xref: /dpdk/app/test-crypto-perf/cperf_test_throughput.c (revision 0fbd75a99fc9d2c8c7618d677d3f50fb9872b80c)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2016-2017 Intel Corporation. All rights reserved.
5  *
6  *   Redistribution and use in source and binary forms, with or without
7  *   modification, are permitted provided that the following conditions
8  *   are met:
9  *
10  *     * Redistributions of source code must retain the above copyright
11  *       notice, this list of conditions and the following disclaimer.
12  *     * Redistributions in binary form must reproduce the above copyright
13  *       notice, this list of conditions and the following disclaimer in
14  *       the documentation and/or other materials provided with the
15  *       distribution.
16  *     * Neither the name of Intel Corporation nor the names of its
17  *       contributors may be used to endorse or promote products derived
18  *       from this software without specific prior written permission.
19  *
20  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <rte_malloc.h>
34 #include <rte_cycles.h>
35 #include <rte_crypto.h>
36 #include <rte_cryptodev.h>
37 
38 #include "cperf_test_throughput.h"
39 #include "cperf_ops.h"
40 
41 struct cperf_throughput_ctx {
42 	uint8_t dev_id;
43 	uint16_t qp_id;
44 	uint8_t lcore_id;
45 
46 	struct rte_mempool *pkt_mbuf_pool_in;
47 	struct rte_mempool *pkt_mbuf_pool_out;
48 	struct rte_mbuf **mbufs_in;
49 	struct rte_mbuf **mbufs_out;
50 
51 	struct rte_mempool *crypto_op_pool;
52 
53 	struct rte_cryptodev_sym_session *sess;
54 
55 	cperf_populate_ops_t populate_ops;
56 
57 	const struct cperf_options *options;
58 	const struct cperf_test_vector *test_vector;
59 };
60 
61 static void
62 cperf_throughput_test_free(struct cperf_throughput_ctx *ctx, uint32_t mbuf_nb)
63 {
64 	uint32_t i;
65 
66 	if (ctx) {
67 		if (ctx->sess)
68 			rte_cryptodev_sym_session_free(ctx->dev_id, ctx->sess);
69 
70 		if (ctx->mbufs_in) {
71 			for (i = 0; i < mbuf_nb; i++)
72 				rte_pktmbuf_free(ctx->mbufs_in[i]);
73 
74 			rte_free(ctx->mbufs_in);
75 		}
76 
77 		if (ctx->mbufs_out) {
78 			for (i = 0; i < mbuf_nb; i++) {
79 				if (ctx->mbufs_out[i] != NULL)
80 					rte_pktmbuf_free(ctx->mbufs_out[i]);
81 			}
82 
83 			rte_free(ctx->mbufs_out);
84 		}
85 
86 		if (ctx->pkt_mbuf_pool_in)
87 			rte_mempool_free(ctx->pkt_mbuf_pool_in);
88 
89 		if (ctx->pkt_mbuf_pool_out)
90 			rte_mempool_free(ctx->pkt_mbuf_pool_out);
91 
92 		if (ctx->crypto_op_pool)
93 			rte_mempool_free(ctx->crypto_op_pool);
94 
95 		rte_free(ctx);
96 	}
97 }
98 
99 static struct rte_mbuf *
100 cperf_mbuf_create(struct rte_mempool *mempool,
101 		uint32_t segments_nb,
102 		const struct cperf_options *options,
103 		const struct cperf_test_vector *test_vector)
104 {
105 	struct rte_mbuf *mbuf;
106 	uint32_t segment_sz = options->max_buffer_size / segments_nb;
107 	uint32_t last_sz = options->max_buffer_size % segments_nb;
108 	uint8_t *mbuf_data;
109 	uint8_t *test_data =
110 			(options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ?
111 					test_vector->plaintext.data :
112 					test_vector->ciphertext.data;
113 
114 	mbuf = rte_pktmbuf_alloc(mempool);
115 	if (mbuf == NULL)
116 		goto error;
117 
118 	mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz);
119 	if (mbuf_data == NULL)
120 		goto error;
121 
122 	memcpy(mbuf_data, test_data, segment_sz);
123 	test_data += segment_sz;
124 	segments_nb--;
125 
126 	while (segments_nb) {
127 		struct rte_mbuf *m;
128 
129 		m = rte_pktmbuf_alloc(mempool);
130 		if (m == NULL)
131 			goto error;
132 
133 		rte_pktmbuf_chain(mbuf, m);
134 
135 		mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz);
136 		if (mbuf_data == NULL)
137 			goto error;
138 
139 		memcpy(mbuf_data, test_data, segment_sz);
140 		test_data += segment_sz;
141 		segments_nb--;
142 	}
143 
144 	if (last_sz) {
145 		mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, last_sz);
146 		if (mbuf_data == NULL)
147 			goto error;
148 
149 		memcpy(mbuf_data, test_data, last_sz);
150 	}
151 
152 	if (options->op_type != CPERF_CIPHER_ONLY) {
153 		mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf,
154 				options->auth_digest_sz);
155 		if (mbuf_data == NULL)
156 			goto error;
157 	}
158 
159 	if (options->op_type == CPERF_AEAD) {
160 		uint8_t *aead = (uint8_t *)rte_pktmbuf_prepend(mbuf,
161 			RTE_ALIGN_CEIL(options->auth_aad_sz, 16));
162 
163 		if (aead == NULL)
164 			goto error;
165 
166 		memcpy(aead, test_vector->aad.data, test_vector->aad.length);
167 	}
168 
169 	return mbuf;
170 error:
171 	if (mbuf != NULL)
172 		rte_pktmbuf_free(mbuf);
173 
174 	return NULL;
175 }
176 
177 void *
178 cperf_throughput_test_constructor(uint8_t dev_id, uint16_t qp_id,
179 		const struct cperf_options *options,
180 		const struct cperf_test_vector *test_vector,
181 		const struct cperf_op_fns *op_fns)
182 {
183 	struct cperf_throughput_ctx *ctx = NULL;
184 	unsigned int mbuf_idx = 0;
185 	char pool_name[32] = "";
186 
187 	ctx = rte_malloc(NULL, sizeof(struct cperf_throughput_ctx), 0);
188 	if (ctx == NULL)
189 		goto err;
190 
191 	ctx->dev_id = dev_id;
192 	ctx->qp_id = qp_id;
193 
194 	ctx->populate_ops = op_fns->populate_ops;
195 	ctx->options = options;
196 	ctx->test_vector = test_vector;
197 
198 	/* IV goes at the end of the cryptop operation */
199 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
200 		sizeof(struct rte_crypto_sym_op);
201 
202 	ctx->sess = op_fns->sess_create(dev_id, options, test_vector, iv_offset);
203 	if (ctx->sess == NULL)
204 		goto err;
205 
206 	snprintf(pool_name, sizeof(pool_name), "cperf_pool_in_cdev_%d",
207 			dev_id);
208 
209 	ctx->pkt_mbuf_pool_in = rte_pktmbuf_pool_create(pool_name,
210 			options->pool_sz * options->segments_nb, 0, 0,
211 			RTE_PKTMBUF_HEADROOM +
212 			RTE_CACHE_LINE_ROUNDUP(
213 				(options->max_buffer_size / options->segments_nb) +
214 				(options->max_buffer_size % options->segments_nb) +
215 					options->auth_digest_sz),
216 			rte_socket_id());
217 
218 	if (ctx->pkt_mbuf_pool_in == NULL)
219 		goto err;
220 
221 	/* Generate mbufs_in with plaintext populated for test */
222 	ctx->mbufs_in = rte_malloc(NULL,
223 			(sizeof(struct rte_mbuf *) * ctx->options->pool_sz), 0);
224 
225 	for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) {
226 		ctx->mbufs_in[mbuf_idx] = cperf_mbuf_create(
227 				ctx->pkt_mbuf_pool_in, options->segments_nb,
228 				options, test_vector);
229 		if (ctx->mbufs_in[mbuf_idx] == NULL)
230 			goto err;
231 	}
232 
233 	if (options->out_of_place == 1)	{
234 
235 		snprintf(pool_name, sizeof(pool_name), "cperf_pool_out_cdev_%d",
236 				dev_id);
237 
238 		ctx->pkt_mbuf_pool_out = rte_pktmbuf_pool_create(
239 				pool_name, options->pool_sz, 0, 0,
240 				RTE_PKTMBUF_HEADROOM +
241 				RTE_CACHE_LINE_ROUNDUP(
242 					options->max_buffer_size +
243 					options->auth_digest_sz),
244 				rte_socket_id());
245 
246 		if (ctx->pkt_mbuf_pool_out == NULL)
247 			goto err;
248 	}
249 
250 	ctx->mbufs_out = rte_malloc(NULL,
251 			(sizeof(struct rte_mbuf *) *
252 			ctx->options->pool_sz), 0);
253 
254 	for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) {
255 		if (options->out_of_place == 1)	{
256 			ctx->mbufs_out[mbuf_idx] = cperf_mbuf_create(
257 					ctx->pkt_mbuf_pool_out, 1,
258 					options, test_vector);
259 			if (ctx->mbufs_out[mbuf_idx] == NULL)
260 				goto err;
261 		} else {
262 			ctx->mbufs_out[mbuf_idx] = NULL;
263 		}
264 	}
265 
266 	snprintf(pool_name, sizeof(pool_name), "cperf_op_pool_cdev_%d",
267 			dev_id);
268 
269 	uint16_t priv_size = test_vector->iv.length;
270 
271 	ctx->crypto_op_pool = rte_crypto_op_pool_create(pool_name,
272 			RTE_CRYPTO_OP_TYPE_SYMMETRIC, options->pool_sz,
273 			512, priv_size, rte_socket_id());
274 	if (ctx->crypto_op_pool == NULL)
275 		goto err;
276 
277 	return ctx;
278 err:
279 	cperf_throughput_test_free(ctx, mbuf_idx);
280 
281 	return NULL;
282 }
283 
284 int
285 cperf_throughput_test_runner(void *test_ctx)
286 {
287 	struct cperf_throughput_ctx *ctx = test_ctx;
288 	uint16_t test_burst_size;
289 	uint8_t burst_size_idx = 0;
290 
291 	static int only_once;
292 
293 	struct rte_crypto_op *ops[ctx->options->max_burst_size];
294 	struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
295 	uint64_t i;
296 
297 	uint32_t lcore = rte_lcore_id();
298 
299 #ifdef CPERF_LINEARIZATION_ENABLE
300 	struct rte_cryptodev_info dev_info;
301 	int linearize = 0;
302 
303 	/* Check if source mbufs require coalescing */
304 	if (ctx->options->segments_nb > 1) {
305 		rte_cryptodev_info_get(ctx->dev_id, &dev_info);
306 		if ((dev_info.feature_flags &
307 				RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
308 			linearize = 1;
309 	}
310 #endif /* CPERF_LINEARIZATION_ENABLE */
311 
312 	ctx->lcore_id = lcore;
313 
314 	/* Warm up the host CPU before starting the test */
315 	for (i = 0; i < ctx->options->total_ops; i++)
316 		rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
317 
318 	/* Get first size from range or list */
319 	if (ctx->options->inc_burst_size != 0)
320 		test_burst_size = ctx->options->min_burst_size;
321 	else
322 		test_burst_size = ctx->options->burst_size_list[0];
323 
324 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
325 		sizeof(struct rte_crypto_sym_op);
326 
327 	while (test_burst_size <= ctx->options->max_burst_size) {
328 		uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0;
329 		uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0;
330 
331 		uint64_t m_idx = 0, tsc_start, tsc_end, tsc_duration;
332 
333 		uint16_t ops_unused = 0;
334 
335 		tsc_start = rte_rdtsc_precise();
336 
337 		while (ops_enqd_total < ctx->options->total_ops) {
338 
339 			uint16_t burst_size = ((ops_enqd_total + test_burst_size)
340 					<= ctx->options->total_ops) ?
341 							test_burst_size :
342 							ctx->options->total_ops -
343 							ops_enqd_total;
344 
345 			uint16_t ops_needed = burst_size - ops_unused;
346 
347 			/* Allocate crypto ops from pool */
348 			if (ops_needed != rte_crypto_op_bulk_alloc(
349 					ctx->crypto_op_pool,
350 					RTE_CRYPTO_OP_TYPE_SYMMETRIC,
351 					ops, ops_needed))
352 				return -1;
353 
354 			/* Setup crypto op, attach mbuf etc */
355 			(ctx->populate_ops)(ops, &ctx->mbufs_in[m_idx],
356 					&ctx->mbufs_out[m_idx],
357 					ops_needed, ctx->sess, ctx->options,
358 					ctx->test_vector, iv_offset);
359 
360 			/**
361 			 * When ops_needed is smaller than ops_enqd, the
362 			 * unused ops need to be moved to the front for
363 			 * next round use.
364 			 */
365 			if (unlikely(ops_enqd > ops_needed)) {
366 				size_t nb_b_to_mov = ops_unused * sizeof(
367 						struct rte_crypto_op *);
368 
369 				memmove(&ops[ops_needed], &ops[ops_enqd],
370 					nb_b_to_mov);
371 			}
372 
373 #ifdef CPERF_LINEARIZATION_ENABLE
374 			if (linearize) {
375 				/* PMD doesn't support scatter-gather and source buffer
376 				 * is segmented.
377 				 * We need to linearize it before enqueuing.
378 				 */
379 				for (i = 0; i < burst_size; i++)
380 					rte_pktmbuf_linearize(ops[i]->sym->m_src);
381 			}
382 #endif /* CPERF_LINEARIZATION_ENABLE */
383 
384 			/* Enqueue burst of ops on crypto device */
385 			ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
386 					ops, burst_size);
387 			if (ops_enqd < burst_size)
388 				ops_enqd_failed++;
389 
390 			/**
391 			 * Calculate number of ops not enqueued (mainly for hw
392 			 * accelerators whose ingress queue can fill up).
393 			 */
394 			ops_unused = burst_size - ops_enqd;
395 			ops_enqd_total += ops_enqd;
396 
397 
398 			/* Dequeue processed burst of ops from crypto device */
399 			ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
400 					ops_processed, test_burst_size);
401 
402 			if (likely(ops_deqd))  {
403 				/* free crypto ops so they can be reused. We don't free
404 				 * the mbufs here as we don't want to reuse them as
405 				 * the crypto operation will change the data and cause
406 				 * failures.
407 				 */
408 				rte_mempool_put_bulk(ctx->crypto_op_pool,
409 						(void **)ops_processed, ops_deqd);
410 
411 				ops_deqd_total += ops_deqd;
412 			} else {
413 				/**
414 				 * Count dequeue polls which didn't return any
415 				 * processed operations. This statistic is mainly
416 				 * relevant to hw accelerators.
417 				 */
418 				ops_deqd_failed++;
419 			}
420 
421 			m_idx += ops_needed;
422 			m_idx = m_idx + test_burst_size > ctx->options->pool_sz ?
423 					0 : m_idx;
424 		}
425 
426 		/* Dequeue any operations still in the crypto device */
427 
428 		while (ops_deqd_total < ctx->options->total_ops) {
429 			/* Sending 0 length burst to flush sw crypto device */
430 			rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
431 
432 			/* dequeue burst */
433 			ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
434 					ops_processed, test_burst_size);
435 			if (ops_deqd == 0)
436 				ops_deqd_failed++;
437 			else {
438 				rte_mempool_put_bulk(ctx->crypto_op_pool,
439 						(void **)ops_processed, ops_deqd);
440 
441 				ops_deqd_total += ops_deqd;
442 			}
443 		}
444 
445 		tsc_end = rte_rdtsc_precise();
446 		tsc_duration = (tsc_end - tsc_start);
447 
448 		/* Calculate average operations processed per second */
449 		double ops_per_second = ((double)ctx->options->total_ops /
450 				tsc_duration) * rte_get_tsc_hz();
451 
452 		/* Calculate average throughput (Gbps) in bits per second */
453 		double throughput_gbps = ((ops_per_second *
454 				ctx->options->test_buffer_size * 8) / 1000000000);
455 
456 		/* Calculate average cycles per packet */
457 		double cycles_per_packet = ((double)tsc_duration /
458 				ctx->options->total_ops);
459 
460 		if (!ctx->options->csv) {
461 			if (!only_once)
462 				printf("%12s%12s%12s%12s%12s%12s%12s%12s%12s%12s\n\n",
463 					"lcore id", "Buf Size", "Burst Size",
464 					"Enqueued", "Dequeued", "Failed Enq",
465 					"Failed Deq", "MOps", "Gbps",
466 					"Cycles/Buf");
467 			only_once = 1;
468 
469 			printf("%12u%12u%12u%12"PRIu64"%12"PRIu64"%12"PRIu64
470 					"%12"PRIu64"%12.4f%12.4f%12.2f\n",
471 					ctx->lcore_id,
472 					ctx->options->test_buffer_size,
473 					test_burst_size,
474 					ops_enqd_total,
475 					ops_deqd_total,
476 					ops_enqd_failed,
477 					ops_deqd_failed,
478 					ops_per_second/1000000,
479 					throughput_gbps,
480 					cycles_per_packet);
481 		} else {
482 			if (!only_once)
483 				printf("# lcore id, Buffer Size(B),"
484 					"Burst Size,Enqueued,Dequeued,Failed Enq,"
485 					"Failed Deq,Ops(Millions),Throughput(Gbps),"
486 					"Cycles/Buf\n\n");
487 			only_once = 1;
488 
489 			printf("%10u;%10u;%u;%"PRIu64";%"PRIu64";%"PRIu64";%"PRIu64";"
490 					"%.f3;%.f3;%.f3\n",
491 					ctx->lcore_id,
492 					ctx->options->test_buffer_size,
493 					test_burst_size,
494 					ops_enqd_total,
495 					ops_deqd_total,
496 					ops_enqd_failed,
497 					ops_deqd_failed,
498 					ops_per_second/1000000,
499 					throughput_gbps,
500 					cycles_per_packet);
501 		}
502 
503 		/* Get next size from range or list */
504 		if (ctx->options->inc_burst_size != 0)
505 			test_burst_size += ctx->options->inc_burst_size;
506 		else {
507 			if (++burst_size_idx == ctx->options->burst_size_count)
508 				break;
509 			test_burst_size = ctx->options->burst_size_list[burst_size_idx];
510 		}
511 
512 	}
513 
514 	return 0;
515 }
516 
517 
518 void
519 cperf_throughput_test_destructor(void *arg)
520 {
521 	struct cperf_throughput_ctx *ctx = arg;
522 
523 	if (ctx == NULL)
524 		return;
525 
526 	cperf_throughput_test_free(ctx, ctx->options->pool_sz);
527 }
528