1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2016-2017 Intel Corporation. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 10 * * Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * * Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in 14 * the documentation and/or other materials provided with the 15 * distribution. 16 * * Neither the name of Intel Corporation nor the names of its 17 * contributors may be used to endorse or promote products derived 18 * from this software without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 24 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 25 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 26 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 30 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 #include <rte_malloc.h> 34 #include <rte_cycles.h> 35 #include <rte_crypto.h> 36 #include <rte_cryptodev.h> 37 38 #include "cperf_test_latency.h" 39 #include "cperf_ops.h" 40 #include "cperf_test_common.h" 41 42 struct cperf_op_result { 43 uint64_t tsc_start; 44 uint64_t tsc_end; 45 enum rte_crypto_op_status status; 46 }; 47 48 struct cperf_latency_ctx { 49 uint8_t dev_id; 50 uint16_t qp_id; 51 uint8_t lcore_id; 52 53 struct rte_mempool *pkt_mbuf_pool_in; 54 struct rte_mempool *pkt_mbuf_pool_out; 55 struct rte_mbuf **mbufs_in; 56 struct rte_mbuf **mbufs_out; 57 58 struct rte_mempool *crypto_op_pool; 59 60 struct rte_cryptodev_sym_session *sess; 61 62 cperf_populate_ops_t populate_ops; 63 64 const struct cperf_options *options; 65 const struct cperf_test_vector *test_vector; 66 struct cperf_op_result *res; 67 }; 68 69 struct priv_op_data { 70 struct cperf_op_result *result; 71 }; 72 73 #define max(a, b) (a > b ? (uint64_t)a : (uint64_t)b) 74 #define min(a, b) (a < b ? (uint64_t)a : (uint64_t)b) 75 76 static void 77 cperf_latency_test_free(struct cperf_latency_ctx *ctx) 78 { 79 if (ctx) { 80 if (ctx->sess) { 81 rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess); 82 rte_cryptodev_sym_session_free(ctx->sess); 83 } 84 85 cperf_free_common_memory(ctx->options, 86 ctx->pkt_mbuf_pool_in, 87 ctx->pkt_mbuf_pool_out, 88 ctx->mbufs_in, ctx->mbufs_out, 89 ctx->crypto_op_pool); 90 91 rte_free(ctx->res); 92 rte_free(ctx); 93 } 94 } 95 96 void * 97 cperf_latency_test_constructor(struct rte_mempool *sess_mp, 98 uint8_t dev_id, uint16_t qp_id, 99 const struct cperf_options *options, 100 const struct cperf_test_vector *test_vector, 101 const struct cperf_op_fns *op_fns) 102 { 103 struct cperf_latency_ctx *ctx = NULL; 104 size_t extra_op_priv_size = sizeof(struct priv_op_data); 105 106 ctx = rte_malloc(NULL, sizeof(struct cperf_latency_ctx), 0); 107 if (ctx == NULL) 108 goto err; 109 110 ctx->dev_id = dev_id; 111 ctx->qp_id = qp_id; 112 113 ctx->populate_ops = op_fns->populate_ops; 114 ctx->options = options; 115 ctx->test_vector = test_vector; 116 117 /* IV goes at the end of the crypto operation */ 118 uint16_t iv_offset = sizeof(struct rte_crypto_op) + 119 sizeof(struct rte_crypto_sym_op) + 120 sizeof(struct cperf_op_result *); 121 122 ctx->sess = op_fns->sess_create(sess_mp, dev_id, options, test_vector, 123 iv_offset); 124 if (ctx->sess == NULL) 125 goto err; 126 127 if (cperf_alloc_common_memory(options, test_vector, dev_id, 128 extra_op_priv_size, 129 &ctx->pkt_mbuf_pool_in, &ctx->pkt_mbuf_pool_out, 130 &ctx->mbufs_in, &ctx->mbufs_out, 131 &ctx->crypto_op_pool) < 0) 132 goto err; 133 134 ctx->res = rte_malloc(NULL, sizeof(struct cperf_op_result) * 135 ctx->options->total_ops, 0); 136 137 if (ctx->res == NULL) 138 goto err; 139 140 return ctx; 141 err: 142 cperf_latency_test_free(ctx); 143 144 return NULL; 145 } 146 147 static inline void 148 store_timestamp(struct rte_crypto_op *op, uint64_t timestamp) 149 { 150 struct priv_op_data *priv_data; 151 152 priv_data = (struct priv_op_data *) (op->sym + 1); 153 priv_data->result->status = op->status; 154 priv_data->result->tsc_end = timestamp; 155 } 156 157 int 158 cperf_latency_test_runner(void *arg) 159 { 160 struct cperf_latency_ctx *ctx = arg; 161 uint16_t test_burst_size; 162 uint8_t burst_size_idx = 0; 163 164 static int only_once; 165 166 if (ctx == NULL) 167 return 0; 168 169 struct rte_crypto_op *ops[ctx->options->max_burst_size]; 170 struct rte_crypto_op *ops_processed[ctx->options->max_burst_size]; 171 uint64_t i; 172 struct priv_op_data *priv_data; 173 174 uint32_t lcore = rte_lcore_id(); 175 176 #ifdef CPERF_LINEARIZATION_ENABLE 177 struct rte_cryptodev_info dev_info; 178 int linearize = 0; 179 180 /* Check if source mbufs require coalescing */ 181 if (ctx->options->segments_nb > 1) { 182 rte_cryptodev_info_get(ctx->dev_id, &dev_info); 183 if ((dev_info.feature_flags & 184 RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0) 185 linearize = 1; 186 } 187 #endif /* CPERF_LINEARIZATION_ENABLE */ 188 189 ctx->lcore_id = lcore; 190 191 /* Warm up the host CPU before starting the test */ 192 for (i = 0; i < ctx->options->total_ops; i++) 193 rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0); 194 195 /* Get first size from range or list */ 196 if (ctx->options->inc_burst_size != 0) 197 test_burst_size = ctx->options->min_burst_size; 198 else 199 test_burst_size = ctx->options->burst_size_list[0]; 200 201 uint16_t iv_offset = sizeof(struct rte_crypto_op) + 202 sizeof(struct rte_crypto_sym_op) + 203 sizeof(struct cperf_op_result *); 204 205 while (test_burst_size <= ctx->options->max_burst_size) { 206 uint64_t ops_enqd = 0, ops_deqd = 0; 207 uint64_t m_idx = 0, b_idx = 0; 208 209 uint64_t tsc_val, tsc_end, tsc_start; 210 uint64_t tsc_max = 0, tsc_min = ~0UL, tsc_tot = 0, tsc_idx = 0; 211 uint64_t enqd_max = 0, enqd_min = ~0UL, enqd_tot = 0; 212 uint64_t deqd_max = 0, deqd_min = ~0UL, deqd_tot = 0; 213 214 while (enqd_tot < ctx->options->total_ops) { 215 216 uint16_t burst_size = ((enqd_tot + test_burst_size) 217 <= ctx->options->total_ops) ? 218 test_burst_size : 219 ctx->options->total_ops - 220 enqd_tot; 221 222 /* Allocate crypto ops from pool */ 223 if (burst_size != rte_crypto_op_bulk_alloc( 224 ctx->crypto_op_pool, 225 RTE_CRYPTO_OP_TYPE_SYMMETRIC, 226 ops, burst_size)) { 227 RTE_LOG(ERR, USER1, 228 "Failed to allocate more crypto operations " 229 "from the the crypto operation pool.\n" 230 "Consider increasing the pool size " 231 "with --pool-sz\n"); 232 return -1; 233 } 234 235 /* Setup crypto op, attach mbuf etc */ 236 (ctx->populate_ops)(ops, &ctx->mbufs_in[m_idx], 237 &ctx->mbufs_out[m_idx], 238 burst_size, ctx->sess, ctx->options, 239 ctx->test_vector, iv_offset); 240 241 tsc_start = rte_rdtsc_precise(); 242 243 #ifdef CPERF_LINEARIZATION_ENABLE 244 if (linearize) { 245 /* PMD doesn't support scatter-gather and source buffer 246 * is segmented. 247 * We need to linearize it before enqueuing. 248 */ 249 for (i = 0; i < burst_size; i++) 250 rte_pktmbuf_linearize(ops[i]->sym->m_src); 251 } 252 #endif /* CPERF_LINEARIZATION_ENABLE */ 253 254 /* Enqueue burst of ops on crypto device */ 255 ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, 256 ops, burst_size); 257 258 /* Dequeue processed burst of ops from crypto device */ 259 ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id, 260 ops_processed, test_burst_size); 261 262 tsc_end = rte_rdtsc_precise(); 263 264 /* Free memory for not enqueued operations */ 265 if (ops_enqd != burst_size) 266 rte_mempool_put_bulk(ctx->crypto_op_pool, 267 (void **)&ops[ops_enqd], 268 burst_size - ops_enqd); 269 270 for (i = 0; i < ops_enqd; i++) { 271 ctx->res[tsc_idx].tsc_start = tsc_start; 272 /* 273 * Private data structure starts after the end of the 274 * rte_crypto_sym_op structure. 275 */ 276 priv_data = (struct priv_op_data *) (ops[i]->sym + 1); 277 priv_data->result = (void *)&ctx->res[tsc_idx]; 278 tsc_idx++; 279 } 280 281 if (likely(ops_deqd)) { 282 /* 283 * free crypto ops so they can be reused. We don't free 284 * the mbufs here as we don't want to reuse them as 285 * the crypto operation will change the data and cause 286 * failures. 287 */ 288 for (i = 0; i < ops_deqd; i++) 289 store_timestamp(ops_processed[i], tsc_end); 290 291 rte_mempool_put_bulk(ctx->crypto_op_pool, 292 (void **)ops_processed, ops_deqd); 293 294 deqd_tot += ops_deqd; 295 deqd_max = max(ops_deqd, deqd_max); 296 deqd_min = min(ops_deqd, deqd_min); 297 } 298 299 enqd_tot += ops_enqd; 300 enqd_max = max(ops_enqd, enqd_max); 301 enqd_min = min(ops_enqd, enqd_min); 302 303 m_idx += ops_enqd; 304 m_idx = m_idx + test_burst_size > ctx->options->pool_sz ? 305 0 : m_idx; 306 b_idx++; 307 } 308 309 /* Dequeue any operations still in the crypto device */ 310 while (deqd_tot < ctx->options->total_ops) { 311 /* Sending 0 length burst to flush sw crypto device */ 312 rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0); 313 314 /* dequeue burst */ 315 ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id, 316 ops_processed, test_burst_size); 317 318 tsc_end = rte_rdtsc_precise(); 319 320 if (ops_deqd != 0) { 321 for (i = 0; i < ops_deqd; i++) 322 store_timestamp(ops_processed[i], tsc_end); 323 324 rte_mempool_put_bulk(ctx->crypto_op_pool, 325 (void **)ops_processed, ops_deqd); 326 327 deqd_tot += ops_deqd; 328 deqd_max = max(ops_deqd, deqd_max); 329 deqd_min = min(ops_deqd, deqd_min); 330 } 331 } 332 333 for (i = 0; i < tsc_idx; i++) { 334 tsc_val = ctx->res[i].tsc_end - ctx->res[i].tsc_start; 335 tsc_max = max(tsc_val, tsc_max); 336 tsc_min = min(tsc_val, tsc_min); 337 tsc_tot += tsc_val; 338 } 339 340 double time_tot, time_avg, time_max, time_min; 341 342 const uint64_t tunit = 1000000; /* us */ 343 const uint64_t tsc_hz = rte_get_tsc_hz(); 344 345 uint64_t enqd_avg = enqd_tot / b_idx; 346 uint64_t deqd_avg = deqd_tot / b_idx; 347 uint64_t tsc_avg = tsc_tot / tsc_idx; 348 349 time_tot = tunit*(double)(tsc_tot) / tsc_hz; 350 time_avg = tunit*(double)(tsc_avg) / tsc_hz; 351 time_max = tunit*(double)(tsc_max) / tsc_hz; 352 time_min = tunit*(double)(tsc_min) / tsc_hz; 353 354 if (ctx->options->csv) { 355 if (!only_once) 356 printf("\n# lcore, Buffer Size, Burst Size, Pakt Seq #, " 357 "Packet Size, cycles, time (us)"); 358 359 for (i = 0; i < ctx->options->total_ops; i++) { 360 361 printf("\n%u;%u;%u;%"PRIu64";%"PRIu64";%.3f", 362 ctx->lcore_id, ctx->options->test_buffer_size, 363 test_burst_size, i + 1, 364 ctx->res[i].tsc_end - ctx->res[i].tsc_start, 365 tunit * (double) (ctx->res[i].tsc_end 366 - ctx->res[i].tsc_start) 367 / tsc_hz); 368 369 } 370 only_once = 1; 371 } else { 372 printf("\n# Device %d on lcore %u\n", ctx->dev_id, 373 ctx->lcore_id); 374 printf("\n# total operations: %u", ctx->options->total_ops); 375 printf("\n# Buffer size: %u", ctx->options->test_buffer_size); 376 printf("\n# Burst size: %u", test_burst_size); 377 printf("\n# Number of bursts: %"PRIu64, 378 b_idx); 379 380 printf("\n#"); 381 printf("\n# \t Total\t Average\t " 382 "Maximum\t Minimum"); 383 printf("\n# enqueued\t%12"PRIu64"\t%10"PRIu64"\t" 384 "%10"PRIu64"\t%10"PRIu64, enqd_tot, 385 enqd_avg, enqd_max, enqd_min); 386 printf("\n# dequeued\t%12"PRIu64"\t%10"PRIu64"\t" 387 "%10"PRIu64"\t%10"PRIu64, deqd_tot, 388 deqd_avg, deqd_max, deqd_min); 389 printf("\n# cycles\t%12"PRIu64"\t%10"PRIu64"\t" 390 "%10"PRIu64"\t%10"PRIu64, tsc_tot, 391 tsc_avg, tsc_max, tsc_min); 392 printf("\n# time [us]\t%12.0f\t%10.3f\t%10.3f\t%10.3f", 393 time_tot, time_avg, time_max, time_min); 394 printf("\n\n"); 395 396 } 397 398 /* Get next size from range or list */ 399 if (ctx->options->inc_burst_size != 0) 400 test_burst_size += ctx->options->inc_burst_size; 401 else { 402 if (++burst_size_idx == ctx->options->burst_size_count) 403 break; 404 test_burst_size = 405 ctx->options->burst_size_list[burst_size_idx]; 406 } 407 } 408 409 return 0; 410 } 411 412 void 413 cperf_latency_test_destructor(void *arg) 414 { 415 struct cperf_latency_ctx *ctx = arg; 416 417 if (ctx == NULL) 418 return; 419 420 rte_cryptodev_stop(ctx->dev_id); 421 422 cperf_latency_test_free(ctx); 423 } 424