1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2016-2017 Intel Corporation 3 */ 4 5 #include <rte_malloc.h> 6 #include <rte_cycles.h> 7 #include <rte_crypto.h> 8 #include <rte_cryptodev.h> 9 10 #include "cperf_test_latency.h" 11 #include "cperf_ops.h" 12 #include "cperf_test_common.h" 13 14 struct cperf_op_result { 15 uint64_t tsc_start; 16 uint64_t tsc_end; 17 enum rte_crypto_op_status status; 18 }; 19 20 struct cperf_latency_ctx { 21 uint8_t dev_id; 22 uint16_t qp_id; 23 uint8_t lcore_id; 24 25 struct rte_mempool *pool; 26 27 struct rte_cryptodev_sym_session *sess; 28 29 cperf_populate_ops_t populate_ops; 30 31 uint32_t src_buf_offset; 32 uint32_t dst_buf_offset; 33 34 const struct cperf_options *options; 35 const struct cperf_test_vector *test_vector; 36 struct cperf_op_result *res; 37 }; 38 39 struct priv_op_data { 40 struct cperf_op_result *result; 41 }; 42 43 #define max(a, b) (a > b ? (uint64_t)a : (uint64_t)b) 44 #define min(a, b) (a < b ? (uint64_t)a : (uint64_t)b) 45 46 static void 47 cperf_latency_test_free(struct cperf_latency_ctx *ctx) 48 { 49 if (ctx) { 50 if (ctx->sess) { 51 rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess); 52 rte_cryptodev_sym_session_free(ctx->sess); 53 } 54 55 if (ctx->pool) 56 rte_mempool_free(ctx->pool); 57 58 rte_free(ctx->res); 59 rte_free(ctx); 60 } 61 } 62 63 void * 64 cperf_latency_test_constructor(struct rte_mempool *sess_mp, 65 uint8_t dev_id, uint16_t qp_id, 66 const struct cperf_options *options, 67 const struct cperf_test_vector *test_vector, 68 const struct cperf_op_fns *op_fns) 69 { 70 struct cperf_latency_ctx *ctx = NULL; 71 size_t extra_op_priv_size = sizeof(struct priv_op_data); 72 73 ctx = rte_malloc(NULL, sizeof(struct cperf_latency_ctx), 0); 74 if (ctx == NULL) 75 goto err; 76 77 ctx->dev_id = dev_id; 78 ctx->qp_id = qp_id; 79 80 ctx->populate_ops = op_fns->populate_ops; 81 ctx->options = options; 82 ctx->test_vector = test_vector; 83 84 /* IV goes at the end of the crypto operation */ 85 uint16_t iv_offset = sizeof(struct rte_crypto_op) + 86 sizeof(struct rte_crypto_sym_op) + 87 sizeof(struct cperf_op_result *); 88 89 ctx->sess = op_fns->sess_create(sess_mp, dev_id, options, test_vector, 90 iv_offset); 91 if (ctx->sess == NULL) 92 goto err; 93 94 if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 95 extra_op_priv_size, 96 &ctx->src_buf_offset, &ctx->dst_buf_offset, 97 &ctx->pool) < 0) 98 goto err; 99 100 ctx->res = rte_malloc(NULL, sizeof(struct cperf_op_result) * 101 ctx->options->total_ops, 0); 102 103 if (ctx->res == NULL) 104 goto err; 105 106 return ctx; 107 err: 108 cperf_latency_test_free(ctx); 109 110 return NULL; 111 } 112 113 static inline void 114 store_timestamp(struct rte_crypto_op *op, uint64_t timestamp) 115 { 116 struct priv_op_data *priv_data; 117 118 priv_data = (struct priv_op_data *) (op->sym + 1); 119 priv_data->result->status = op->status; 120 priv_data->result->tsc_end = timestamp; 121 } 122 123 int 124 cperf_latency_test_runner(void *arg) 125 { 126 struct cperf_latency_ctx *ctx = arg; 127 uint16_t test_burst_size; 128 uint8_t burst_size_idx = 0; 129 130 static int only_once; 131 132 if (ctx == NULL) 133 return 0; 134 135 struct rte_crypto_op *ops[ctx->options->max_burst_size]; 136 struct rte_crypto_op *ops_processed[ctx->options->max_burst_size]; 137 uint64_t i; 138 struct priv_op_data *priv_data; 139 140 uint32_t lcore = rte_lcore_id(); 141 142 #ifdef CPERF_LINEARIZATION_ENABLE 143 struct rte_cryptodev_info dev_info; 144 int linearize = 0; 145 146 /* Check if source mbufs require coalescing */ 147 if (ctx->options->segment_sz < ctx->options->max_buffer_size) { 148 rte_cryptodev_info_get(ctx->dev_id, &dev_info); 149 if ((dev_info.feature_flags & 150 RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0) 151 linearize = 1; 152 } 153 #endif /* CPERF_LINEARIZATION_ENABLE */ 154 155 ctx->lcore_id = lcore; 156 157 /* Warm up the host CPU before starting the test */ 158 for (i = 0; i < ctx->options->total_ops; i++) 159 rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0); 160 161 /* Get first size from range or list */ 162 if (ctx->options->inc_burst_size != 0) 163 test_burst_size = ctx->options->min_burst_size; 164 else 165 test_burst_size = ctx->options->burst_size_list[0]; 166 167 uint16_t iv_offset = sizeof(struct rte_crypto_op) + 168 sizeof(struct rte_crypto_sym_op) + 169 sizeof(struct cperf_op_result *); 170 171 while (test_burst_size <= ctx->options->max_burst_size) { 172 uint64_t ops_enqd = 0, ops_deqd = 0; 173 uint64_t b_idx = 0; 174 175 uint64_t tsc_val, tsc_end, tsc_start; 176 uint64_t tsc_max = 0, tsc_min = ~0UL, tsc_tot = 0, tsc_idx = 0; 177 uint64_t enqd_max = 0, enqd_min = ~0UL, enqd_tot = 0; 178 uint64_t deqd_max = 0, deqd_min = ~0UL, deqd_tot = 0; 179 180 while (enqd_tot < ctx->options->total_ops) { 181 182 uint16_t burst_size = ((enqd_tot + test_burst_size) 183 <= ctx->options->total_ops) ? 184 test_burst_size : 185 ctx->options->total_ops - 186 enqd_tot; 187 188 /* Allocate objects containing crypto operations and mbufs */ 189 if (rte_mempool_get_bulk(ctx->pool, (void **)ops, 190 burst_size) != 0) { 191 RTE_LOG(ERR, USER1, 192 "Failed to allocate more crypto operations " 193 "from the crypto operation pool.\n" 194 "Consider increasing the pool size " 195 "with --pool-sz\n"); 196 return -1; 197 } 198 199 /* Setup crypto op, attach mbuf etc */ 200 (ctx->populate_ops)(ops, ctx->src_buf_offset, 201 ctx->dst_buf_offset, 202 burst_size, ctx->sess, ctx->options, 203 ctx->test_vector, iv_offset); 204 205 tsc_start = rte_rdtsc_precise(); 206 207 #ifdef CPERF_LINEARIZATION_ENABLE 208 if (linearize) { 209 /* PMD doesn't support scatter-gather and source buffer 210 * is segmented. 211 * We need to linearize it before enqueuing. 212 */ 213 for (i = 0; i < burst_size; i++) 214 rte_pktmbuf_linearize(ops[i]->sym->m_src); 215 } 216 #endif /* CPERF_LINEARIZATION_ENABLE */ 217 218 /* Enqueue burst of ops on crypto device */ 219 ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, 220 ops, burst_size); 221 222 /* Dequeue processed burst of ops from crypto device */ 223 ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id, 224 ops_processed, test_burst_size); 225 226 tsc_end = rte_rdtsc_precise(); 227 228 /* Free memory for not enqueued operations */ 229 if (ops_enqd != burst_size) 230 rte_mempool_put_bulk(ctx->pool, 231 (void **)&ops[ops_enqd], 232 burst_size - ops_enqd); 233 234 for (i = 0; i < ops_enqd; i++) { 235 ctx->res[tsc_idx].tsc_start = tsc_start; 236 /* 237 * Private data structure starts after the end of the 238 * rte_crypto_sym_op structure. 239 */ 240 priv_data = (struct priv_op_data *) (ops[i]->sym + 1); 241 priv_data->result = (void *)&ctx->res[tsc_idx]; 242 tsc_idx++; 243 } 244 245 if (likely(ops_deqd)) { 246 /* Free crypto ops so they can be reused. */ 247 for (i = 0; i < ops_deqd; i++) 248 store_timestamp(ops_processed[i], tsc_end); 249 250 rte_mempool_put_bulk(ctx->pool, 251 (void **)ops_processed, ops_deqd); 252 253 deqd_tot += ops_deqd; 254 deqd_max = max(ops_deqd, deqd_max); 255 deqd_min = min(ops_deqd, deqd_min); 256 } 257 258 enqd_tot += ops_enqd; 259 enqd_max = max(ops_enqd, enqd_max); 260 enqd_min = min(ops_enqd, enqd_min); 261 262 b_idx++; 263 } 264 265 /* Dequeue any operations still in the crypto device */ 266 while (deqd_tot < ctx->options->total_ops) { 267 /* Sending 0 length burst to flush sw crypto device */ 268 rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0); 269 270 /* dequeue burst */ 271 ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id, 272 ops_processed, test_burst_size); 273 274 tsc_end = rte_rdtsc_precise(); 275 276 if (ops_deqd != 0) { 277 for (i = 0; i < ops_deqd; i++) 278 store_timestamp(ops_processed[i], tsc_end); 279 280 rte_mempool_put_bulk(ctx->pool, 281 (void **)ops_processed, ops_deqd); 282 283 deqd_tot += ops_deqd; 284 deqd_max = max(ops_deqd, deqd_max); 285 deqd_min = min(ops_deqd, deqd_min); 286 } 287 } 288 289 for (i = 0; i < tsc_idx; i++) { 290 tsc_val = ctx->res[i].tsc_end - ctx->res[i].tsc_start; 291 tsc_max = max(tsc_val, tsc_max); 292 tsc_min = min(tsc_val, tsc_min); 293 tsc_tot += tsc_val; 294 } 295 296 double time_tot, time_avg, time_max, time_min; 297 298 const uint64_t tunit = 1000000; /* us */ 299 const uint64_t tsc_hz = rte_get_tsc_hz(); 300 301 uint64_t enqd_avg = enqd_tot / b_idx; 302 uint64_t deqd_avg = deqd_tot / b_idx; 303 uint64_t tsc_avg = tsc_tot / tsc_idx; 304 305 time_tot = tunit*(double)(tsc_tot) / tsc_hz; 306 time_avg = tunit*(double)(tsc_avg) / tsc_hz; 307 time_max = tunit*(double)(tsc_max) / tsc_hz; 308 time_min = tunit*(double)(tsc_min) / tsc_hz; 309 310 if (ctx->options->csv) { 311 if (!only_once) 312 printf("\n# lcore, Buffer Size, Burst Size, Pakt Seq #, " 313 "Packet Size, cycles, time (us)"); 314 315 for (i = 0; i < ctx->options->total_ops; i++) { 316 317 printf("\n%u;%u;%u;%"PRIu64";%"PRIu64";%.3f", 318 ctx->lcore_id, ctx->options->test_buffer_size, 319 test_burst_size, i + 1, 320 ctx->res[i].tsc_end - ctx->res[i].tsc_start, 321 tunit * (double) (ctx->res[i].tsc_end 322 - ctx->res[i].tsc_start) 323 / tsc_hz); 324 325 } 326 only_once = 1; 327 } else { 328 printf("\n# Device %d on lcore %u\n", ctx->dev_id, 329 ctx->lcore_id); 330 printf("\n# total operations: %u", ctx->options->total_ops); 331 printf("\n# Buffer size: %u", ctx->options->test_buffer_size); 332 printf("\n# Burst size: %u", test_burst_size); 333 printf("\n# Number of bursts: %"PRIu64, 334 b_idx); 335 336 printf("\n#"); 337 printf("\n# \t Total\t Average\t " 338 "Maximum\t Minimum"); 339 printf("\n# enqueued\t%12"PRIu64"\t%10"PRIu64"\t" 340 "%10"PRIu64"\t%10"PRIu64, enqd_tot, 341 enqd_avg, enqd_max, enqd_min); 342 printf("\n# dequeued\t%12"PRIu64"\t%10"PRIu64"\t" 343 "%10"PRIu64"\t%10"PRIu64, deqd_tot, 344 deqd_avg, deqd_max, deqd_min); 345 printf("\n# cycles\t%12"PRIu64"\t%10"PRIu64"\t" 346 "%10"PRIu64"\t%10"PRIu64, tsc_tot, 347 tsc_avg, tsc_max, tsc_min); 348 printf("\n# time [us]\t%12.0f\t%10.3f\t%10.3f\t%10.3f", 349 time_tot, time_avg, time_max, time_min); 350 printf("\n\n"); 351 352 } 353 354 /* Get next size from range or list */ 355 if (ctx->options->inc_burst_size != 0) 356 test_burst_size += ctx->options->inc_burst_size; 357 else { 358 if (++burst_size_idx == ctx->options->burst_size_count) 359 break; 360 test_burst_size = 361 ctx->options->burst_size_list[burst_size_idx]; 362 } 363 } 364 365 return 0; 366 } 367 368 void 369 cperf_latency_test_destructor(void *arg) 370 { 371 struct cperf_latency_ctx *ctx = arg; 372 373 if (ctx == NULL) 374 return; 375 376 cperf_latency_test_free(ctx); 377 } 378