1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2016-2017 Intel Corporation. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 10 * * Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * * Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in 14 * the documentation and/or other materials provided with the 15 * distribution. 16 * * Neither the name of Intel Corporation nor the names of its 17 * contributors may be used to endorse or promote products derived 18 * from this software without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 24 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 25 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 26 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 30 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 #include <rte_malloc.h> 34 #include <rte_cycles.h> 35 #include <rte_crypto.h> 36 #include <rte_cryptodev.h> 37 38 #include "cperf_test_latency.h" 39 #include "cperf_ops.h" 40 41 42 struct cperf_op_result { 43 uint64_t tsc_start; 44 uint64_t tsc_end; 45 enum rte_crypto_op_status status; 46 }; 47 48 struct cperf_latency_ctx { 49 uint8_t dev_id; 50 uint16_t qp_id; 51 uint8_t lcore_id; 52 53 struct rte_mempool *pkt_mbuf_pool_in; 54 struct rte_mempool *pkt_mbuf_pool_out; 55 struct rte_mbuf **mbufs_in; 56 struct rte_mbuf **mbufs_out; 57 58 struct rte_mempool *crypto_op_pool; 59 60 struct rte_cryptodev_sym_session *sess; 61 62 cperf_populate_ops_t populate_ops; 63 64 const struct cperf_options *options; 65 const struct cperf_test_vector *test_vector; 66 struct cperf_op_result *res; 67 }; 68 69 struct priv_op_data { 70 struct cperf_op_result *result; 71 }; 72 73 #define max(a, b) (a > b ? (uint64_t)a : (uint64_t)b) 74 #define min(a, b) (a < b ? (uint64_t)a : (uint64_t)b) 75 76 static void 77 cperf_latency_test_free(struct cperf_latency_ctx *ctx, uint32_t mbuf_nb) 78 { 79 uint32_t i; 80 81 if (ctx) { 82 if (ctx->sess) { 83 rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess); 84 rte_cryptodev_sym_session_free(ctx->sess); 85 } 86 87 if (ctx->mbufs_in) { 88 for (i = 0; i < mbuf_nb; i++) 89 rte_pktmbuf_free(ctx->mbufs_in[i]); 90 91 rte_free(ctx->mbufs_in); 92 } 93 94 if (ctx->mbufs_out) { 95 for (i = 0; i < mbuf_nb; i++) { 96 if (ctx->mbufs_out[i] != NULL) 97 rte_pktmbuf_free(ctx->mbufs_out[i]); 98 } 99 100 rte_free(ctx->mbufs_out); 101 } 102 103 if (ctx->pkt_mbuf_pool_in) 104 rte_mempool_free(ctx->pkt_mbuf_pool_in); 105 106 if (ctx->pkt_mbuf_pool_out) 107 rte_mempool_free(ctx->pkt_mbuf_pool_out); 108 109 if (ctx->crypto_op_pool) 110 rte_mempool_free(ctx->crypto_op_pool); 111 112 rte_free(ctx->res); 113 rte_free(ctx); 114 } 115 } 116 117 static struct rte_mbuf * 118 cperf_mbuf_create(struct rte_mempool *mempool, 119 uint32_t segments_nb, 120 const struct cperf_options *options, 121 const struct cperf_test_vector *test_vector) 122 { 123 struct rte_mbuf *mbuf; 124 uint32_t segment_sz = options->max_buffer_size / segments_nb; 125 uint32_t last_sz = options->max_buffer_size % segments_nb; 126 uint8_t *mbuf_data; 127 uint8_t *test_data = 128 (options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ? 129 test_vector->plaintext.data : 130 test_vector->ciphertext.data; 131 132 mbuf = rte_pktmbuf_alloc(mempool); 133 if (mbuf == NULL) 134 goto error; 135 136 mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz); 137 if (mbuf_data == NULL) 138 goto error; 139 140 memcpy(mbuf_data, test_data, segment_sz); 141 test_data += segment_sz; 142 segments_nb--; 143 144 while (segments_nb) { 145 struct rte_mbuf *m; 146 147 m = rte_pktmbuf_alloc(mempool); 148 if (m == NULL) 149 goto error; 150 151 rte_pktmbuf_chain(mbuf, m); 152 153 mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz); 154 if (mbuf_data == NULL) 155 goto error; 156 157 memcpy(mbuf_data, test_data, segment_sz); 158 test_data += segment_sz; 159 segments_nb--; 160 } 161 162 if (last_sz) { 163 mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, last_sz); 164 if (mbuf_data == NULL) 165 goto error; 166 167 memcpy(mbuf_data, test_data, last_sz); 168 } 169 170 if (options->op_type != CPERF_CIPHER_ONLY) { 171 mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, 172 options->digest_sz); 173 if (mbuf_data == NULL) 174 goto error; 175 } 176 177 if (options->op_type == CPERF_AEAD) { 178 uint8_t *aead = (uint8_t *)rte_pktmbuf_prepend(mbuf, 179 RTE_ALIGN_CEIL(options->aead_aad_sz, 16)); 180 181 if (aead == NULL) 182 goto error; 183 184 memcpy(aead, test_vector->aad.data, test_vector->aad.length); 185 } 186 187 return mbuf; 188 error: 189 if (mbuf != NULL) 190 rte_pktmbuf_free(mbuf); 191 192 return NULL; 193 } 194 195 void * 196 cperf_latency_test_constructor(struct rte_mempool *sess_mp, 197 uint8_t dev_id, uint16_t qp_id, 198 const struct cperf_options *options, 199 const struct cperf_test_vector *test_vector, 200 const struct cperf_op_fns *op_fns) 201 { 202 struct cperf_latency_ctx *ctx = NULL; 203 unsigned int mbuf_idx = 0; 204 char pool_name[32] = ""; 205 206 ctx = rte_malloc(NULL, sizeof(struct cperf_latency_ctx), 0); 207 if (ctx == NULL) 208 goto err; 209 210 ctx->dev_id = dev_id; 211 ctx->qp_id = qp_id; 212 213 ctx->populate_ops = op_fns->populate_ops; 214 ctx->options = options; 215 ctx->test_vector = test_vector; 216 217 /* IV goes at the end of the crypto operation */ 218 uint16_t iv_offset = sizeof(struct rte_crypto_op) + 219 sizeof(struct rte_crypto_sym_op) + 220 sizeof(struct cperf_op_result *); 221 222 ctx->sess = op_fns->sess_create(sess_mp, dev_id, options, test_vector, 223 iv_offset); 224 if (ctx->sess == NULL) 225 goto err; 226 227 snprintf(pool_name, sizeof(pool_name), "cperf_pool_in_cdev_%d", 228 dev_id); 229 230 ctx->pkt_mbuf_pool_in = rte_pktmbuf_pool_create(pool_name, 231 options->pool_sz * options->segments_nb, 0, 0, 232 RTE_PKTMBUF_HEADROOM + 233 RTE_CACHE_LINE_ROUNDUP( 234 (options->max_buffer_size / options->segments_nb) + 235 (options->max_buffer_size % options->segments_nb) + 236 options->digest_sz), 237 rte_socket_id()); 238 239 if (ctx->pkt_mbuf_pool_in == NULL) 240 goto err; 241 242 /* Generate mbufs_in with plaintext populated for test */ 243 ctx->mbufs_in = rte_malloc(NULL, 244 (sizeof(struct rte_mbuf *) * 245 ctx->options->pool_sz), 0); 246 247 for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) { 248 ctx->mbufs_in[mbuf_idx] = cperf_mbuf_create( 249 ctx->pkt_mbuf_pool_in, options->segments_nb, 250 options, test_vector); 251 if (ctx->mbufs_in[mbuf_idx] == NULL) 252 goto err; 253 } 254 255 if (options->out_of_place == 1) { 256 257 snprintf(pool_name, sizeof(pool_name), 258 "cperf_pool_out_cdev_%d", 259 dev_id); 260 261 ctx->pkt_mbuf_pool_out = rte_pktmbuf_pool_create( 262 pool_name, options->pool_sz, 0, 0, 263 RTE_PKTMBUF_HEADROOM + 264 RTE_CACHE_LINE_ROUNDUP( 265 options->max_buffer_size + 266 options->digest_sz), 267 rte_socket_id()); 268 269 if (ctx->pkt_mbuf_pool_out == NULL) 270 goto err; 271 } 272 273 ctx->mbufs_out = rte_malloc(NULL, 274 (sizeof(struct rte_mbuf *) * 275 ctx->options->pool_sz), 0); 276 277 for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) { 278 if (options->out_of_place == 1) { 279 ctx->mbufs_out[mbuf_idx] = cperf_mbuf_create( 280 ctx->pkt_mbuf_pool_out, 1, 281 options, test_vector); 282 if (ctx->mbufs_out[mbuf_idx] == NULL) 283 goto err; 284 } else { 285 ctx->mbufs_out[mbuf_idx] = NULL; 286 } 287 } 288 289 snprintf(pool_name, sizeof(pool_name), "cperf_op_pool_cdev_%d", 290 dev_id); 291 292 uint16_t priv_size = sizeof(struct priv_op_data) + 293 test_vector->cipher_iv.length + 294 test_vector->auth_iv.length; 295 ctx->crypto_op_pool = rte_crypto_op_pool_create(pool_name, 296 RTE_CRYPTO_OP_TYPE_SYMMETRIC, options->pool_sz, 297 512, priv_size, rte_socket_id()); 298 299 if (ctx->crypto_op_pool == NULL) 300 goto err; 301 302 ctx->res = rte_malloc(NULL, sizeof(struct cperf_op_result) * 303 ctx->options->total_ops, 0); 304 305 if (ctx->res == NULL) 306 goto err; 307 308 return ctx; 309 err: 310 cperf_latency_test_free(ctx, mbuf_idx); 311 312 return NULL; 313 } 314 315 static inline void 316 store_timestamp(struct rte_crypto_op *op, uint64_t timestamp) 317 { 318 struct priv_op_data *priv_data; 319 320 priv_data = (struct priv_op_data *) (op->sym + 1); 321 priv_data->result->status = op->status; 322 priv_data->result->tsc_end = timestamp; 323 } 324 325 int 326 cperf_latency_test_runner(void *arg) 327 { 328 struct cperf_latency_ctx *ctx = arg; 329 uint16_t test_burst_size; 330 uint8_t burst_size_idx = 0; 331 332 static int only_once; 333 334 if (ctx == NULL) 335 return 0; 336 337 struct rte_crypto_op *ops[ctx->options->max_burst_size]; 338 struct rte_crypto_op *ops_processed[ctx->options->max_burst_size]; 339 uint64_t i; 340 struct priv_op_data *priv_data; 341 342 uint32_t lcore = rte_lcore_id(); 343 344 #ifdef CPERF_LINEARIZATION_ENABLE 345 struct rte_cryptodev_info dev_info; 346 int linearize = 0; 347 348 /* Check if source mbufs require coalescing */ 349 if (ctx->options->segments_nb > 1) { 350 rte_cryptodev_info_get(ctx->dev_id, &dev_info); 351 if ((dev_info.feature_flags & 352 RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0) 353 linearize = 1; 354 } 355 #endif /* CPERF_LINEARIZATION_ENABLE */ 356 357 ctx->lcore_id = lcore; 358 359 /* Warm up the host CPU before starting the test */ 360 for (i = 0; i < ctx->options->total_ops; i++) 361 rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0); 362 363 /* Get first size from range or list */ 364 if (ctx->options->inc_burst_size != 0) 365 test_burst_size = ctx->options->min_burst_size; 366 else 367 test_burst_size = ctx->options->burst_size_list[0]; 368 369 uint16_t iv_offset = sizeof(struct rte_crypto_op) + 370 sizeof(struct rte_crypto_sym_op) + 371 sizeof(struct cperf_op_result *); 372 373 while (test_burst_size <= ctx->options->max_burst_size) { 374 uint64_t ops_enqd = 0, ops_deqd = 0; 375 uint64_t m_idx = 0, b_idx = 0; 376 377 uint64_t tsc_val, tsc_end, tsc_start; 378 uint64_t tsc_max = 0, tsc_min = ~0UL, tsc_tot = 0, tsc_idx = 0; 379 uint64_t enqd_max = 0, enqd_min = ~0UL, enqd_tot = 0; 380 uint64_t deqd_max = 0, deqd_min = ~0UL, deqd_tot = 0; 381 382 while (enqd_tot < ctx->options->total_ops) { 383 384 uint16_t burst_size = ((enqd_tot + test_burst_size) 385 <= ctx->options->total_ops) ? 386 test_burst_size : 387 ctx->options->total_ops - 388 enqd_tot; 389 390 /* Allocate crypto ops from pool */ 391 if (burst_size != rte_crypto_op_bulk_alloc( 392 ctx->crypto_op_pool, 393 RTE_CRYPTO_OP_TYPE_SYMMETRIC, 394 ops, burst_size)) { 395 RTE_LOG(ERR, USER1, 396 "Failed to allocate more crypto operations " 397 "from the the crypto operation pool.\n" 398 "Consider increasing the pool size " 399 "with --pool-sz\n"); 400 return -1; 401 } 402 403 /* Setup crypto op, attach mbuf etc */ 404 (ctx->populate_ops)(ops, &ctx->mbufs_in[m_idx], 405 &ctx->mbufs_out[m_idx], 406 burst_size, ctx->sess, ctx->options, 407 ctx->test_vector, iv_offset); 408 409 tsc_start = rte_rdtsc_precise(); 410 411 #ifdef CPERF_LINEARIZATION_ENABLE 412 if (linearize) { 413 /* PMD doesn't support scatter-gather and source buffer 414 * is segmented. 415 * We need to linearize it before enqueuing. 416 */ 417 for (i = 0; i < burst_size; i++) 418 rte_pktmbuf_linearize(ops[i]->sym->m_src); 419 } 420 #endif /* CPERF_LINEARIZATION_ENABLE */ 421 422 /* Enqueue burst of ops on crypto device */ 423 ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, 424 ops, burst_size); 425 426 /* Dequeue processed burst of ops from crypto device */ 427 ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id, 428 ops_processed, test_burst_size); 429 430 tsc_end = rte_rdtsc_precise(); 431 432 /* Free memory for not enqueued operations */ 433 if (ops_enqd != burst_size) 434 rte_mempool_put_bulk(ctx->crypto_op_pool, 435 (void **)&ops_processed[ops_enqd], 436 burst_size - ops_enqd); 437 438 for (i = 0; i < ops_enqd; i++) { 439 ctx->res[tsc_idx].tsc_start = tsc_start; 440 /* 441 * Private data structure starts after the end of the 442 * rte_crypto_sym_op structure. 443 */ 444 priv_data = (struct priv_op_data *) (ops[i]->sym + 1); 445 priv_data->result = (void *)&ctx->res[tsc_idx]; 446 tsc_idx++; 447 } 448 449 if (likely(ops_deqd)) { 450 /* 451 * free crypto ops so they can be reused. We don't free 452 * the mbufs here as we don't want to reuse them as 453 * the crypto operation will change the data and cause 454 * failures. 455 */ 456 for (i = 0; i < ops_deqd; i++) 457 store_timestamp(ops_processed[i], tsc_end); 458 459 rte_mempool_put_bulk(ctx->crypto_op_pool, 460 (void **)ops_processed, ops_deqd); 461 462 deqd_tot += ops_deqd; 463 deqd_max = max(ops_deqd, deqd_max); 464 deqd_min = min(ops_deqd, deqd_min); 465 } 466 467 enqd_tot += ops_enqd; 468 enqd_max = max(ops_enqd, enqd_max); 469 enqd_min = min(ops_enqd, enqd_min); 470 471 m_idx += ops_enqd; 472 m_idx = m_idx + test_burst_size > ctx->options->pool_sz ? 473 0 : m_idx; 474 b_idx++; 475 } 476 477 /* Dequeue any operations still in the crypto device */ 478 while (deqd_tot < ctx->options->total_ops) { 479 /* Sending 0 length burst to flush sw crypto device */ 480 rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0); 481 482 /* dequeue burst */ 483 ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id, 484 ops_processed, test_burst_size); 485 486 tsc_end = rte_rdtsc_precise(); 487 488 if (ops_deqd != 0) { 489 for (i = 0; i < ops_deqd; i++) 490 store_timestamp(ops_processed[i], tsc_end); 491 492 rte_mempool_put_bulk(ctx->crypto_op_pool, 493 (void **)ops_processed, ops_deqd); 494 495 deqd_tot += ops_deqd; 496 deqd_max = max(ops_deqd, deqd_max); 497 deqd_min = min(ops_deqd, deqd_min); 498 } 499 } 500 501 for (i = 0; i < tsc_idx; i++) { 502 tsc_val = ctx->res[i].tsc_end - ctx->res[i].tsc_start; 503 tsc_max = max(tsc_val, tsc_max); 504 tsc_min = min(tsc_val, tsc_min); 505 tsc_tot += tsc_val; 506 } 507 508 double time_tot, time_avg, time_max, time_min; 509 510 const uint64_t tunit = 1000000; /* us */ 511 const uint64_t tsc_hz = rte_get_tsc_hz(); 512 513 uint64_t enqd_avg = enqd_tot / b_idx; 514 uint64_t deqd_avg = deqd_tot / b_idx; 515 uint64_t tsc_avg = tsc_tot / tsc_idx; 516 517 time_tot = tunit*(double)(tsc_tot) / tsc_hz; 518 time_avg = tunit*(double)(tsc_avg) / tsc_hz; 519 time_max = tunit*(double)(tsc_max) / tsc_hz; 520 time_min = tunit*(double)(tsc_min) / tsc_hz; 521 522 if (ctx->options->csv) { 523 if (!only_once) 524 printf("\n# lcore, Buffer Size, Burst Size, Pakt Seq #, " 525 "Packet Size, cycles, time (us)"); 526 527 for (i = 0; i < ctx->options->total_ops; i++) { 528 529 printf("\n%u;%u;%u;%"PRIu64";%"PRIu64";%.3f", 530 ctx->lcore_id, ctx->options->test_buffer_size, 531 test_burst_size, i + 1, 532 ctx->res[i].tsc_end - ctx->res[i].tsc_start, 533 tunit * (double) (ctx->res[i].tsc_end 534 - ctx->res[i].tsc_start) 535 / tsc_hz); 536 537 } 538 only_once = 1; 539 } else { 540 printf("\n# Device %d on lcore %u\n", ctx->dev_id, 541 ctx->lcore_id); 542 printf("\n# total operations: %u", ctx->options->total_ops); 543 printf("\n# Buffer size: %u", ctx->options->test_buffer_size); 544 printf("\n# Burst size: %u", test_burst_size); 545 printf("\n# Number of bursts: %"PRIu64, 546 b_idx); 547 548 printf("\n#"); 549 printf("\n# \t Total\t Average\t " 550 "Maximum\t Minimum"); 551 printf("\n# enqueued\t%12"PRIu64"\t%10"PRIu64"\t" 552 "%10"PRIu64"\t%10"PRIu64, enqd_tot, 553 enqd_avg, enqd_max, enqd_min); 554 printf("\n# dequeued\t%12"PRIu64"\t%10"PRIu64"\t" 555 "%10"PRIu64"\t%10"PRIu64, deqd_tot, 556 deqd_avg, deqd_max, deqd_min); 557 printf("\n# cycles\t%12"PRIu64"\t%10"PRIu64"\t" 558 "%10"PRIu64"\t%10"PRIu64, tsc_tot, 559 tsc_avg, tsc_max, tsc_min); 560 printf("\n# time [us]\t%12.0f\t%10.3f\t%10.3f\t%10.3f", 561 time_tot, time_avg, time_max, time_min); 562 printf("\n\n"); 563 564 } 565 566 /* Get next size from range or list */ 567 if (ctx->options->inc_burst_size != 0) 568 test_burst_size += ctx->options->inc_burst_size; 569 else { 570 if (++burst_size_idx == ctx->options->burst_size_count) 571 break; 572 test_burst_size = 573 ctx->options->burst_size_list[burst_size_idx]; 574 } 575 } 576 577 return 0; 578 } 579 580 void 581 cperf_latency_test_destructor(void *arg) 582 { 583 struct cperf_latency_ctx *ctx = arg; 584 585 if (ctx == NULL) 586 return; 587 588 rte_cryptodev_stop(ctx->dev_id); 589 590 cperf_latency_test_free(ctx, ctx->options->pool_sz); 591 } 592