(sess_mp, sess_priv_mp, dev_id, options, 84 test_vector, iv_offset); 85 if (ctx->sess == NULL) 86 goto err; 87 88 if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0, 89 &ctx->src_buf_offset, &ctx->dst_buf_offset, 90 &ctx->pool) < 0) 91 goto err; 92 93 return ctx; 94 err: 95 cperf_throughput_test_free(ctx); 96 97 return NULL; 98 } 99 100 int 101 cperf_throughput_test_runner(void *test_ctx) 102 { 103 struct cperf_throughput_ctx *ctx = test_ctx; 104 uint16_t test_burst_size; 105 uint8_t burst_size_idx = 0; 106 uint32_t imix_idx = 0; 107 108 static rte_atomic16_t display_once = RTE_ATOMIC16_INIT(0); 109 110 struct rte_crypto_op *ops[ctx->options->max_burst_size]; 111 struct rte_crypto_op *ops_processed[ctx->options->max_burst_size]; 112 uint64_t i; 113 114 uint32_t lcore = rte_lcore_id(); 115 116 #ifdef CPERF_LINEARIZATION_ENABLE 117 struct rte_cryptodev_info dev_info; 118 int linearize = 0; 119 120 /* Check if source mbufs require coalescing */ 121 if (ctx->options->segment_sz < ctx->options->max_buffer_size) { 122 rte_cryptodev_info_get(ctx->dev_id, &dev_info); 123 if ((dev_info.feature_flags & 124 RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0) 125 linearize = 1; 126 } 127 #endif /* CPERF_LINEARIZATION_ENABLE */ 128 129 ctx->lcore_id = lcore; 130 131 /* Warm up the host CPU before starting the test */ 132 for (i = 0; i < ctx->options->total_ops; i++) 133 rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0); 134 135 /* Get first size from range or list */ 136 if (ctx->options->inc_burst_size != 0) 137 test_burst_size = ctx->options->min_burst_size; 138 else 139 test_burst_size = ctx->options->burst_size_list[0]; 140 141 uint16_t iv_offset = sizeof(struct rte_crypto_op) + 142 sizeof(struct rte_crypto_sym_op); 143 144 while (test_burst_size <= ctx->options->max_burst_size) { 145 uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0; 146 uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0; 147 148 uint64_t tsc_start, tsc_end, tsc_duration; 149 150 uint16_t ops_unused = 0; 151 152 tsc_start = rte_rdtsc_precise(); 153 154 while (ops_enqd_total < ctx->options->total_ops) { 155 156 uint16_t burst_size = ((ops_enqd_total + test_burst_size) 157 <= ctx->options->total_ops) ? 158 test_burst_size : 159 ctx->options->total_ops - 160 ops_enqd_total; 161 162 uint16_t ops_needed = burst_size - ops_unused; 163 164 /* Allocate objects containing crypto operations and mbufs */ 165 if (rte_mempool_get_bulk(ctx->pool, (void **)ops, 166 ops_needed) != 0) { 167 RTE_LOG(ERR, USER1, 168 "Failed to allocate more crypto operations " 169 "from the crypto operation pool.\n" 170 "Consider increasing the pool size " 171 "with --pool-sz\n"); 172 return -1; 173 } 174 175 /* Setup crypto op, attach mbuf etc */ 176 (ctx->populate_ops)(ops, ctx->src_buf_offset, 177 ctx->dst_buf_offset, 178 ops_needed, ctx->sess, 179 ctx->options, ctx->test_vector, 180 iv_offset, &imix_idx); 181 182 /** 183 * When ops_needed is smaller than ops_enqd, the 184 * unused ops need to be moved to the front for 185 * next round use. 186 */ 187 if (unlikely(ops_enqd > ops_needed)) { 188 size_t nb_b_to_mov = ops_unused * sizeof( 189 struct rte_crypto_op *); 190 191 memmove(&ops[ops_needed], &ops[ops_enqd], 192 nb_b_to_mov); 193 } 194 195 #ifdef CPERF_LINEARIZATION_ENABLE 196 if (linearize) { 197 /* PMD doesn't support scatter-gather and source buffer 198 * is segmented. 199 * We need to linearize it before enqueuing. 200 */ 201 for (i = 0; i < burst_size; i++) 202 rte_pktmbuf_linearize(ops[i]->sym->m_src); 203 } 204 #endif /* CPERF_LINEARIZATION_ENABLE */ 205 206 /* Enqueue burst of ops on crypto device */ 207 ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, 208 ops, burst_size); 209 if (ops_enqd < burst_size) 210 ops_enqd_failed++; 211 212 /** 213 * Calculate number of ops not enqueued (mainly for hw 214 * accelerators whose ingress queue can fill up). 215 */ 216 ops_unused = burst_size - ops_enqd; 217 ops_enqd_total += ops_enqd; 218 219 220 /* Dequeue processed burst of ops from crypto device */ 221 ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id, 222 ops_processed, test_burst_size); 223 224 if (likely(ops_deqd)) { 225 /* Free crypto ops so they can be reused. */ 226 rte_mempool_put_bulk(ctx->pool, 227 (void **)ops_processed, ops_deqd); 228 229 ops_deqd_total += ops_deqd; 230 } else { 231 /** 232 * Count dequeue polls which didn't return any 233 * processed operations. This statistic is mainly 234 * relevant to hw accelerators. 235 */ 236 ops_deqd_failed++; 237 } 238 239 } 240 241 /* Dequeue any operations still in the crypto device */ 242 243 while (ops_deqd_total < ctx->options->total_ops) { 244 /* Sending 0 length burst to flush sw crypto device */ 245 rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0); 246 247 /* dequeue burst */ 248 ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id, 249 ops_processed, test_burst_size); 250 if (ops_deqd == 0) 251 ops_deqd_failed++; 252 else { 253 rte_mempool_put_bulk(ctx->pool, 254 (void **)ops_processed, ops_deqd); 255 ops_deqd_total += ops_deqd; 256 } 257 } 258 259 tsc_end = rte_rdtsc_precise(); 260 tsc_duration = (tsc_end - tsc_start); 261 262 /* Calculate average operations processed per second */ 263 double ops_per_second = ((double)ctx->options->total_ops / 264 tsc_duration) * rte_get_tsc_hz(); 265 266 /* Calculate average throughput (Gbps) in bits per second */ 267 double throughput_gbps = ((ops_per_second * 268 ctx->options->test_buffer_size * 8) / 1000000000); 269 270 /* Calculate average cycles per packet */ 271 double cycles_per_packet = ((double)tsc_duration / 272 ctx->options->total_ops); 273 274 if (!ctx->options->csv) { 275 if (rte_atomic16_test_and_set(&display_once)) 276 printf("%12s%12s%12s%12s%12s%12s%12s%12s%12s%12s\n\n", 277 "lcore id", "Buf Size", "Burst Size", 278 "Enqueued", "Dequeued", "Failed Enq", 279 "Failed Deq", "MOps", "Gbps", 280 "Cycles/Buf"); 281 282 printf("%12u%12u%12u%12"PRIu64"%12"PRIu64"%12"PRIu64 283 "%12"PRIu64"%12.4f%12.4f%12.2f\n", 284 ctx->lcore_id, 285 ctx->options->test_buffer_size, 286 test_burst_size, 287 ops_enqd_total, 288 ops_deqd_total, 289 ops_enqd_failed, 290 ops_deqd_failed, 291 ops_per_second/1000000, 292 throughput_gbps, 293 cycles_per_packet); 294 } else { 295 if (rte_atomic16_test_and_set(&display_once)) 296 printf("#lcore id,Buffer Size(B)," 297 "Burst Size,Enqueued,Dequeued,Failed Enq," 298 "Failed Deq,Ops(Millions),Throughput(Gbps)," 299 "Cycles/Buf\n\n"); 300 301 printf("%u;%u;%u;%"PRIu64";%"PRIu64";%"PRIu64";%"PRIu64";" 302 "%.3f;%.3f;%.3f\n", 303 ctx->lcore_id, 304 ctx->options->test_buffer_size, 305 test_burst_size, 306 ops_enqd_total, 307 ops_deqd_total, 308 ops_enqd_failed, 309 ops_deqd_failed, 310 ops_per_second/1000000, 311 throughput_gbps, 312 cycles_per_packet); 313 } 314 315 /* Get next size from range or list */ 316 if (ctx->options->inc_burst_size != 0) 317 test_burst_size += ctx->options->inc_burst_size; 318 else { 319 if (++burst_size_idx == ctx->options->burst_size_count) 320 break; 321 test_burst_size = ctx->options->burst_size_list[burst_size_idx]; 322 } 323 324 } 325 326 return 0; 327 } 328 329 330 void 331 cperf_throughput_test_destructor(void *arg) 332 { 333 struct cperf_throughput_ctx *ctx = arg; 334 335 if (ctx == NULL) 336 return; 337 338 cperf_throughput_test_free(ctx); 339 } 340