xref: /dpdk/app/test-crypto-perf/cperf_test_latency.c (revision 76a48d8ac0928d1a0afbd9f7abfe1d2d9f6d9aaf)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4 #include <rte_malloc.h>
5 #include <rte_cycles.h>
6 #include <rte_crypto.h>
7 #include <rte_cryptodev.h>
8 
9 #include "cperf_test_latency.h"
10 #include "cperf_ops.h"
11 #include "cperf_test_common.h"
12 
13 struct cperf_op_result {
14 	uint64_t tsc_start;
15 	uint64_t tsc_end;
16 	enum rte_crypto_op_status status;
17 };
18 
19 struct cperf_latency_ctx {
20 	uint8_t dev_id;
21 	uint16_t qp_id;
22 	uint8_t lcore_id;
23 
24 	struct rte_mempool *pool;
25 
26 	void *sess;
27 	uint8_t sess_owner;
28 
29 	cperf_populate_ops_t populate_ops;
30 
31 	uint32_t src_buf_offset;
32 	uint32_t dst_buf_offset;
33 
34 	const struct cperf_options *options;
35 	const struct cperf_test_vector *test_vector;
36 	struct cperf_op_result *res;
37 };
38 
39 struct priv_op_data {
40 	struct cperf_op_result *result;
41 };
42 
43 static void
44 cperf_latency_test_free(struct cperf_latency_ctx *ctx)
45 {
46 	if (ctx == NULL)
47 		return;
48 
49 	if (ctx->sess != NULL && ctx->sess_owner) {
50 		if (cperf_is_asym_test(ctx->options))
51 			rte_cryptodev_asym_session_free(ctx->dev_id, ctx->sess);
52 #ifdef RTE_LIB_SECURITY
53 		else if (ctx->options->op_type == CPERF_PDCP ||
54 			 ctx->options->op_type == CPERF_DOCSIS ||
55 			 ctx->options->op_type == CPERF_TLS ||
56 			 ctx->options->op_type == CPERF_IPSEC) {
57 			void *sec_ctx = rte_cryptodev_get_sec_ctx(ctx->dev_id);
58 			rte_security_session_destroy(sec_ctx, ctx->sess);
59 		}
60 #endif
61 		else
62 			rte_cryptodev_sym_session_free(ctx->dev_id, ctx->sess);
63 	}
64 
65 	rte_mempool_free(ctx->pool);
66 	rte_free(ctx->res);
67 	rte_free(ctx);
68 }
69 
70 void *
71 cperf_latency_test_constructor(struct rte_mempool *sess_mp,
72 		uint8_t dev_id, uint16_t qp_id,
73 		const struct cperf_options *options,
74 		const struct cperf_test_vector *test_vector,
75 		const struct cperf_op_fns *op_fns,
76 		void **sess)
77 {
78 	struct cperf_latency_ctx *ctx = NULL;
79 	size_t extra_op_priv_size = sizeof(struct priv_op_data);
80 
81 	ctx = rte_malloc(NULL, sizeof(struct cperf_latency_ctx), 0);
82 	if (ctx == NULL)
83 		goto err;
84 
85 	ctx->dev_id = dev_id;
86 	ctx->qp_id = qp_id;
87 
88 	ctx->populate_ops = op_fns->populate_ops;
89 	ctx->options = options;
90 	ctx->test_vector = test_vector;
91 
92 	/* IV goes at the end of the crypto operation */
93 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
94 		sizeof(struct rte_crypto_sym_op) +
95 		sizeof(struct cperf_op_result *);
96 
97 
98 	if (*sess != NULL) {
99 		ctx->sess = *sess;
100 		ctx->sess_owner = false;
101 	} else {
102 		ctx->sess = op_fns->sess_create(sess_mp, dev_id, options, test_vector,
103 			iv_offset);
104 		if (ctx->sess == NULL)
105 			goto err;
106 		*sess = ctx->sess;
107 		ctx->sess_owner = true;
108 	}
109 
110 	if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id,
111 			extra_op_priv_size,
112 			&ctx->src_buf_offset, &ctx->dst_buf_offset,
113 			&ctx->pool) < 0)
114 		goto err;
115 
116 	ctx->res = rte_malloc(NULL, sizeof(struct cperf_op_result) *
117 			ctx->options->total_ops, 0);
118 
119 	if (ctx->res == NULL)
120 		goto err;
121 
122 	return ctx;
123 err:
124 	cperf_latency_test_free(ctx);
125 
126 	return NULL;
127 }
128 
129 static inline void
130 store_timestamp(struct rte_crypto_op *op, uint64_t timestamp)
131 {
132 	struct priv_op_data *priv_data;
133 
134 	if (op->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC)
135 		priv_data = (struct priv_op_data *) (op->sym + 1);
136 	else
137 		priv_data = (struct priv_op_data *) (op->asym + 1);
138 
139 	priv_data->result->status = op->status;
140 	priv_data->result->tsc_end = timestamp;
141 }
142 
143 int
144 cperf_latency_test_runner(void *arg)
145 {
146 	struct cperf_latency_ctx *ctx = arg;
147 	uint16_t test_burst_size;
148 	uint8_t burst_size_idx = 0;
149 	uint32_t imix_idx = 0;
150 	int ret = 0;
151 
152 	static RTE_ATOMIC(uint16_t) display_once;
153 
154 	if (ctx == NULL)
155 		return 0;
156 
157 	struct rte_crypto_op *ops[ctx->options->max_burst_size];
158 	struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
159 	uint64_t i;
160 	struct priv_op_data *priv_data;
161 
162 	uint32_t lcore = rte_lcore_id();
163 
164 #ifdef CPERF_LINEARIZATION_ENABLE
165 	struct rte_cryptodev_info dev_info;
166 	int linearize = 0;
167 
168 	/* Check if source mbufs require coalescing */
169 	if (ctx->options->segment_sz < ctx->options->max_buffer_size) {
170 		rte_cryptodev_info_get(ctx->dev_id, &dev_info);
171 		if ((dev_info.feature_flags &
172 				RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
173 			linearize = 1;
174 	}
175 #endif /* CPERF_LINEARIZATION_ENABLE */
176 
177 	ctx->lcore_id = lcore;
178 
179 	/* Warm up the host CPU before starting the test */
180 	for (i = 0; i < ctx->options->total_ops; i++)
181 		rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
182 
183 	/* Get first size from range or list */
184 	if (ctx->options->inc_burst_size != 0)
185 		test_burst_size = ctx->options->min_burst_size;
186 	else
187 		test_burst_size = ctx->options->burst_size_list[0];
188 
189 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
190 		sizeof(struct rte_crypto_sym_op) +
191 		sizeof(struct cperf_op_result *);
192 
193 	while (test_burst_size <= ctx->options->max_burst_size) {
194 		uint64_t ops_enqd = 0, ops_deqd = 0;
195 		uint64_t b_idx = 0;
196 
197 		uint64_t tsc_val, tsc_end, tsc_start;
198 		uint64_t tsc_max = 0, tsc_min = ~0UL, tsc_tot = 0, tsc_idx = 0;
199 		uint64_t enqd_max = 0, enqd_min = ~0UL, enqd_tot = 0;
200 		uint64_t deqd_max = 0, deqd_min = ~0UL, deqd_tot = 0;
201 
202 		while (enqd_tot < ctx->options->total_ops) {
203 
204 			uint16_t burst_size = ((enqd_tot + test_burst_size)
205 					<= ctx->options->total_ops) ?
206 							test_burst_size :
207 							ctx->options->total_ops -
208 							enqd_tot;
209 
210 			/* Allocate objects containing crypto operations and mbufs */
211 			if (rte_mempool_get_bulk(ctx->pool, (void **)ops,
212 						burst_size) != 0) {
213 				RTE_LOG(ERR, USER1,
214 					"Failed to allocate more crypto operations "
215 					"from the crypto operation pool.\n"
216 					"Consider increasing the pool size "
217 					"with --pool-sz\n");
218 				return -1;
219 			}
220 
221 			/* Setup crypto op, attach mbuf etc */
222 			(ctx->populate_ops)(ops, ctx->src_buf_offset,
223 					ctx->dst_buf_offset,
224 					burst_size, ctx->sess, ctx->options,
225 					ctx->test_vector, iv_offset,
226 					&imix_idx, &tsc_start);
227 
228 			/* Populate the mbuf with the test vector */
229 			if (!cperf_is_asym_test(ctx->options))
230 				for (i = 0; i < burst_size; i++)
231 					cperf_mbuf_set(ops[i]->sym->m_src,
232 						ctx->options,
233 						ctx->test_vector);
234 
235 			tsc_start = rte_rdtsc_precise();
236 
237 #ifdef CPERF_LINEARIZATION_ENABLE
238 			if (linearize) {
239 				/* PMD doesn't support scatter-gather and source buffer
240 				 * is segmented.
241 				 * We need to linearize it before enqueuing.
242 				 */
243 				for (i = 0; i < burst_size; i++)
244 					rte_pktmbuf_linearize(ops[i]->sym->m_src);
245 			}
246 #endif /* CPERF_LINEARIZATION_ENABLE */
247 
248 			/* Enqueue burst of ops on crypto device */
249 			ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
250 					ops, burst_size);
251 
252 			/* Dequeue processed burst of ops from crypto device */
253 			ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
254 					ops_processed, test_burst_size);
255 
256 			tsc_end = rte_rdtsc_precise();
257 
258 			/* Free memory for not enqueued operations */
259 			if (ops_enqd != burst_size)
260 				rte_mempool_put_bulk(ctx->pool,
261 						(void **)&ops[ops_enqd],
262 						burst_size - ops_enqd);
263 
264 			for (i = 0; i < ops_enqd; i++) {
265 				ctx->res[tsc_idx].tsc_start = tsc_start;
266 				/*
267 				 * Private data structure starts after the end of the
268 				 * rte_crypto_sym_op (or rte_crypto_asym_op) structure.
269 				 */
270 				if (ops[i]->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC)
271 					priv_data = (struct priv_op_data *) (ops[i]->sym + 1);
272 				else
273 					priv_data = (struct priv_op_data *) (ops[i]->asym + 1);
274 
275 				priv_data->result = (void *)&ctx->res[tsc_idx];
276 				tsc_idx++;
277 			}
278 
279 			if (likely(ops_deqd))  {
280 				for (i = 0; i < ops_deqd; i++) {
281 					struct rte_crypto_op *op = ops_processed[i];
282 
283 					if (op->status != RTE_CRYPTO_OP_STATUS_SUCCESS)
284 						ret = -1;
285 
286 					store_timestamp(ops_processed[i], tsc_end);
287 				}
288 
289 				/* Free crypto ops so they can be reused. */
290 				rte_mempool_put_bulk(ctx->pool,
291 						(void **)ops_processed, ops_deqd);
292 
293 				deqd_tot += ops_deqd;
294 				deqd_max = RTE_MAX(ops_deqd, deqd_max);
295 				deqd_min = RTE_MIN(ops_deqd, deqd_min);
296 			}
297 
298 			enqd_tot += ops_enqd;
299 			enqd_max = RTE_MAX(ops_enqd, enqd_max);
300 			enqd_min = RTE_MIN(ops_enqd, enqd_min);
301 
302 			b_idx++;
303 		}
304 
305 		/* Dequeue any operations still in the crypto device */
306 		while (deqd_tot < ctx->options->total_ops) {
307 			/* Sending 0 length burst to flush sw crypto device */
308 			rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
309 
310 			/* dequeue burst */
311 			ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
312 					ops_processed, test_burst_size);
313 
314 			tsc_end = rte_rdtsc_precise();
315 
316 			if (ops_deqd != 0) {
317 				for (i = 0; i < ops_deqd; i++) {
318 					struct rte_crypto_op *op = ops_processed[i];
319 
320 					if (op->status != RTE_CRYPTO_OP_STATUS_SUCCESS)
321 						ret = -1;
322 
323 					store_timestamp(ops_processed[i], tsc_end);
324 				}
325 
326 				rte_mempool_put_bulk(ctx->pool,
327 						(void **)ops_processed, ops_deqd);
328 
329 				deqd_tot += ops_deqd;
330 				deqd_max = RTE_MAX(ops_deqd, deqd_max);
331 				deqd_min = RTE_MIN(ops_deqd, deqd_min);
332 			}
333 		}
334 
335 		/* If there was any failure in crypto op, exit */
336 		if (ret)
337 			return ret;
338 
339 		for (i = 0; i < tsc_idx; i++) {
340 			tsc_val = ctx->res[i].tsc_end - ctx->res[i].tsc_start;
341 			tsc_max = RTE_MAX(tsc_val, tsc_max);
342 			tsc_min = RTE_MIN(tsc_val, tsc_min);
343 			tsc_tot += tsc_val;
344 		}
345 
346 		double time_tot, time_avg, time_max, time_min;
347 
348 		const uint64_t tunit = 1000000; /* us */
349 		const uint64_t tsc_hz = rte_get_tsc_hz();
350 
351 		uint64_t enqd_avg = enqd_tot / b_idx;
352 		uint64_t deqd_avg = deqd_tot / b_idx;
353 		uint64_t tsc_avg = tsc_tot / tsc_idx;
354 
355 		time_tot = tunit*(double)(tsc_tot) / tsc_hz;
356 		time_avg = tunit*(double)(tsc_avg) / tsc_hz;
357 		time_max = tunit*(double)(tsc_max) / tsc_hz;
358 		time_min = tunit*(double)(tsc_min) / tsc_hz;
359 
360 		uint16_t exp = 0;
361 		if (ctx->options->csv) {
362 			if (rte_atomic_compare_exchange_strong_explicit(&display_once, &exp, 1,
363 					rte_memory_order_relaxed, rte_memory_order_relaxed))
364 				printf("\n# lcore, Buffer Size, Burst Size, Pakt Seq #, "
365 						"cycles, time (us)");
366 
367 			for (i = 0; i < ctx->options->total_ops; i++) {
368 
369 				printf("\n%u,%u,%u,%"PRIu64",%"PRIu64",%.3f",
370 					ctx->lcore_id, ctx->options->test_buffer_size,
371 					test_burst_size, i + 1,
372 					ctx->res[i].tsc_end - ctx->res[i].tsc_start,
373 					tunit * (double) (ctx->res[i].tsc_end
374 							- ctx->res[i].tsc_start)
375 						/ tsc_hz);
376 
377 			}
378 		} else {
379 			printf("\n# Device %d on lcore %u\n", ctx->dev_id,
380 				ctx->lcore_id);
381 			printf("\n# total operations: %u", ctx->options->total_ops);
382 			printf("\n# Buffer size: %u", ctx->options->test_buffer_size);
383 			printf("\n# Burst size: %u", test_burst_size);
384 			printf("\n#     Number of bursts: %"PRIu64,
385 					b_idx);
386 
387 			printf("\n#");
388 			printf("\n#          \t       Total\t   Average\t   "
389 					"Maximum\t   Minimum");
390 			printf("\n#  enqueued\t%12"PRIu64"\t%10"PRIu64"\t"
391 					"%10"PRIu64"\t%10"PRIu64, enqd_tot,
392 					enqd_avg, enqd_max, enqd_min);
393 			printf("\n#  dequeued\t%12"PRIu64"\t%10"PRIu64"\t"
394 					"%10"PRIu64"\t%10"PRIu64, deqd_tot,
395 					deqd_avg, deqd_max, deqd_min);
396 			printf("\n#    cycles\t%12"PRIu64"\t%10"PRIu64"\t"
397 					"%10"PRIu64"\t%10"PRIu64, tsc_tot,
398 					tsc_avg, tsc_max, tsc_min);
399 			printf("\n# time [us]\t%12.0f\t%10.3f\t%10.3f\t%10.3f",
400 					time_tot, time_avg, time_max, time_min);
401 			printf("\n\n");
402 
403 		}
404 
405 		/* Get next size from range or list */
406 		if (ctx->options->inc_burst_size != 0)
407 			test_burst_size += ctx->options->inc_burst_size;
408 		else {
409 			if (++burst_size_idx == ctx->options->burst_size_count)
410 				break;
411 			test_burst_size =
412 				ctx->options->burst_size_list[burst_size_idx];
413 		}
414 	}
415 
416 	return 0;
417 }
418 
419 void
420 cperf_latency_test_destructor(void *arg)
421 {
422 	struct cperf_latency_ctx *ctx = arg;
423 
424 	if (ctx == NULL)
425 		return;
426 
427 	cperf_latency_test_free(ctx);
428 }
429