1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2016-2017 Intel Corporation. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 10 * * Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * * Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in 14 * the documentation and/or other materials provided with the 15 * distribution. 16 * * Neither the name of Intel Corporation nor the names of its 17 * contributors may be used to endorse or promote products derived 18 * from this software without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 24 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 25 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 26 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 30 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 #include <rte_malloc.h> 34 #include <rte_cycles.h> 35 #include <rte_crypto.h> 36 #include <rte_cryptodev.h> 37 38 #include "cperf_test_latency.h" 39 #include "cperf_ops.h" 40 41 42 struct cperf_op_result { 43 uint64_t tsc_start; 44 uint64_t tsc_end; 45 enum rte_crypto_op_status status; 46 }; 47 48 struct cperf_latency_ctx { 49 uint8_t dev_id; 50 uint16_t qp_id; 51 uint8_t lcore_id; 52 53 struct rte_mempool *pkt_mbuf_pool_in; 54 struct rte_mempool *pkt_mbuf_pool_out; 55 struct rte_mbuf **mbufs_in; 56 struct rte_mbuf **mbufs_out; 57 58 struct rte_mempool *crypto_op_pool; 59 60 struct rte_cryptodev_sym_session *sess; 61 62 cperf_populate_ops_t populate_ops; 63 64 const struct cperf_options *options; 65 const struct cperf_test_vector *test_vector; 66 struct cperf_op_result *res; 67 }; 68 69 #define max(a, b) (a > b ? (uint64_t)a : (uint64_t)b) 70 #define min(a, b) (a < b ? (uint64_t)a : (uint64_t)b) 71 72 static void 73 cperf_latency_test_free(struct cperf_latency_ctx *ctx, uint32_t mbuf_nb) 74 { 75 uint32_t i; 76 77 if (ctx) { 78 if (ctx->sess) 79 rte_cryptodev_sym_session_free(ctx->dev_id, ctx->sess); 80 81 if (ctx->mbufs_in) { 82 for (i = 0; i < mbuf_nb; i++) 83 rte_pktmbuf_free(ctx->mbufs_in[i]); 84 85 rte_free(ctx->mbufs_in); 86 } 87 88 if (ctx->mbufs_out) { 89 for (i = 0; i < mbuf_nb; i++) { 90 if (ctx->mbufs_out[i] != NULL) 91 rte_pktmbuf_free(ctx->mbufs_out[i]); 92 } 93 94 rte_free(ctx->mbufs_out); 95 } 96 97 if (ctx->pkt_mbuf_pool_in) 98 rte_mempool_free(ctx->pkt_mbuf_pool_in); 99 100 if (ctx->pkt_mbuf_pool_out) 101 rte_mempool_free(ctx->pkt_mbuf_pool_out); 102 103 if (ctx->crypto_op_pool) 104 rte_mempool_free(ctx->crypto_op_pool); 105 106 rte_free(ctx->res); 107 rte_free(ctx); 108 } 109 } 110 111 static struct rte_mbuf * 112 cperf_mbuf_create(struct rte_mempool *mempool, 113 uint32_t segments_nb, 114 const struct cperf_options *options, 115 const struct cperf_test_vector *test_vector) 116 { 117 struct rte_mbuf *mbuf; 118 uint32_t segment_sz = options->max_buffer_size / segments_nb; 119 uint32_t last_sz = options->max_buffer_size % segments_nb; 120 uint8_t *mbuf_data; 121 uint8_t *test_data = 122 (options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ? 123 test_vector->plaintext.data : 124 test_vector->ciphertext.data; 125 126 mbuf = rte_pktmbuf_alloc(mempool); 127 if (mbuf == NULL) 128 goto error; 129 130 mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz); 131 if (mbuf_data == NULL) 132 goto error; 133 134 memcpy(mbuf_data, test_data, segment_sz); 135 test_data += segment_sz; 136 segments_nb--; 137 138 while (segments_nb) { 139 struct rte_mbuf *m; 140 141 m = rte_pktmbuf_alloc(mempool); 142 if (m == NULL) 143 goto error; 144 145 rte_pktmbuf_chain(mbuf, m); 146 147 mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz); 148 if (mbuf_data == NULL) 149 goto error; 150 151 memcpy(mbuf_data, test_data, segment_sz); 152 test_data += segment_sz; 153 segments_nb--; 154 } 155 156 if (last_sz) { 157 mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, last_sz); 158 if (mbuf_data == NULL) 159 goto error; 160 161 memcpy(mbuf_data, test_data, last_sz); 162 } 163 164 if (options->op_type != CPERF_CIPHER_ONLY) { 165 mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, 166 options->auth_digest_sz); 167 if (mbuf_data == NULL) 168 goto error; 169 } 170 171 if (options->op_type == CPERF_AEAD) { 172 uint8_t *aead = (uint8_t *)rte_pktmbuf_prepend(mbuf, 173 RTE_ALIGN_CEIL(options->auth_aad_sz, 16)); 174 175 if (aead == NULL) 176 goto error; 177 178 memcpy(aead, test_vector->aad.data, test_vector->aad.length); 179 } 180 181 return mbuf; 182 error: 183 if (mbuf != NULL) 184 rte_pktmbuf_free(mbuf); 185 186 return NULL; 187 } 188 189 void * 190 cperf_latency_test_constructor(uint8_t dev_id, uint16_t qp_id, 191 const struct cperf_options *options, 192 const struct cperf_test_vector *test_vector, 193 const struct cperf_op_fns *op_fns) 194 { 195 struct cperf_latency_ctx *ctx = NULL; 196 unsigned int mbuf_idx = 0; 197 char pool_name[32] = ""; 198 199 ctx = rte_malloc(NULL, sizeof(struct cperf_latency_ctx), 0); 200 if (ctx == NULL) 201 goto err; 202 203 ctx->dev_id = dev_id; 204 ctx->qp_id = qp_id; 205 206 ctx->populate_ops = op_fns->populate_ops; 207 ctx->options = options; 208 ctx->test_vector = test_vector; 209 210 ctx->sess = op_fns->sess_create(dev_id, options, test_vector); 211 if (ctx->sess == NULL) 212 goto err; 213 214 snprintf(pool_name, sizeof(pool_name), "cperf_pool_in_cdev_%d", 215 dev_id); 216 217 ctx->pkt_mbuf_pool_in = rte_pktmbuf_pool_create(pool_name, 218 options->pool_sz * options->segments_nb, 0, 0, 219 RTE_PKTMBUF_HEADROOM + 220 RTE_CACHE_LINE_ROUNDUP( 221 (options->max_buffer_size / options->segments_nb) + 222 (options->max_buffer_size % options->segments_nb) + 223 options->auth_digest_sz), 224 rte_socket_id()); 225 226 if (ctx->pkt_mbuf_pool_in == NULL) 227 goto err; 228 229 /* Generate mbufs_in with plaintext populated for test */ 230 ctx->mbufs_in = rte_malloc(NULL, 231 (sizeof(struct rte_mbuf *) * 232 ctx->options->pool_sz), 0); 233 234 for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) { 235 ctx->mbufs_in[mbuf_idx] = cperf_mbuf_create( 236 ctx->pkt_mbuf_pool_in, options->segments_nb, 237 options, test_vector); 238 if (ctx->mbufs_in[mbuf_idx] == NULL) 239 goto err; 240 } 241 242 if (options->out_of_place == 1) { 243 244 snprintf(pool_name, sizeof(pool_name), 245 "cperf_pool_out_cdev_%d", 246 dev_id); 247 248 ctx->pkt_mbuf_pool_out = rte_pktmbuf_pool_create( 249 pool_name, options->pool_sz, 0, 0, 250 RTE_PKTMBUF_HEADROOM + 251 RTE_CACHE_LINE_ROUNDUP( 252 options->max_buffer_size + 253 options->auth_digest_sz), 254 rte_socket_id()); 255 256 if (ctx->pkt_mbuf_pool_out == NULL) 257 goto err; 258 } 259 260 ctx->mbufs_out = rte_malloc(NULL, 261 (sizeof(struct rte_mbuf *) * 262 ctx->options->pool_sz), 0); 263 264 for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) { 265 if (options->out_of_place == 1) { 266 ctx->mbufs_out[mbuf_idx] = cperf_mbuf_create( 267 ctx->pkt_mbuf_pool_out, 1, 268 options, test_vector); 269 if (ctx->mbufs_out[mbuf_idx] == NULL) 270 goto err; 271 } else { 272 ctx->mbufs_out[mbuf_idx] = NULL; 273 } 274 } 275 276 snprintf(pool_name, sizeof(pool_name), "cperf_op_pool_cdev_%d", 277 dev_id); 278 279 ctx->crypto_op_pool = rte_crypto_op_pool_create(pool_name, 280 RTE_CRYPTO_OP_TYPE_SYMMETRIC, options->pool_sz, 0, 0, 281 rte_socket_id()); 282 if (ctx->crypto_op_pool == NULL) 283 goto err; 284 285 ctx->res = rte_malloc(NULL, sizeof(struct cperf_op_result) * 286 ctx->options->total_ops, 0); 287 288 if (ctx->res == NULL) 289 goto err; 290 291 return ctx; 292 err: 293 cperf_latency_test_free(ctx, mbuf_idx); 294 295 return NULL; 296 } 297 298 int 299 cperf_latency_test_runner(void *arg) 300 { 301 struct cperf_latency_ctx *ctx = arg; 302 struct cperf_op_result *pres; 303 uint16_t test_burst_size; 304 uint8_t burst_size_idx = 0; 305 306 static int only_once; 307 308 if (ctx == NULL) 309 return 0; 310 311 struct rte_crypto_op *ops[ctx->options->max_burst_size]; 312 struct rte_crypto_op *ops_processed[ctx->options->max_burst_size]; 313 uint64_t i; 314 315 uint32_t lcore = rte_lcore_id(); 316 317 #ifdef CPERF_LINEARIZATION_ENABLE 318 struct rte_cryptodev_info dev_info; 319 int linearize = 0; 320 321 /* Check if source mbufs require coalescing */ 322 if (ctx->options->segments_nb > 1) { 323 rte_cryptodev_info_get(ctx->dev_id, &dev_info); 324 if ((dev_info.feature_flags & 325 RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0) 326 linearize = 1; 327 } 328 #endif /* CPERF_LINEARIZATION_ENABLE */ 329 330 ctx->lcore_id = lcore; 331 332 /* Warm up the host CPU before starting the test */ 333 for (i = 0; i < ctx->options->total_ops; i++) 334 rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0); 335 336 /* Get first size from range or list */ 337 if (ctx->options->inc_burst_size != 0) 338 test_burst_size = ctx->options->min_burst_size; 339 else 340 test_burst_size = ctx->options->burst_size_list[0]; 341 342 while (test_burst_size <= ctx->options->max_burst_size) { 343 uint64_t ops_enqd = 0, ops_deqd = 0; 344 uint64_t m_idx = 0, b_idx = 0; 345 346 uint64_t tsc_val, tsc_end, tsc_start; 347 uint64_t tsc_max = 0, tsc_min = ~0UL, tsc_tot = 0, tsc_idx = 0; 348 uint64_t enqd_max = 0, enqd_min = ~0UL, enqd_tot = 0; 349 uint64_t deqd_max = 0, deqd_min = ~0UL, deqd_tot = 0; 350 351 while (enqd_tot < ctx->options->total_ops) { 352 353 uint16_t burst_size = ((enqd_tot + test_burst_size) 354 <= ctx->options->total_ops) ? 355 test_burst_size : 356 ctx->options->total_ops - 357 enqd_tot; 358 359 /* Allocate crypto ops from pool */ 360 if (burst_size != rte_crypto_op_bulk_alloc( 361 ctx->crypto_op_pool, 362 RTE_CRYPTO_OP_TYPE_SYMMETRIC, 363 ops, burst_size)) 364 return -1; 365 366 /* Setup crypto op, attach mbuf etc */ 367 (ctx->populate_ops)(ops, &ctx->mbufs_in[m_idx], 368 &ctx->mbufs_out[m_idx], 369 burst_size, ctx->sess, ctx->options, 370 ctx->test_vector); 371 372 tsc_start = rte_rdtsc_precise(); 373 374 #ifdef CPERF_LINEARIZATION_ENABLE 375 if (linearize) { 376 /* PMD doesn't support scatter-gather and source buffer 377 * is segmented. 378 * We need to linearize it before enqueuing. 379 */ 380 for (i = 0; i < burst_size; i++) 381 rte_pktmbuf_linearize(ops[i]->sym->m_src); 382 } 383 #endif /* CPERF_LINEARIZATION_ENABLE */ 384 385 /* Enqueue burst of ops on crypto device */ 386 ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, 387 ops, burst_size); 388 389 /* Dequeue processed burst of ops from crypto device */ 390 ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id, 391 ops_processed, test_burst_size); 392 393 tsc_end = rte_rdtsc_precise(); 394 395 /* Free memory for not enqueued operations */ 396 for (i = ops_enqd; i < burst_size; i++) 397 rte_crypto_op_free(ops[i]); 398 399 for (i = 0; i < ops_enqd; i++) { 400 ctx->res[tsc_idx].tsc_start = tsc_start; 401 ops[i]->opaque_data = (void *)&ctx->res[tsc_idx]; 402 tsc_idx++; 403 } 404 405 if (likely(ops_deqd)) { 406 /* 407 * free crypto ops so they can be reused. We don't free 408 * the mbufs here as we don't want to reuse them as 409 * the crypto operation will change the data and cause 410 * failures. 411 */ 412 for (i = 0; i < ops_deqd; i++) { 413 pres = (struct cperf_op_result *) 414 (ops_processed[i]->opaque_data); 415 pres->status = ops_processed[i]->status; 416 pres->tsc_end = tsc_end; 417 418 rte_crypto_op_free(ops_processed[i]); 419 } 420 421 deqd_tot += ops_deqd; 422 deqd_max = max(ops_deqd, deqd_max); 423 deqd_min = min(ops_deqd, deqd_min); 424 } 425 426 enqd_tot += ops_enqd; 427 enqd_max = max(ops_enqd, enqd_max); 428 enqd_min = min(ops_enqd, enqd_min); 429 430 m_idx += ops_enqd; 431 m_idx = m_idx + test_burst_size > ctx->options->pool_sz ? 432 0 : m_idx; 433 b_idx++; 434 } 435 436 /* Dequeue any operations still in the crypto device */ 437 while (deqd_tot < ctx->options->total_ops) { 438 /* Sending 0 length burst to flush sw crypto device */ 439 rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0); 440 441 /* dequeue burst */ 442 ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id, 443 ops_processed, test_burst_size); 444 445 tsc_end = rte_rdtsc_precise(); 446 447 if (ops_deqd != 0) { 448 for (i = 0; i < ops_deqd; i++) { 449 pres = (struct cperf_op_result *) 450 (ops_processed[i]->opaque_data); 451 pres->status = ops_processed[i]->status; 452 pres->tsc_end = tsc_end; 453 454 rte_crypto_op_free(ops_processed[i]); 455 } 456 457 deqd_tot += ops_deqd; 458 deqd_max = max(ops_deqd, deqd_max); 459 deqd_min = min(ops_deqd, deqd_min); 460 } 461 } 462 463 for (i = 0; i < tsc_idx; i++) { 464 tsc_val = ctx->res[i].tsc_end - ctx->res[i].tsc_start; 465 tsc_max = max(tsc_val, tsc_max); 466 tsc_min = min(tsc_val, tsc_min); 467 tsc_tot += tsc_val; 468 } 469 470 double time_tot, time_avg, time_max, time_min; 471 472 const uint64_t tunit = 1000000; /* us */ 473 const uint64_t tsc_hz = rte_get_tsc_hz(); 474 475 uint64_t enqd_avg = enqd_tot / b_idx; 476 uint64_t deqd_avg = deqd_tot / b_idx; 477 uint64_t tsc_avg = tsc_tot / tsc_idx; 478 479 time_tot = tunit*(double)(tsc_tot) / tsc_hz; 480 time_avg = tunit*(double)(tsc_avg) / tsc_hz; 481 time_max = tunit*(double)(tsc_max) / tsc_hz; 482 time_min = tunit*(double)(tsc_min) / tsc_hz; 483 484 if (ctx->options->csv) { 485 if (!only_once) 486 printf("\n# lcore, Buffer Size, Burst Size, Pakt Seq #, " 487 "Packet Size, cycles, time (us)"); 488 489 for (i = 0; i < ctx->options->total_ops; i++) { 490 491 printf("\n%u;%u;%u;%"PRIu64";%"PRIu64";%.3f", 492 ctx->lcore_id, ctx->options->test_buffer_size, 493 test_burst_size, i + 1, 494 ctx->res[i].tsc_end - ctx->res[i].tsc_start, 495 tunit * (double) (ctx->res[i].tsc_end 496 - ctx->res[i].tsc_start) 497 / tsc_hz); 498 499 } 500 only_once = 1; 501 } else { 502 printf("\n# Device %d on lcore %u\n", ctx->dev_id, 503 ctx->lcore_id); 504 printf("\n# total operations: %u", ctx->options->total_ops); 505 printf("\n# Buffer size: %u", ctx->options->test_buffer_size); 506 printf("\n# Burst size: %u", test_burst_size); 507 printf("\n# Number of bursts: %"PRIu64, 508 b_idx); 509 510 printf("\n#"); 511 printf("\n# \t Total\t Average\t " 512 "Maximum\t Minimum"); 513 printf("\n# enqueued\t%12"PRIu64"\t%10"PRIu64"\t" 514 "%10"PRIu64"\t%10"PRIu64, enqd_tot, 515 enqd_avg, enqd_max, enqd_min); 516 printf("\n# dequeued\t%12"PRIu64"\t%10"PRIu64"\t" 517 "%10"PRIu64"\t%10"PRIu64, deqd_tot, 518 deqd_avg, deqd_max, deqd_min); 519 printf("\n# cycles\t%12"PRIu64"\t%10"PRIu64"\t" 520 "%10"PRIu64"\t%10"PRIu64, tsc_tot, 521 tsc_avg, tsc_max, tsc_min); 522 printf("\n# time [us]\t%12.0f\t%10.3f\t%10.3f\t%10.3f", 523 time_tot, time_avg, time_max, time_min); 524 printf("\n\n"); 525 526 } 527 528 /* Get next size from range or list */ 529 if (ctx->options->inc_burst_size != 0) 530 test_burst_size += ctx->options->inc_burst_size; 531 else { 532 if (++burst_size_idx == ctx->options->burst_size_count) 533 break; 534 test_burst_size = 535 ctx->options->burst_size_list[burst_size_idx]; 536 } 537 } 538 539 return 0; 540 } 541 542 void 543 cperf_latency_test_destructor(void *arg) 544 { 545 struct cperf_latency_ctx *ctx = arg; 546 547 if (ctx == NULL) 548 return; 549 550 cperf_latency_test_free(ctx, ctx->options->pool_sz); 551 552 } 553