xref: /dpdk/app/test-crypto-perf/cperf_test_latency.c (revision 089e5ed727a15da2729cfee9b63533dd120bd04c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4 
5 #include <rte_malloc.h>
6 #include <rte_cycles.h>
7 #include <rte_crypto.h>
8 #include <rte_cryptodev.h>
9 
10 #include "cperf_test_latency.h"
11 #include "cperf_ops.h"
12 #include "cperf_test_common.h"
13 
14 struct cperf_op_result {
15 	uint64_t tsc_start;
16 	uint64_t tsc_end;
17 	enum rte_crypto_op_status status;
18 };
19 
20 struct cperf_latency_ctx {
21 	uint8_t dev_id;
22 	uint16_t qp_id;
23 	uint8_t lcore_id;
24 
25 	struct rte_mempool *pool;
26 
27 	struct rte_cryptodev_sym_session *sess;
28 
29 	cperf_populate_ops_t populate_ops;
30 
31 	uint32_t src_buf_offset;
32 	uint32_t dst_buf_offset;
33 
34 	const struct cperf_options *options;
35 	const struct cperf_test_vector *test_vector;
36 	struct cperf_op_result *res;
37 };
38 
39 struct priv_op_data {
40 	struct cperf_op_result *result;
41 };
42 
43 #define max(a, b) (a > b ? (uint64_t)a : (uint64_t)b)
44 #define min(a, b) (a < b ? (uint64_t)a : (uint64_t)b)
45 
46 static void
47 cperf_latency_test_free(struct cperf_latency_ctx *ctx)
48 {
49 	if (ctx) {
50 		if (ctx->sess) {
51 			rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
52 			rte_cryptodev_sym_session_free(ctx->sess);
53 		}
54 
55 		if (ctx->pool)
56 			rte_mempool_free(ctx->pool);
57 
58 		rte_free(ctx->res);
59 		rte_free(ctx);
60 	}
61 }
62 
63 void *
64 cperf_latency_test_constructor(struct rte_mempool *sess_mp,
65 		struct rte_mempool *sess_priv_mp,
66 		uint8_t dev_id, uint16_t qp_id,
67 		const struct cperf_options *options,
68 		const struct cperf_test_vector *test_vector,
69 		const struct cperf_op_fns *op_fns)
70 {
71 	struct cperf_latency_ctx *ctx = NULL;
72 	size_t extra_op_priv_size = sizeof(struct priv_op_data);
73 
74 	ctx = rte_malloc(NULL, sizeof(struct cperf_latency_ctx), 0);
75 	if (ctx == NULL)
76 		goto err;
77 
78 	ctx->dev_id = dev_id;
79 	ctx->qp_id = qp_id;
80 
81 	ctx->populate_ops = op_fns->populate_ops;
82 	ctx->options = options;
83 	ctx->test_vector = test_vector;
84 
85 	/* IV goes at the end of the crypto operation */
86 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
87 		sizeof(struct rte_crypto_sym_op) +
88 		sizeof(struct cperf_op_result *);
89 
90 	ctx->sess = op_fns->sess_create(sess_mp, sess_priv_mp, dev_id, options,
91 			test_vector, iv_offset);
92 	if (ctx->sess == NULL)
93 		goto err;
94 
95 	if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id,
96 			extra_op_priv_size,
97 			&ctx->src_buf_offset, &ctx->dst_buf_offset,
98 			&ctx->pool) < 0)
99 		goto err;
100 
101 	ctx->res = rte_malloc(NULL, sizeof(struct cperf_op_result) *
102 			ctx->options->total_ops, 0);
103 
104 	if (ctx->res == NULL)
105 		goto err;
106 
107 	return ctx;
108 err:
109 	cperf_latency_test_free(ctx);
110 
111 	return NULL;
112 }
113 
114 static inline void
115 store_timestamp(struct rte_crypto_op *op, uint64_t timestamp)
116 {
117 	struct priv_op_data *priv_data;
118 
119 	priv_data = (struct priv_op_data *) (op->sym + 1);
120 	priv_data->result->status = op->status;
121 	priv_data->result->tsc_end = timestamp;
122 }
123 
124 int
125 cperf_latency_test_runner(void *arg)
126 {
127 	struct cperf_latency_ctx *ctx = arg;
128 	uint16_t test_burst_size;
129 	uint8_t burst_size_idx = 0;
130 	uint32_t imix_idx = 0;
131 
132 	static rte_atomic16_t display_once = RTE_ATOMIC16_INIT(0);
133 
134 	if (ctx == NULL)
135 		return 0;
136 
137 	struct rte_crypto_op *ops[ctx->options->max_burst_size];
138 	struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
139 	uint64_t i;
140 	struct priv_op_data *priv_data;
141 
142 	uint32_t lcore = rte_lcore_id();
143 
144 #ifdef CPERF_LINEARIZATION_ENABLE
145 	struct rte_cryptodev_info dev_info;
146 	int linearize = 0;
147 
148 	/* Check if source mbufs require coalescing */
149 	if (ctx->options->segment_sz < ctx->options->max_buffer_size) {
150 		rte_cryptodev_info_get(ctx->dev_id, &dev_info);
151 		if ((dev_info.feature_flags &
152 				RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
153 			linearize = 1;
154 	}
155 #endif /* CPERF_LINEARIZATION_ENABLE */
156 
157 	ctx->lcore_id = lcore;
158 
159 	/* Warm up the host CPU before starting the test */
160 	for (i = 0; i < ctx->options->total_ops; i++)
161 		rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
162 
163 	/* Get first size from range or list */
164 	if (ctx->options->inc_burst_size != 0)
165 		test_burst_size = ctx->options->min_burst_size;
166 	else
167 		test_burst_size = ctx->options->burst_size_list[0];
168 
169 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
170 		sizeof(struct rte_crypto_sym_op) +
171 		sizeof(struct cperf_op_result *);
172 
173 	while (test_burst_size <= ctx->options->max_burst_size) {
174 		uint64_t ops_enqd = 0, ops_deqd = 0;
175 		uint64_t b_idx = 0;
176 
177 		uint64_t tsc_val, tsc_end, tsc_start;
178 		uint64_t tsc_max = 0, tsc_min = ~0UL, tsc_tot = 0, tsc_idx = 0;
179 		uint64_t enqd_max = 0, enqd_min = ~0UL, enqd_tot = 0;
180 		uint64_t deqd_max = 0, deqd_min = ~0UL, deqd_tot = 0;
181 
182 		while (enqd_tot < ctx->options->total_ops) {
183 
184 			uint16_t burst_size = ((enqd_tot + test_burst_size)
185 					<= ctx->options->total_ops) ?
186 							test_burst_size :
187 							ctx->options->total_ops -
188 							enqd_tot;
189 
190 			/* Allocate objects containing crypto operations and mbufs */
191 			if (rte_mempool_get_bulk(ctx->pool, (void **)ops,
192 						burst_size) != 0) {
193 				RTE_LOG(ERR, USER1,
194 					"Failed to allocate more crypto operations "
195 					"from the crypto operation pool.\n"
196 					"Consider increasing the pool size "
197 					"with --pool-sz\n");
198 				return -1;
199 			}
200 
201 			/* Setup crypto op, attach mbuf etc */
202 			(ctx->populate_ops)(ops, ctx->src_buf_offset,
203 					ctx->dst_buf_offset,
204 					burst_size, ctx->sess, ctx->options,
205 					ctx->test_vector, iv_offset,
206 					&imix_idx);
207 
208 			tsc_start = rte_rdtsc_precise();
209 
210 #ifdef CPERF_LINEARIZATION_ENABLE
211 			if (linearize) {
212 				/* PMD doesn't support scatter-gather and source buffer
213 				 * is segmented.
214 				 * We need to linearize it before enqueuing.
215 				 */
216 				for (i = 0; i < burst_size; i++)
217 					rte_pktmbuf_linearize(ops[i]->sym->m_src);
218 			}
219 #endif /* CPERF_LINEARIZATION_ENABLE */
220 
221 			/* Enqueue burst of ops on crypto device */
222 			ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
223 					ops, burst_size);
224 
225 			/* Dequeue processed burst of ops from crypto device */
226 			ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
227 					ops_processed, test_burst_size);
228 
229 			tsc_end = rte_rdtsc_precise();
230 
231 			/* Free memory for not enqueued operations */
232 			if (ops_enqd != burst_size)
233 				rte_mempool_put_bulk(ctx->pool,
234 						(void **)&ops[ops_enqd],
235 						burst_size - ops_enqd);
236 
237 			for (i = 0; i < ops_enqd; i++) {
238 				ctx->res[tsc_idx].tsc_start = tsc_start;
239 				/*
240 				 * Private data structure starts after the end of the
241 				 * rte_crypto_sym_op structure.
242 				 */
243 				priv_data = (struct priv_op_data *) (ops[i]->sym + 1);
244 				priv_data->result = (void *)&ctx->res[tsc_idx];
245 				tsc_idx++;
246 			}
247 
248 			if (likely(ops_deqd))  {
249 				/* Free crypto ops so they can be reused. */
250 				for (i = 0; i < ops_deqd; i++)
251 					store_timestamp(ops_processed[i], tsc_end);
252 
253 				rte_mempool_put_bulk(ctx->pool,
254 						(void **)ops_processed, ops_deqd);
255 
256 				deqd_tot += ops_deqd;
257 				deqd_max = max(ops_deqd, deqd_max);
258 				deqd_min = min(ops_deqd, deqd_min);
259 			}
260 
261 			enqd_tot += ops_enqd;
262 			enqd_max = max(ops_enqd, enqd_max);
263 			enqd_min = min(ops_enqd, enqd_min);
264 
265 			b_idx++;
266 		}
267 
268 		/* Dequeue any operations still in the crypto device */
269 		while (deqd_tot < ctx->options->total_ops) {
270 			/* Sending 0 length burst to flush sw crypto device */
271 			rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
272 
273 			/* dequeue burst */
274 			ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
275 					ops_processed, test_burst_size);
276 
277 			tsc_end = rte_rdtsc_precise();
278 
279 			if (ops_deqd != 0) {
280 				for (i = 0; i < ops_deqd; i++)
281 					store_timestamp(ops_processed[i], tsc_end);
282 
283 				rte_mempool_put_bulk(ctx->pool,
284 						(void **)ops_processed, ops_deqd);
285 
286 				deqd_tot += ops_deqd;
287 				deqd_max = max(ops_deqd, deqd_max);
288 				deqd_min = min(ops_deqd, deqd_min);
289 			}
290 		}
291 
292 		for (i = 0; i < tsc_idx; i++) {
293 			tsc_val = ctx->res[i].tsc_end - ctx->res[i].tsc_start;
294 			tsc_max = max(tsc_val, tsc_max);
295 			tsc_min = min(tsc_val, tsc_min);
296 			tsc_tot += tsc_val;
297 		}
298 
299 		double time_tot, time_avg, time_max, time_min;
300 
301 		const uint64_t tunit = 1000000; /* us */
302 		const uint64_t tsc_hz = rte_get_tsc_hz();
303 
304 		uint64_t enqd_avg = enqd_tot / b_idx;
305 		uint64_t deqd_avg = deqd_tot / b_idx;
306 		uint64_t tsc_avg = tsc_tot / tsc_idx;
307 
308 		time_tot = tunit*(double)(tsc_tot) / tsc_hz;
309 		time_avg = tunit*(double)(tsc_avg) / tsc_hz;
310 		time_max = tunit*(double)(tsc_max) / tsc_hz;
311 		time_min = tunit*(double)(tsc_min) / tsc_hz;
312 
313 		if (ctx->options->csv) {
314 			if (rte_atomic16_test_and_set(&display_once))
315 				printf("\n# lcore, Buffer Size, Burst Size, Pakt Seq #, "
316 						"Packet Size, cycles, time (us)");
317 
318 			for (i = 0; i < ctx->options->total_ops; i++) {
319 
320 				printf("\n%u;%u;%u;%"PRIu64";%"PRIu64";%.3f",
321 					ctx->lcore_id, ctx->options->test_buffer_size,
322 					test_burst_size, i + 1,
323 					ctx->res[i].tsc_end - ctx->res[i].tsc_start,
324 					tunit * (double) (ctx->res[i].tsc_end
325 							- ctx->res[i].tsc_start)
326 						/ tsc_hz);
327 
328 			}
329 		} else {
330 			printf("\n# Device %d on lcore %u\n", ctx->dev_id,
331 				ctx->lcore_id);
332 			printf("\n# total operations: %u", ctx->options->total_ops);
333 			printf("\n# Buffer size: %u", ctx->options->test_buffer_size);
334 			printf("\n# Burst size: %u", test_burst_size);
335 			printf("\n#     Number of bursts: %"PRIu64,
336 					b_idx);
337 
338 			printf("\n#");
339 			printf("\n#          \t       Total\t   Average\t   "
340 					"Maximum\t   Minimum");
341 			printf("\n#  enqueued\t%12"PRIu64"\t%10"PRIu64"\t"
342 					"%10"PRIu64"\t%10"PRIu64, enqd_tot,
343 					enqd_avg, enqd_max, enqd_min);
344 			printf("\n#  dequeued\t%12"PRIu64"\t%10"PRIu64"\t"
345 					"%10"PRIu64"\t%10"PRIu64, deqd_tot,
346 					deqd_avg, deqd_max, deqd_min);
347 			printf("\n#    cycles\t%12"PRIu64"\t%10"PRIu64"\t"
348 					"%10"PRIu64"\t%10"PRIu64, tsc_tot,
349 					tsc_avg, tsc_max, tsc_min);
350 			printf("\n# time [us]\t%12.0f\t%10.3f\t%10.3f\t%10.3f",
351 					time_tot, time_avg, time_max, time_min);
352 			printf("\n\n");
353 
354 		}
355 
356 		/* Get next size from range or list */
357 		if (ctx->options->inc_burst_size != 0)
358 			test_burst_size += ctx->options->inc_burst_size;
359 		else {
360 			if (++burst_size_idx == ctx->options->burst_size_count)
361 				break;
362 			test_burst_size =
363 				ctx->options->burst_size_list[burst_size_idx];
364 		}
365 	}
366 
367 	return 0;
368 }
369 
370 void
371 cperf_latency_test_destructor(void *arg)
372 {
373 	struct cperf_latency_ctx *ctx = arg;
374 
375 	if (ctx == NULL)
376 		return;
377 
378 	cperf_latency_test_free(ctx);
379 }
380