xref: /dpdk/app/test-crypto-perf/cperf_test_latency.c (revision 97b914f4e715565d53d38ac6e04815b9be5e58a9)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4 
5 #include <rte_malloc.h>
6 #include <rte_cycles.h>
7 #include <rte_crypto.h>
8 #include <rte_cryptodev.h>
9 
10 #include "cperf_test_latency.h"
11 #include "cperf_ops.h"
12 #include "cperf_test_common.h"
13 
14 struct cperf_op_result {
15 	uint64_t tsc_start;
16 	uint64_t tsc_end;
17 	enum rte_crypto_op_status status;
18 };
19 
20 struct cperf_latency_ctx {
21 	uint8_t dev_id;
22 	uint16_t qp_id;
23 	uint8_t lcore_id;
24 
25 	struct rte_mempool *pool;
26 
27 	struct rte_cryptodev_sym_session *sess;
28 
29 	cperf_populate_ops_t populate_ops;
30 
31 	uint32_t src_buf_offset;
32 	uint32_t dst_buf_offset;
33 
34 	const struct cperf_options *options;
35 	const struct cperf_test_vector *test_vector;
36 	struct cperf_op_result *res;
37 };
38 
39 struct priv_op_data {
40 	struct cperf_op_result *result;
41 };
42 
43 static void
44 cperf_latency_test_free(struct cperf_latency_ctx *ctx)
45 {
46 	if (ctx) {
47 		if (ctx->sess) {
48 			rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
49 			rte_cryptodev_sym_session_free(ctx->sess);
50 		}
51 
52 		rte_mempool_free(ctx->pool);
53 
54 		rte_free(ctx->res);
55 		rte_free(ctx);
56 	}
57 }
58 
59 void *
60 cperf_latency_test_constructor(struct rte_mempool *sess_mp,
61 		struct rte_mempool *sess_priv_mp,
62 		uint8_t dev_id, uint16_t qp_id,
63 		const struct cperf_options *options,
64 		const struct cperf_test_vector *test_vector,
65 		const struct cperf_op_fns *op_fns)
66 {
67 	struct cperf_latency_ctx *ctx = NULL;
68 	size_t extra_op_priv_size = sizeof(struct priv_op_data);
69 
70 	ctx = rte_malloc(NULL, sizeof(struct cperf_latency_ctx), 0);
71 	if (ctx == NULL)
72 		goto err;
73 
74 	ctx->dev_id = dev_id;
75 	ctx->qp_id = qp_id;
76 
77 	ctx->populate_ops = op_fns->populate_ops;
78 	ctx->options = options;
79 	ctx->test_vector = test_vector;
80 
81 	/* IV goes at the end of the crypto operation */
82 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
83 		sizeof(struct rte_crypto_sym_op) +
84 		sizeof(struct cperf_op_result *);
85 
86 	ctx->sess = op_fns->sess_create(sess_mp, sess_priv_mp, dev_id, options,
87 			test_vector, iv_offset);
88 	if (ctx->sess == NULL)
89 		goto err;
90 
91 	if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id,
92 			extra_op_priv_size,
93 			&ctx->src_buf_offset, &ctx->dst_buf_offset,
94 			&ctx->pool) < 0)
95 		goto err;
96 
97 	ctx->res = rte_malloc(NULL, sizeof(struct cperf_op_result) *
98 			ctx->options->total_ops, 0);
99 
100 	if (ctx->res == NULL)
101 		goto err;
102 
103 	return ctx;
104 err:
105 	cperf_latency_test_free(ctx);
106 
107 	return NULL;
108 }
109 
110 static inline void
111 store_timestamp(struct rte_crypto_op *op, uint64_t timestamp)
112 {
113 	struct priv_op_data *priv_data;
114 
115 	priv_data = (struct priv_op_data *) (op->sym + 1);
116 	priv_data->result->status = op->status;
117 	priv_data->result->tsc_end = timestamp;
118 }
119 
120 int
121 cperf_latency_test_runner(void *arg)
122 {
123 	struct cperf_latency_ctx *ctx = arg;
124 	uint16_t test_burst_size;
125 	uint8_t burst_size_idx = 0;
126 	uint32_t imix_idx = 0;
127 
128 	static uint16_t display_once;
129 
130 	if (ctx == NULL)
131 		return 0;
132 
133 	struct rte_crypto_op *ops[ctx->options->max_burst_size];
134 	struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
135 	uint64_t i;
136 	struct priv_op_data *priv_data;
137 
138 	uint32_t lcore = rte_lcore_id();
139 
140 #ifdef CPERF_LINEARIZATION_ENABLE
141 	struct rte_cryptodev_info dev_info;
142 	int linearize = 0;
143 
144 	/* Check if source mbufs require coalescing */
145 	if (ctx->options->segment_sz < ctx->options->max_buffer_size) {
146 		rte_cryptodev_info_get(ctx->dev_id, &dev_info);
147 		if ((dev_info.feature_flags &
148 				RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
149 			linearize = 1;
150 	}
151 #endif /* CPERF_LINEARIZATION_ENABLE */
152 
153 	ctx->lcore_id = lcore;
154 
155 	/* Warm up the host CPU before starting the test */
156 	for (i = 0; i < ctx->options->total_ops; i++)
157 		rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
158 
159 	/* Get first size from range or list */
160 	if (ctx->options->inc_burst_size != 0)
161 		test_burst_size = ctx->options->min_burst_size;
162 	else
163 		test_burst_size = ctx->options->burst_size_list[0];
164 
165 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
166 		sizeof(struct rte_crypto_sym_op) +
167 		sizeof(struct cperf_op_result *);
168 
169 	while (test_burst_size <= ctx->options->max_burst_size) {
170 		uint64_t ops_enqd = 0, ops_deqd = 0;
171 		uint64_t b_idx = 0;
172 
173 		uint64_t tsc_val, tsc_end, tsc_start;
174 		uint64_t tsc_max = 0, tsc_min = ~0UL, tsc_tot = 0, tsc_idx = 0;
175 		uint64_t enqd_max = 0, enqd_min = ~0UL, enqd_tot = 0;
176 		uint64_t deqd_max = 0, deqd_min = ~0UL, deqd_tot = 0;
177 
178 		while (enqd_tot < ctx->options->total_ops) {
179 
180 			uint16_t burst_size = ((enqd_tot + test_burst_size)
181 					<= ctx->options->total_ops) ?
182 							test_burst_size :
183 							ctx->options->total_ops -
184 							enqd_tot;
185 
186 			/* Allocate objects containing crypto operations and mbufs */
187 			if (rte_mempool_get_bulk(ctx->pool, (void **)ops,
188 						burst_size) != 0) {
189 				RTE_LOG(ERR, USER1,
190 					"Failed to allocate more crypto operations "
191 					"from the crypto operation pool.\n"
192 					"Consider increasing the pool size "
193 					"with --pool-sz\n");
194 				return -1;
195 			}
196 
197 			/* Setup crypto op, attach mbuf etc */
198 			(ctx->populate_ops)(ops, ctx->src_buf_offset,
199 					ctx->dst_buf_offset,
200 					burst_size, ctx->sess, ctx->options,
201 					ctx->test_vector, iv_offset,
202 					&imix_idx, &tsc_start);
203 
204 			/* Populate the mbuf with the test vector */
205 			for (i = 0; i < burst_size; i++)
206 				cperf_mbuf_set(ops[i]->sym->m_src,
207 						ctx->options,
208 						ctx->test_vector);
209 
210 			tsc_start = rte_rdtsc_precise();
211 
212 #ifdef CPERF_LINEARIZATION_ENABLE
213 			if (linearize) {
214 				/* PMD doesn't support scatter-gather and source buffer
215 				 * is segmented.
216 				 * We need to linearize it before enqueuing.
217 				 */
218 				for (i = 0; i < burst_size; i++)
219 					rte_pktmbuf_linearize(ops[i]->sym->m_src);
220 			}
221 #endif /* CPERF_LINEARIZATION_ENABLE */
222 
223 			/* Enqueue burst of ops on crypto device */
224 			ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
225 					ops, burst_size);
226 
227 			/* Dequeue processed burst of ops from crypto device */
228 			ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
229 					ops_processed, test_burst_size);
230 
231 			tsc_end = rte_rdtsc_precise();
232 
233 			/* Free memory for not enqueued operations */
234 			if (ops_enqd != burst_size)
235 				rte_mempool_put_bulk(ctx->pool,
236 						(void **)&ops[ops_enqd],
237 						burst_size - ops_enqd);
238 
239 			for (i = 0; i < ops_enqd; i++) {
240 				ctx->res[tsc_idx].tsc_start = tsc_start;
241 				/*
242 				 * Private data structure starts after the end of the
243 				 * rte_crypto_sym_op structure.
244 				 */
245 				priv_data = (struct priv_op_data *) (ops[i]->sym + 1);
246 				priv_data->result = (void *)&ctx->res[tsc_idx];
247 				tsc_idx++;
248 			}
249 
250 			if (likely(ops_deqd))  {
251 				/* Free crypto ops so they can be reused. */
252 				for (i = 0; i < ops_deqd; i++)
253 					store_timestamp(ops_processed[i], tsc_end);
254 
255 				rte_mempool_put_bulk(ctx->pool,
256 						(void **)ops_processed, ops_deqd);
257 
258 				deqd_tot += ops_deqd;
259 				deqd_max = RTE_MAX(ops_deqd, deqd_max);
260 				deqd_min = RTE_MIN(ops_deqd, deqd_min);
261 			}
262 
263 			enqd_tot += ops_enqd;
264 			enqd_max = RTE_MAX(ops_enqd, enqd_max);
265 			enqd_min = RTE_MIN(ops_enqd, enqd_min);
266 
267 			b_idx++;
268 		}
269 
270 		/* Dequeue any operations still in the crypto device */
271 		while (deqd_tot < ctx->options->total_ops) {
272 			/* Sending 0 length burst to flush sw crypto device */
273 			rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
274 
275 			/* dequeue burst */
276 			ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
277 					ops_processed, test_burst_size);
278 
279 			tsc_end = rte_rdtsc_precise();
280 
281 			if (ops_deqd != 0) {
282 				for (i = 0; i < ops_deqd; i++)
283 					store_timestamp(ops_processed[i], tsc_end);
284 
285 				rte_mempool_put_bulk(ctx->pool,
286 						(void **)ops_processed, ops_deqd);
287 
288 				deqd_tot += ops_deqd;
289 				deqd_max = RTE_MAX(ops_deqd, deqd_max);
290 				deqd_min = RTE_MIN(ops_deqd, deqd_min);
291 			}
292 		}
293 
294 		for (i = 0; i < tsc_idx; i++) {
295 			tsc_val = ctx->res[i].tsc_end - ctx->res[i].tsc_start;
296 			tsc_max = RTE_MAX(tsc_val, tsc_max);
297 			tsc_min = RTE_MIN(tsc_val, tsc_min);
298 			tsc_tot += tsc_val;
299 		}
300 
301 		double time_tot, time_avg, time_max, time_min;
302 
303 		const uint64_t tunit = 1000000; /* us */
304 		const uint64_t tsc_hz = rte_get_tsc_hz();
305 
306 		uint64_t enqd_avg = enqd_tot / b_idx;
307 		uint64_t deqd_avg = deqd_tot / b_idx;
308 		uint64_t tsc_avg = tsc_tot / tsc_idx;
309 
310 		time_tot = tunit*(double)(tsc_tot) / tsc_hz;
311 		time_avg = tunit*(double)(tsc_avg) / tsc_hz;
312 		time_max = tunit*(double)(tsc_max) / tsc_hz;
313 		time_min = tunit*(double)(tsc_min) / tsc_hz;
314 
315 		uint16_t exp = 0;
316 		if (ctx->options->csv) {
317 			if (__atomic_compare_exchange_n(&display_once, &exp, 1, 0,
318 					__ATOMIC_RELAXED, __ATOMIC_RELAXED))
319 				printf("\n# lcore, Buffer Size, Burst Size, Pakt Seq #, "
320 						"cycles, time (us)");
321 
322 			for (i = 0; i < ctx->options->total_ops; i++) {
323 
324 				printf("\n%u,%u,%u,%"PRIu64",%"PRIu64",%.3f",
325 					ctx->lcore_id, ctx->options->test_buffer_size,
326 					test_burst_size, i + 1,
327 					ctx->res[i].tsc_end - ctx->res[i].tsc_start,
328 					tunit * (double) (ctx->res[i].tsc_end
329 							- ctx->res[i].tsc_start)
330 						/ tsc_hz);
331 
332 			}
333 		} else {
334 			printf("\n# Device %d on lcore %u\n", ctx->dev_id,
335 				ctx->lcore_id);
336 			printf("\n# total operations: %u", ctx->options->total_ops);
337 			printf("\n# Buffer size: %u", ctx->options->test_buffer_size);
338 			printf("\n# Burst size: %u", test_burst_size);
339 			printf("\n#     Number of bursts: %"PRIu64,
340 					b_idx);
341 
342 			printf("\n#");
343 			printf("\n#          \t       Total\t   Average\t   "
344 					"Maximum\t   Minimum");
345 			printf("\n#  enqueued\t%12"PRIu64"\t%10"PRIu64"\t"
346 					"%10"PRIu64"\t%10"PRIu64, enqd_tot,
347 					enqd_avg, enqd_max, enqd_min);
348 			printf("\n#  dequeued\t%12"PRIu64"\t%10"PRIu64"\t"
349 					"%10"PRIu64"\t%10"PRIu64, deqd_tot,
350 					deqd_avg, deqd_max, deqd_min);
351 			printf("\n#    cycles\t%12"PRIu64"\t%10"PRIu64"\t"
352 					"%10"PRIu64"\t%10"PRIu64, tsc_tot,
353 					tsc_avg, tsc_max, tsc_min);
354 			printf("\n# time [us]\t%12.0f\t%10.3f\t%10.3f\t%10.3f",
355 					time_tot, time_avg, time_max, time_min);
356 			printf("\n\n");
357 
358 		}
359 
360 		/* Get next size from range or list */
361 		if (ctx->options->inc_burst_size != 0)
362 			test_burst_size += ctx->options->inc_burst_size;
363 		else {
364 			if (++burst_size_idx == ctx->options->burst_size_count)
365 				break;
366 			test_burst_size =
367 				ctx->options->burst_size_list[burst_size_idx];
368 		}
369 	}
370 
371 	return 0;
372 }
373 
374 void
375 cperf_latency_test_destructor(void *arg)
376 {
377 	struct cperf_latency_ctx *ctx = arg;
378 
379 	if (ctx == NULL)
380 		return;
381 
382 	cperf_latency_test_free(ctx);
383 }
384