xref: /dpdk/app/test-crypto-perf/cperf_test_throughput.c (revision 15b4beab8a300a5d74b4a0913a9f2faaa33f0ecf)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2016-2017 Intel Corporation. All rights reserved.
5  *
6  *   Redistribution and use in source and binary forms, with or without
7  *   modification, are permitted provided that the following conditions
8  *   are met:
9  *
10  *     * Redistributions of source code must retain the above copyright
11  *       notice, this list of conditions and the following disclaimer.
12  *     * Redistributions in binary form must reproduce the above copyright
13  *       notice, this list of conditions and the following disclaimer in
14  *       the documentation and/or other materials provided with the
15  *       distribution.
16  *     * Neither the name of Intel Corporation nor the names of its
17  *       contributors may be used to endorse or promote products derived
18  *       from this software without specific prior written permission.
19  *
20  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <rte_malloc.h>
34 #include <rte_cycles.h>
35 #include <rte_crypto.h>
36 #include <rte_cryptodev.h>
37 
38 #include "cperf_test_throughput.h"
39 #include "cperf_ops.h"
40 
41 struct cperf_throughput_ctx {
42 	uint8_t dev_id;
43 	uint16_t qp_id;
44 	uint8_t lcore_id;
45 
46 	struct rte_mempool *pkt_mbuf_pool_in;
47 	struct rte_mempool *pkt_mbuf_pool_out;
48 	struct rte_mbuf **mbufs_in;
49 	struct rte_mbuf **mbufs_out;
50 
51 	struct rte_mempool *crypto_op_pool;
52 
53 	struct rte_cryptodev_sym_session *sess;
54 
55 	cperf_populate_ops_t populate_ops;
56 
57 	const struct cperf_options *options;
58 	const struct cperf_test_vector *test_vector;
59 };
60 
61 static void
62 cperf_throughput_test_free(struct cperf_throughput_ctx *ctx, uint32_t mbuf_nb)
63 {
64 	uint32_t i;
65 
66 	if (ctx) {
67 		if (ctx->sess) {
68 			rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
69 			rte_cryptodev_sym_session_free(ctx->sess);
70 		}
71 
72 		if (ctx->mbufs_in) {
73 			for (i = 0; i < mbuf_nb; i++)
74 				rte_pktmbuf_free(ctx->mbufs_in[i]);
75 
76 			rte_free(ctx->mbufs_in);
77 		}
78 
79 		if (ctx->mbufs_out) {
80 			for (i = 0; i < mbuf_nb; i++) {
81 				if (ctx->mbufs_out[i] != NULL)
82 					rte_pktmbuf_free(ctx->mbufs_out[i]);
83 			}
84 
85 			rte_free(ctx->mbufs_out);
86 		}
87 
88 		if (ctx->pkt_mbuf_pool_in)
89 			rte_mempool_free(ctx->pkt_mbuf_pool_in);
90 
91 		if (ctx->pkt_mbuf_pool_out)
92 			rte_mempool_free(ctx->pkt_mbuf_pool_out);
93 
94 		if (ctx->crypto_op_pool)
95 			rte_mempool_free(ctx->crypto_op_pool);
96 
97 		rte_free(ctx);
98 	}
99 }
100 
101 static struct rte_mbuf *
102 cperf_mbuf_create(struct rte_mempool *mempool,
103 		uint32_t segments_nb,
104 		const struct cperf_options *options,
105 		const struct cperf_test_vector *test_vector)
106 {
107 	struct rte_mbuf *mbuf;
108 	uint32_t segment_sz = options->max_buffer_size / segments_nb;
109 	uint32_t last_sz = options->max_buffer_size % segments_nb;
110 	uint8_t *mbuf_data;
111 	uint8_t *test_data =
112 			(options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ?
113 					test_vector->plaintext.data :
114 					test_vector->ciphertext.data;
115 
116 	mbuf = rte_pktmbuf_alloc(mempool);
117 	if (mbuf == NULL)
118 		goto error;
119 
120 	mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz);
121 	if (mbuf_data == NULL)
122 		goto error;
123 
124 	memcpy(mbuf_data, test_data, segment_sz);
125 	test_data += segment_sz;
126 	segments_nb--;
127 
128 	while (segments_nb) {
129 		struct rte_mbuf *m;
130 
131 		m = rte_pktmbuf_alloc(mempool);
132 		if (m == NULL)
133 			goto error;
134 
135 		rte_pktmbuf_chain(mbuf, m);
136 
137 		mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz);
138 		if (mbuf_data == NULL)
139 			goto error;
140 
141 		memcpy(mbuf_data, test_data, segment_sz);
142 		test_data += segment_sz;
143 		segments_nb--;
144 	}
145 
146 	if (last_sz) {
147 		mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, last_sz);
148 		if (mbuf_data == NULL)
149 			goto error;
150 
151 		memcpy(mbuf_data, test_data, last_sz);
152 	}
153 
154 	if (options->op_type != CPERF_CIPHER_ONLY) {
155 		mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf,
156 				options->digest_sz);
157 		if (mbuf_data == NULL)
158 			goto error;
159 	}
160 
161 	if (options->op_type == CPERF_AEAD) {
162 		uint8_t *aead = (uint8_t *)rte_pktmbuf_prepend(mbuf,
163 			RTE_ALIGN_CEIL(options->aead_aad_sz, 16));
164 
165 		if (aead == NULL)
166 			goto error;
167 
168 		memcpy(aead, test_vector->aad.data, test_vector->aad.length);
169 	}
170 
171 	return mbuf;
172 error:
173 	if (mbuf != NULL)
174 		rte_pktmbuf_free(mbuf);
175 
176 	return NULL;
177 }
178 
179 void *
180 cperf_throughput_test_constructor(struct rte_mempool *sess_mp,
181 		uint8_t dev_id, uint16_t qp_id,
182 		const struct cperf_options *options,
183 		const struct cperf_test_vector *test_vector,
184 		const struct cperf_op_fns *op_fns)
185 {
186 	struct cperf_throughput_ctx *ctx = NULL;
187 	unsigned int mbuf_idx = 0;
188 	char pool_name[32] = "";
189 
190 	ctx = rte_malloc(NULL, sizeof(struct cperf_throughput_ctx), 0);
191 	if (ctx == NULL)
192 		goto err;
193 
194 	ctx->dev_id = dev_id;
195 	ctx->qp_id = qp_id;
196 
197 	ctx->populate_ops = op_fns->populate_ops;
198 	ctx->options = options;
199 	ctx->test_vector = test_vector;
200 
201 	/* IV goes at the end of the cryptop operation */
202 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
203 		sizeof(struct rte_crypto_sym_op);
204 
205 	ctx->sess = op_fns->sess_create(sess_mp, dev_id, options, test_vector,
206 					iv_offset);
207 	if (ctx->sess == NULL)
208 		goto err;
209 
210 	snprintf(pool_name, sizeof(pool_name), "cperf_pool_in_cdev_%d",
211 			dev_id);
212 
213 	ctx->pkt_mbuf_pool_in = rte_pktmbuf_pool_create(pool_name,
214 			options->pool_sz * options->segments_nb, 0, 0,
215 			RTE_PKTMBUF_HEADROOM +
216 			RTE_CACHE_LINE_ROUNDUP(
217 				(options->max_buffer_size / options->segments_nb) +
218 				(options->max_buffer_size % options->segments_nb) +
219 					options->digest_sz),
220 			rte_socket_id());
221 
222 	if (ctx->pkt_mbuf_pool_in == NULL)
223 		goto err;
224 
225 	/* Generate mbufs_in with plaintext populated for test */
226 	ctx->mbufs_in = rte_malloc(NULL,
227 			(sizeof(struct rte_mbuf *) * ctx->options->pool_sz), 0);
228 
229 	for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) {
230 		ctx->mbufs_in[mbuf_idx] = cperf_mbuf_create(
231 				ctx->pkt_mbuf_pool_in, options->segments_nb,
232 				options, test_vector);
233 		if (ctx->mbufs_in[mbuf_idx] == NULL)
234 			goto err;
235 	}
236 
237 	if (options->out_of_place == 1)	{
238 
239 		snprintf(pool_name, sizeof(pool_name), "cperf_pool_out_cdev_%d",
240 				dev_id);
241 
242 		ctx->pkt_mbuf_pool_out = rte_pktmbuf_pool_create(
243 				pool_name, options->pool_sz, 0, 0,
244 				RTE_PKTMBUF_HEADROOM +
245 				RTE_CACHE_LINE_ROUNDUP(
246 					options->max_buffer_size +
247 					options->digest_sz),
248 				rte_socket_id());
249 
250 		if (ctx->pkt_mbuf_pool_out == NULL)
251 			goto err;
252 	}
253 
254 	ctx->mbufs_out = rte_malloc(NULL,
255 			(sizeof(struct rte_mbuf *) *
256 			ctx->options->pool_sz), 0);
257 
258 	for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) {
259 		if (options->out_of_place == 1)	{
260 			ctx->mbufs_out[mbuf_idx] = cperf_mbuf_create(
261 					ctx->pkt_mbuf_pool_out, 1,
262 					options, test_vector);
263 			if (ctx->mbufs_out[mbuf_idx] == NULL)
264 				goto err;
265 		} else {
266 			ctx->mbufs_out[mbuf_idx] = NULL;
267 		}
268 	}
269 
270 	snprintf(pool_name, sizeof(pool_name), "cperf_op_pool_cdev_%d",
271 			dev_id);
272 
273 	uint16_t priv_size = test_vector->cipher_iv.length +
274 		test_vector->auth_iv.length;
275 
276 	ctx->crypto_op_pool = rte_crypto_op_pool_create(pool_name,
277 			RTE_CRYPTO_OP_TYPE_SYMMETRIC, options->pool_sz,
278 			512, priv_size, rte_socket_id());
279 	if (ctx->crypto_op_pool == NULL)
280 		goto err;
281 
282 	return ctx;
283 err:
284 	cperf_throughput_test_free(ctx, mbuf_idx);
285 
286 	return NULL;
287 }
288 
289 int
290 cperf_throughput_test_runner(void *test_ctx)
291 {
292 	struct cperf_throughput_ctx *ctx = test_ctx;
293 	uint16_t test_burst_size;
294 	uint8_t burst_size_idx = 0;
295 
296 	static int only_once;
297 
298 	struct rte_crypto_op *ops[ctx->options->max_burst_size];
299 	struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
300 	uint64_t i;
301 
302 	uint32_t lcore = rte_lcore_id();
303 
304 #ifdef CPERF_LINEARIZATION_ENABLE
305 	struct rte_cryptodev_info dev_info;
306 	int linearize = 0;
307 
308 	/* Check if source mbufs require coalescing */
309 	if (ctx->options->segments_nb > 1) {
310 		rte_cryptodev_info_get(ctx->dev_id, &dev_info);
311 		if ((dev_info.feature_flags &
312 				RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
313 			linearize = 1;
314 	}
315 #endif /* CPERF_LINEARIZATION_ENABLE */
316 
317 	ctx->lcore_id = lcore;
318 
319 	/* Warm up the host CPU before starting the test */
320 	for (i = 0; i < ctx->options->total_ops; i++)
321 		rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
322 
323 	/* Get first size from range or list */
324 	if (ctx->options->inc_burst_size != 0)
325 		test_burst_size = ctx->options->min_burst_size;
326 	else
327 		test_burst_size = ctx->options->burst_size_list[0];
328 
329 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
330 		sizeof(struct rte_crypto_sym_op);
331 
332 	while (test_burst_size <= ctx->options->max_burst_size) {
333 		uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0;
334 		uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0;
335 
336 		uint64_t m_idx = 0, tsc_start, tsc_end, tsc_duration;
337 
338 		uint16_t ops_unused = 0;
339 
340 		tsc_start = rte_rdtsc_precise();
341 
342 		while (ops_enqd_total < ctx->options->total_ops) {
343 
344 			uint16_t burst_size = ((ops_enqd_total + test_burst_size)
345 					<= ctx->options->total_ops) ?
346 							test_burst_size :
347 							ctx->options->total_ops -
348 							ops_enqd_total;
349 
350 			uint16_t ops_needed = burst_size - ops_unused;
351 
352 			/* Allocate crypto ops from pool */
353 			if (ops_needed != rte_crypto_op_bulk_alloc(
354 					ctx->crypto_op_pool,
355 					RTE_CRYPTO_OP_TYPE_SYMMETRIC,
356 					ops, ops_needed)) {
357 				RTE_LOG(ERR, USER1,
358 					"Failed to allocate more crypto operations "
359 					"from the the crypto operation pool.\n"
360 					"Consider increasing the pool size "
361 					"with --pool-sz\n");
362 				return -1;
363 			}
364 
365 			/* Setup crypto op, attach mbuf etc */
366 			(ctx->populate_ops)(ops, &ctx->mbufs_in[m_idx],
367 					&ctx->mbufs_out[m_idx],
368 					ops_needed, ctx->sess, ctx->options,
369 					ctx->test_vector, iv_offset);
370 
371 			/**
372 			 * When ops_needed is smaller than ops_enqd, the
373 			 * unused ops need to be moved to the front for
374 			 * next round use.
375 			 */
376 			if (unlikely(ops_enqd > ops_needed)) {
377 				size_t nb_b_to_mov = ops_unused * sizeof(
378 						struct rte_crypto_op *);
379 
380 				memmove(&ops[ops_needed], &ops[ops_enqd],
381 					nb_b_to_mov);
382 			}
383 
384 #ifdef CPERF_LINEARIZATION_ENABLE
385 			if (linearize) {
386 				/* PMD doesn't support scatter-gather and source buffer
387 				 * is segmented.
388 				 * We need to linearize it before enqueuing.
389 				 */
390 				for (i = 0; i < burst_size; i++)
391 					rte_pktmbuf_linearize(ops[i]->sym->m_src);
392 			}
393 #endif /* CPERF_LINEARIZATION_ENABLE */
394 
395 			/* Enqueue burst of ops on crypto device */
396 			ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
397 					ops, burst_size);
398 			if (ops_enqd < burst_size)
399 				ops_enqd_failed++;
400 
401 			/**
402 			 * Calculate number of ops not enqueued (mainly for hw
403 			 * accelerators whose ingress queue can fill up).
404 			 */
405 			ops_unused = burst_size - ops_enqd;
406 			ops_enqd_total += ops_enqd;
407 
408 
409 			/* Dequeue processed burst of ops from crypto device */
410 			ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
411 					ops_processed, test_burst_size);
412 
413 			if (likely(ops_deqd))  {
414 				/* free crypto ops so they can be reused. We don't free
415 				 * the mbufs here as we don't want to reuse them as
416 				 * the crypto operation will change the data and cause
417 				 * failures.
418 				 */
419 				rte_mempool_put_bulk(ctx->crypto_op_pool,
420 						(void **)ops_processed, ops_deqd);
421 
422 				ops_deqd_total += ops_deqd;
423 			} else {
424 				/**
425 				 * Count dequeue polls which didn't return any
426 				 * processed operations. This statistic is mainly
427 				 * relevant to hw accelerators.
428 				 */
429 				ops_deqd_failed++;
430 			}
431 
432 			m_idx += ops_needed;
433 			m_idx = m_idx + test_burst_size > ctx->options->pool_sz ?
434 					0 : m_idx;
435 		}
436 
437 		/* Dequeue any operations still in the crypto device */
438 
439 		while (ops_deqd_total < ctx->options->total_ops) {
440 			/* Sending 0 length burst to flush sw crypto device */
441 			rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
442 
443 			/* dequeue burst */
444 			ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
445 					ops_processed, test_burst_size);
446 			if (ops_deqd == 0)
447 				ops_deqd_failed++;
448 			else {
449 				rte_mempool_put_bulk(ctx->crypto_op_pool,
450 						(void **)ops_processed, ops_deqd);
451 
452 				ops_deqd_total += ops_deqd;
453 			}
454 		}
455 
456 		tsc_end = rte_rdtsc_precise();
457 		tsc_duration = (tsc_end - tsc_start);
458 
459 		/* Calculate average operations processed per second */
460 		double ops_per_second = ((double)ctx->options->total_ops /
461 				tsc_duration) * rte_get_tsc_hz();
462 
463 		/* Calculate average throughput (Gbps) in bits per second */
464 		double throughput_gbps = ((ops_per_second *
465 				ctx->options->test_buffer_size * 8) / 1000000000);
466 
467 		/* Calculate average cycles per packet */
468 		double cycles_per_packet = ((double)tsc_duration /
469 				ctx->options->total_ops);
470 
471 		if (!ctx->options->csv) {
472 			if (!only_once)
473 				printf("%12s%12s%12s%12s%12s%12s%12s%12s%12s%12s\n\n",
474 					"lcore id", "Buf Size", "Burst Size",
475 					"Enqueued", "Dequeued", "Failed Enq",
476 					"Failed Deq", "MOps", "Gbps",
477 					"Cycles/Buf");
478 			only_once = 1;
479 
480 			printf("%12u%12u%12u%12"PRIu64"%12"PRIu64"%12"PRIu64
481 					"%12"PRIu64"%12.4f%12.4f%12.2f\n",
482 					ctx->lcore_id,
483 					ctx->options->test_buffer_size,
484 					test_burst_size,
485 					ops_enqd_total,
486 					ops_deqd_total,
487 					ops_enqd_failed,
488 					ops_deqd_failed,
489 					ops_per_second/1000000,
490 					throughput_gbps,
491 					cycles_per_packet);
492 		} else {
493 			if (!only_once)
494 				printf("# lcore id, Buffer Size(B),"
495 					"Burst Size,Enqueued,Dequeued,Failed Enq,"
496 					"Failed Deq,Ops(Millions),Throughput(Gbps),"
497 					"Cycles/Buf\n\n");
498 			only_once = 1;
499 
500 			printf("%10u;%10u;%u;%"PRIu64";%"PRIu64";%"PRIu64";%"PRIu64";"
501 					"%.f3;%.f3;%.f3\n",
502 					ctx->lcore_id,
503 					ctx->options->test_buffer_size,
504 					test_burst_size,
505 					ops_enqd_total,
506 					ops_deqd_total,
507 					ops_enqd_failed,
508 					ops_deqd_failed,
509 					ops_per_second/1000000,
510 					throughput_gbps,
511 					cycles_per_packet);
512 		}
513 
514 		/* Get next size from range or list */
515 		if (ctx->options->inc_burst_size != 0)
516 			test_burst_size += ctx->options->inc_burst_size;
517 		else {
518 			if (++burst_size_idx == ctx->options->burst_size_count)
519 				break;
520 			test_burst_size = ctx->options->burst_size_list[burst_size_idx];
521 		}
522 
523 	}
524 
525 	return 0;
526 }
527 
528 
529 void
530 cperf_throughput_test_destructor(void *arg)
531 {
532 	struct cperf_throughput_ctx *ctx = arg;
533 
534 	if (ctx == NULL)
535 		return;
536 
537 	rte_cryptodev_stop(ctx->dev_id);
538 
539 	cperf_throughput_test_free(ctx, ctx->options->pool_sz);
540 }
541