xref: /dpdk/app/test-crypto-perf/cperf_test_latency.c (revision f69ed1044230c218c9afd8f1b47b6fe6aa1eeec5)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4 
5 #include <rte_malloc.h>
6 #include <rte_cycles.h>
7 #include <rte_crypto.h>
8 #include <rte_cryptodev.h>
9 
10 #include "cperf_test_latency.h"
11 #include "cperf_ops.h"
12 #include "cperf_test_common.h"
13 
14 struct cperf_op_result {
15 	uint64_t tsc_start;
16 	uint64_t tsc_end;
17 	enum rte_crypto_op_status status;
18 };
19 
20 struct cperf_latency_ctx {
21 	uint8_t dev_id;
22 	uint16_t qp_id;
23 	uint8_t lcore_id;
24 
25 	struct rte_mempool *pool;
26 
27 	struct rte_cryptodev_sym_session *sess;
28 
29 	cperf_populate_ops_t populate_ops;
30 
31 	uint32_t src_buf_offset;
32 	uint32_t dst_buf_offset;
33 
34 	const struct cperf_options *options;
35 	const struct cperf_test_vector *test_vector;
36 	struct cperf_op_result *res;
37 };
38 
39 struct priv_op_data {
40 	struct cperf_op_result *result;
41 };
42 
43 static void
44 cperf_latency_test_free(struct cperf_latency_ctx *ctx)
45 {
46 	if (ctx) {
47 		if (ctx->sess) {
48 			rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
49 			rte_cryptodev_sym_session_free(ctx->sess);
50 		}
51 
52 		if (ctx->pool)
53 			rte_mempool_free(ctx->pool);
54 
55 		rte_free(ctx->res);
56 		rte_free(ctx);
57 	}
58 }
59 
60 void *
61 cperf_latency_test_constructor(struct rte_mempool *sess_mp,
62 		struct rte_mempool *sess_priv_mp,
63 		uint8_t dev_id, uint16_t qp_id,
64 		const struct cperf_options *options,
65 		const struct cperf_test_vector *test_vector,
66 		const struct cperf_op_fns *op_fns)
67 {
68 	struct cperf_latency_ctx *ctx = NULL;
69 	size_t extra_op_priv_size = sizeof(struct priv_op_data);
70 
71 	ctx = rte_malloc(NULL, sizeof(struct cperf_latency_ctx), 0);
72 	if (ctx == NULL)
73 		goto err;
74 
75 	ctx->dev_id = dev_id;
76 	ctx->qp_id = qp_id;
77 
78 	ctx->populate_ops = op_fns->populate_ops;
79 	ctx->options = options;
80 	ctx->test_vector = test_vector;
81 
82 	/* IV goes at the end of the crypto operation */
83 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
84 		sizeof(struct rte_crypto_sym_op) +
85 		sizeof(struct cperf_op_result *);
86 
87 	ctx->sess = op_fns->sess_create(sess_mp, sess_priv_mp, dev_id, options,
88 			test_vector, iv_offset);
89 	if (ctx->sess == NULL)
90 		goto err;
91 
92 	if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id,
93 			extra_op_priv_size,
94 			&ctx->src_buf_offset, &ctx->dst_buf_offset,
95 			&ctx->pool) < 0)
96 		goto err;
97 
98 	ctx->res = rte_malloc(NULL, sizeof(struct cperf_op_result) *
99 			ctx->options->total_ops, 0);
100 
101 	if (ctx->res == NULL)
102 		goto err;
103 
104 	return ctx;
105 err:
106 	cperf_latency_test_free(ctx);
107 
108 	return NULL;
109 }
110 
111 static inline void
112 store_timestamp(struct rte_crypto_op *op, uint64_t timestamp)
113 {
114 	struct priv_op_data *priv_data;
115 
116 	priv_data = (struct priv_op_data *) (op->sym + 1);
117 	priv_data->result->status = op->status;
118 	priv_data->result->tsc_end = timestamp;
119 }
120 
121 int
122 cperf_latency_test_runner(void *arg)
123 {
124 	struct cperf_latency_ctx *ctx = arg;
125 	uint16_t test_burst_size;
126 	uint8_t burst_size_idx = 0;
127 	uint32_t imix_idx = 0;
128 
129 	static rte_atomic16_t display_once = RTE_ATOMIC16_INIT(0);
130 
131 	if (ctx == NULL)
132 		return 0;
133 
134 	struct rte_crypto_op *ops[ctx->options->max_burst_size];
135 	struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
136 	uint64_t i;
137 	struct priv_op_data *priv_data;
138 
139 	uint32_t lcore = rte_lcore_id();
140 
141 #ifdef CPERF_LINEARIZATION_ENABLE
142 	struct rte_cryptodev_info dev_info;
143 	int linearize = 0;
144 
145 	/* Check if source mbufs require coalescing */
146 	if (ctx->options->segment_sz < ctx->options->max_buffer_size) {
147 		rte_cryptodev_info_get(ctx->dev_id, &dev_info);
148 		if ((dev_info.feature_flags &
149 				RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
150 			linearize = 1;
151 	}
152 #endif /* CPERF_LINEARIZATION_ENABLE */
153 
154 	ctx->lcore_id = lcore;
155 
156 	/* Warm up the host CPU before starting the test */
157 	for (i = 0; i < ctx->options->total_ops; i++)
158 		rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
159 
160 	/* Get first size from range or list */
161 	if (ctx->options->inc_burst_size != 0)
162 		test_burst_size = ctx->options->min_burst_size;
163 	else
164 		test_burst_size = ctx->options->burst_size_list[0];
165 
166 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
167 		sizeof(struct rte_crypto_sym_op) +
168 		sizeof(struct cperf_op_result *);
169 
170 	while (test_burst_size <= ctx->options->max_burst_size) {
171 		uint64_t ops_enqd = 0, ops_deqd = 0;
172 		uint64_t b_idx = 0;
173 
174 		uint64_t tsc_val, tsc_end, tsc_start;
175 		uint64_t tsc_max = 0, tsc_min = ~0UL, tsc_tot = 0, tsc_idx = 0;
176 		uint64_t enqd_max = 0, enqd_min = ~0UL, enqd_tot = 0;
177 		uint64_t deqd_max = 0, deqd_min = ~0UL, deqd_tot = 0;
178 
179 		while (enqd_tot < ctx->options->total_ops) {
180 
181 			uint16_t burst_size = ((enqd_tot + test_burst_size)
182 					<= ctx->options->total_ops) ?
183 							test_burst_size :
184 							ctx->options->total_ops -
185 							enqd_tot;
186 
187 			/* Allocate objects containing crypto operations and mbufs */
188 			if (rte_mempool_get_bulk(ctx->pool, (void **)ops,
189 						burst_size) != 0) {
190 				RTE_LOG(ERR, USER1,
191 					"Failed to allocate more crypto operations "
192 					"from the crypto operation pool.\n"
193 					"Consider increasing the pool size "
194 					"with --pool-sz\n");
195 				return -1;
196 			}
197 
198 			/* Setup crypto op, attach mbuf etc */
199 			(ctx->populate_ops)(ops, ctx->src_buf_offset,
200 					ctx->dst_buf_offset,
201 					burst_size, ctx->sess, ctx->options,
202 					ctx->test_vector, iv_offset,
203 					&imix_idx);
204 
205 			tsc_start = rte_rdtsc_precise();
206 
207 #ifdef CPERF_LINEARIZATION_ENABLE
208 			if (linearize) {
209 				/* PMD doesn't support scatter-gather and source buffer
210 				 * is segmented.
211 				 * We need to linearize it before enqueuing.
212 				 */
213 				for (i = 0; i < burst_size; i++)
214 					rte_pktmbuf_linearize(ops[i]->sym->m_src);
215 			}
216 #endif /* CPERF_LINEARIZATION_ENABLE */
217 
218 			/* Enqueue burst of ops on crypto device */
219 			ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
220 					ops, burst_size);
221 
222 			/* Dequeue processed burst of ops from crypto device */
223 			ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
224 					ops_processed, test_burst_size);
225 
226 			tsc_end = rte_rdtsc_precise();
227 
228 			/* Free memory for not enqueued operations */
229 			if (ops_enqd != burst_size)
230 				rte_mempool_put_bulk(ctx->pool,
231 						(void **)&ops[ops_enqd],
232 						burst_size - ops_enqd);
233 
234 			for (i = 0; i < ops_enqd; i++) {
235 				ctx->res[tsc_idx].tsc_start = tsc_start;
236 				/*
237 				 * Private data structure starts after the end of the
238 				 * rte_crypto_sym_op structure.
239 				 */
240 				priv_data = (struct priv_op_data *) (ops[i]->sym + 1);
241 				priv_data->result = (void *)&ctx->res[tsc_idx];
242 				tsc_idx++;
243 			}
244 
245 			if (likely(ops_deqd))  {
246 				/* Free crypto ops so they can be reused. */
247 				for (i = 0; i < ops_deqd; i++)
248 					store_timestamp(ops_processed[i], tsc_end);
249 
250 				rte_mempool_put_bulk(ctx->pool,
251 						(void **)ops_processed, ops_deqd);
252 
253 				deqd_tot += ops_deqd;
254 				deqd_max = RTE_MAX(ops_deqd, deqd_max);
255 				deqd_min = RTE_MIN(ops_deqd, deqd_min);
256 			}
257 
258 			enqd_tot += ops_enqd;
259 			enqd_max = RTE_MAX(ops_enqd, enqd_max);
260 			enqd_min = RTE_MIN(ops_enqd, enqd_min);
261 
262 			b_idx++;
263 		}
264 
265 		/* Dequeue any operations still in the crypto device */
266 		while (deqd_tot < ctx->options->total_ops) {
267 			/* Sending 0 length burst to flush sw crypto device */
268 			rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
269 
270 			/* dequeue burst */
271 			ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
272 					ops_processed, test_burst_size);
273 
274 			tsc_end = rte_rdtsc_precise();
275 
276 			if (ops_deqd != 0) {
277 				for (i = 0; i < ops_deqd; i++)
278 					store_timestamp(ops_processed[i], tsc_end);
279 
280 				rte_mempool_put_bulk(ctx->pool,
281 						(void **)ops_processed, ops_deqd);
282 
283 				deqd_tot += ops_deqd;
284 				deqd_max = RTE_MAX(ops_deqd, deqd_max);
285 				deqd_min = RTE_MIN(ops_deqd, deqd_min);
286 			}
287 		}
288 
289 		for (i = 0; i < tsc_idx; i++) {
290 			tsc_val = ctx->res[i].tsc_end - ctx->res[i].tsc_start;
291 			tsc_max = RTE_MAX(tsc_val, tsc_max);
292 			tsc_min = RTE_MIN(tsc_val, tsc_min);
293 			tsc_tot += tsc_val;
294 		}
295 
296 		double time_tot, time_avg, time_max, time_min;
297 
298 		const uint64_t tunit = 1000000; /* us */
299 		const uint64_t tsc_hz = rte_get_tsc_hz();
300 
301 		uint64_t enqd_avg = enqd_tot / b_idx;
302 		uint64_t deqd_avg = deqd_tot / b_idx;
303 		uint64_t tsc_avg = tsc_tot / tsc_idx;
304 
305 		time_tot = tunit*(double)(tsc_tot) / tsc_hz;
306 		time_avg = tunit*(double)(tsc_avg) / tsc_hz;
307 		time_max = tunit*(double)(tsc_max) / tsc_hz;
308 		time_min = tunit*(double)(tsc_min) / tsc_hz;
309 
310 		if (ctx->options->csv) {
311 			if (rte_atomic16_test_and_set(&display_once))
312 				printf("\n# lcore, Buffer Size, Burst Size, Pakt Seq #, "
313 						"Packet Size, cycles, time (us)");
314 
315 			for (i = 0; i < ctx->options->total_ops; i++) {
316 
317 				printf("\n%u;%u;%u;%"PRIu64";%"PRIu64";%.3f",
318 					ctx->lcore_id, ctx->options->test_buffer_size,
319 					test_burst_size, i + 1,
320 					ctx->res[i].tsc_end - ctx->res[i].tsc_start,
321 					tunit * (double) (ctx->res[i].tsc_end
322 							- ctx->res[i].tsc_start)
323 						/ tsc_hz);
324 
325 			}
326 		} else {
327 			printf("\n# Device %d on lcore %u\n", ctx->dev_id,
328 				ctx->lcore_id);
329 			printf("\n# total operations: %u", ctx->options->total_ops);
330 			printf("\n# Buffer size: %u", ctx->options->test_buffer_size);
331 			printf("\n# Burst size: %u", test_burst_size);
332 			printf("\n#     Number of bursts: %"PRIu64,
333 					b_idx);
334 
335 			printf("\n#");
336 			printf("\n#          \t       Total\t   Average\t   "
337 					"Maximum\t   Minimum");
338 			printf("\n#  enqueued\t%12"PRIu64"\t%10"PRIu64"\t"
339 					"%10"PRIu64"\t%10"PRIu64, enqd_tot,
340 					enqd_avg, enqd_max, enqd_min);
341 			printf("\n#  dequeued\t%12"PRIu64"\t%10"PRIu64"\t"
342 					"%10"PRIu64"\t%10"PRIu64, deqd_tot,
343 					deqd_avg, deqd_max, deqd_min);
344 			printf("\n#    cycles\t%12"PRIu64"\t%10"PRIu64"\t"
345 					"%10"PRIu64"\t%10"PRIu64, tsc_tot,
346 					tsc_avg, tsc_max, tsc_min);
347 			printf("\n# time [us]\t%12.0f\t%10.3f\t%10.3f\t%10.3f",
348 					time_tot, time_avg, time_max, time_min);
349 			printf("\n\n");
350 
351 		}
352 
353 		/* Get next size from range or list */
354 		if (ctx->options->inc_burst_size != 0)
355 			test_burst_size += ctx->options->inc_burst_size;
356 		else {
357 			if (++burst_size_idx == ctx->options->burst_size_count)
358 				break;
359 			test_burst_size =
360 				ctx->options->burst_size_list[burst_size_idx];
361 		}
362 	}
363 
364 	return 0;
365 }
366 
367 void
368 cperf_latency_test_destructor(void *arg)
369 {
370 	struct cperf_latency_ctx *ctx = arg;
371 
372 	if (ctx == NULL)
373 		return;
374 
375 	cperf_latency_test_free(ctx);
376 }
377